Asian Journal of Chemistry; Vol. 24, No. 7 (2012), 2884-2890

Asian Journal of Chemistry

www.asianjournalofchemistry.co.in

Rearrangements of 2-Pyridyl-3-arylaminoisoxazol-5(2H)-ones to Imidazo[1,2-a]pyridines under Flash-Vacuum-Pyrolysis

DAVOOD SETAMDIDEH^{*}, SALAH KHANAHMADZADEH and NASRIN KHORSHIDI

Department of Chemistry, Faculty of Sciences, Mahabad Branch, Islamic Azad University, Mahabad 59135-443, Iran

*Corresponding author: Fax: +98 442 2333000; Tel: +98 442 2338608-10; E-mail: davood.setamdideh@gmail.com

(Received: 18 June 2011;

Accepted: 1 February 2012)

AJC-11027

2-Pyridyl-3-arylaminoisoxazol-5(2H)-ones, rearranged under flash-vacuum-pyrolysis (FVP) conditions accompanied by elimination of carbon dioxide to give imidazo[1,2-a]pyridines in high to excellent yields (85-95 %).

Key Words: Isoxazolones, Imidazopyridines, Flash-vacuum-pyrolysis.

INTRODUCTION

The thermal or photochemical loss of nitrogen and carbon dioxide from triazoles and isoxazole-5-ones, respectively, have been reported¹. We have reported that the reactions of 2-pyridyl-3-arylaminoisoxazol-5(2H)-ones (1, Ar: 4-BrC₆H₄, 4-MeC₆H₄)² with triethylamine in ethanol give imidazo annulated compounds (2, Ar: 4-BrC₆H₄ (84 %), 4-MeC₆H₄ (75 %) as net products (Scheme-I).

1, Ar: 4-BrC₆H₄, 4-MeC₆H₄

2, Ar: 4-BrC₆H₄, 4-MeC₆H₄ Scheme-I

However, the reaction of ethyl 3-(4-methoxyphenyl)amino-2-(5-nitropyrid-2-yl)-5-oxo-2,5-dihydroisoxazole-4carboxylate (1, 4-MeOC₆H₄) with triethylamine gives imidazo (2, 4-MeOC₆H₄, 59 %) and indole (3, 20 %)² annulated compounds respectively (Scheme-II).

Herein, we described net rearrangement of ethyl 2-pyridyl-3-arylaminoisoxazol-5(2H)-ones (1, Ar: 2-MeC₆H₄, 2-MeOC₆H₄, 3-MeC₆H₄, 3-BrC₆H₄, 3-CO₂EtC₆H₄, 4-MeOC₆H₄, $4-MeC_{6}H_{4}, 4-BrC_{6}H_{4}, 4-CO_{2}EtC_{6}H_{4}, 4-NO_{2}C_{6}H_{4})$ to imidazo[1, 2-a]pyridines (2, Ar: 2-MeC₆H₄, 2-MeOC₆H₄, 3-MeC₆H₄, 3-BrC₆H₄, 3-CO₂EtC₆H₄, 4-MeOC₆H₄, 4-MeC₆H₄, 4-BrC₆H₄, 4-CO₂EtC₆H₄, 4-NO₂C₆H₄) under flash-vacuum-pyrolysis (FVP) conditions.

EXPERIMENTAL

General: Freshly distilled solvents were used throughout and anhydrous solvents were dried according to Perrin and Amarego³. ¹H NMR and ¹³C NMR spectra were recorded, in deuterio chloroform, unless otherwise stated, at 500 and

Scheme-II

NHAr

125 MHz respectively, with a Bruker DRX-500 Avance spectrometer. Tetramethyl silane (TMS) was used as an internal standard and all signals due to amino protons were exchanged by exchange with D₂O. Infrared spectra were recorded on a Unicam Matsson 1000 Fourier-transform spectrometer. Mass spectra were recorded on a Varian Matt 311 spectrometer and relative abundance of fragments are quoted in parentheses after the m/z values. Melting points were determined on a Philip Harris C4954718 apparatus and are uncorrected. Micronalyses were preformed on a Carlo-Erba Analyzer 1104.

Diethyl (4-bromophenyl)thiocarbamoylmalonate (A typical procedure): Sodium (2.9 g, 0.126 mol) was reacted with absolute ethanol (50 mL) and diethyl malonate (20 g, 18.95 mL, 0.126 mol) was added at room temperature. The reaction mixture was stirred at room temperature for 15 min, 4-bromophenyl isothiocyanate. Yield (26.96 g, 0.126 mol) was added and stirring was continued for further 2 h. The resulting precipitate was filtered off and washed with light petroleum to give the salt as yellow crystals, (39.91 g, 80 %); m.p. 163-164 °C. The salt was dissolved in water (30-40 mL) and neutralized by dropwise addition of dilute HCl. The mixture was stirred for 15 min and the precipitate was filtered to give the title compound (29.02 g, 77 %) as a pale yellow solid, m.p. 52-53 °C; ¹H NMR (CDCl₃) δ (ppm): δ = 1.35 (t, J = 7.1 Hz, 6H), 4.321 (q, J = 7.1 Hz, 2H), 4.326 (q, J = 7.1 Hz, 2H), 5.09 (s, 1H), 7.55 (d, J = 8.6 Hz, 2H), 7.73 (d, J = 8.6 Hz, 2H),10.9 (bs, 1H, NH). ¹³C NMR (CDCl₃) δ (ppm): 14.34, 63.63, 67.68, 120.37, 125.13, 132.37, 137.89, 166.08, 188.05. FT-IR (v_{max}, cm⁻¹): 3285, 1759, 1723, 1548, 1431, 1285, 1146, 1023, 831. The other thiocarbamates (4, Ar: 2-MeC₆H₄, 2-MeOC₆H₄, 3-MeC₆H₄, 3-BrC₆H₄, 3-CO₂EtC₆H₄, 4-MeOC₆H₄, 4-MeC₆H₄, $4-CO_2EtC_6H_4$, $4-NO_2C_6H_4$) were made by the same procedure.

Ethyl 3-(2-methylphenyl)amino-5-oxo-2,5-dihydroisoxazole-4-carboxylate (6, 2-MeC₆H₄): To a solution of hydroxylamine hydrochloride (17.37 g, 250 mmol) in water (80 mL), potassium bicarbonate (25.03 g, 250 mmol) was slowly added. Ethanol (300 mL) was added and the resulting potassium chloride was filtered off. Diethyl N-(2-methylphenyl) thiocarbamoylmalonate (15.75 g, 83 mmol) was added to the filtrate and the mixture was stirred at room temperature for 24 h. The reaction mixture was acidified with diluted hydrochloric acid and the white precipitate was collected by vacuum filtration and recrystallized from ethanol to give the desired product as colourless needles. Yield 17.46 g (80 %); m.p. 172-173 °C. ¹H NMR (DMSO- d_6) δ (ppm): 1.35 (t, J = 0.2 Hz, 3H); 2.32 (s, 3H), 4.34 (q, J = 7.2 Hz, 2H), 6.23 (br. s, exchanged by D_2O addition, 1H); 7.27 (t, J = 7.3 Hz, 1H); 7.29 (t, J = 7.3 Hz, 1H); 7.43 (d, J = 7.3 Hz, 1H); 7.34 (d, J = 0.3Hz, 1H); 9.45 (s, exchanged by D₂O addition, 1H). ¹³C NMR (DMSO-*d*₆) δ (ppm): 14.65, 17.77, 60.56, 75.87, 122.91, 127.34, 127.30, 131.45, 133.70, 164.66, 165.56, 167.23. FT-IR (v_{max}, cm^{-1}) : 2976, 1729, 1705, 1654, 1457, 1320, 1218, 1043, 809, 774.

Ethyl 3-(2-methoxyphenyl)amino-5-oxo-2,5-dihydroisoxazole-4-carboxylate (6, 2-MeOC₆H₄): The compound was prepared as described above using diethyl N-(2-methoxyphenyl)thiocarbamoylmalonate (5, 2-MeOC₆H₄), the mixture was stirred at room temperature for 18 h to give the desired product as white crystals. Yield (90%); m.p. 176-177 °C. ¹H NMR (CDCl₃ + DMSO-*d*₆) δ (ppm): 1.31 (t, *J* = 0.1 Hz, 3H); 3.87 (s, 3H), 4.25 (q, *J* = 7.1 Hz, 2H); 6.77 (td, *J*₁ = 0.6 Hz, *J*₂ = 1.2 Hz, 1H); 6.79 (td, *J*₁ = 7.6 Hz, *J*₂ = 1.2 Hz, 1H); 6.89 (td, *J*₁ = 7.6 Hz, *J*₂ = 1.2 Hz, 1H); 8.01 (dd, *J*₁ = 7.6 Hz, *J*₂ = 1.2 Hz, 1H); 8.76 (br. s, exchanged by D₂O addition, 1H); 10.35 (br. s, exchanged by D₂O addition, 1H). ¹³C NMR (CDCl₃ + DMSO-*d*₆) δ (ppm): 13.80, 56.17, 61.72, 112.25, 121.51, 121.90, 128.10, 150.56, 159.02, 159.59, 164.01, 170.22. FT-IR (ν_{max} , cm⁻¹): 3213, 3034, 1733, 1717, 1680, 1631, 1585, 1494, 1325, 1227, 1044, 759.

Ethyl 3-(3-methylphenyl)amino-5-oxo-2,5-dihydroisoxazole-4-carboxylate (6, 3-MeC₆H₄): The compound was prepared as described above using diethyl(3-methylphenyl) thiocarbamoylmalonate (5, 3-MeC₆H₄) and refluxing for 16 h to give the desired product as colourless crystals. Yield (75 %), m.p. 108-109 °C. ¹H NMR (DMSO-*d*₆ + CDCl₃) δ (ppm): 1.42 (t, *J* = 7.1 Hz, 3H); 2.40 (s, 3H); 4.35 (q, *J* = 7.1 Hz, 2H); 7.04 (bd, *J* = 7.5 Hz, 1H); 7.06 (bd, *J* = 7.9 Hz, 1H), 7.4 (bs, 1H), 7.35 (t, *J* = 7.7 Hz, 1H); 9.5 (s, 1H, NH). ¹³C NMR (DMSO-*d*₆ + CDCl₃) δ (ppm): 14.61, 21.37, 60.22, 74.78, 118.21, 121.79, 126.46, 129.50, 135.90, 139.77, 163.33, 165.67, 166.90. FT-IR (v_{max}, cm⁻¹): 3526, 3317, 1715, 1683, 1584, 1332, 1230, 1173, 1116, 1010, 795.

Ethyl 3-(3-bromophenyl)amino-5-oxo-2,5-dihydroisoxazole-4-carboxylate (6, 3-BrC6H4): This compound was prepared as described above using diethyl (3-bromophenyl) thiocarbamoylmalonate (5, 3-BrC₆H₄) and refluxing for 16 h to give the desired product as colourless crystals. Yield (80 %) as colourless crystals m.p. 100-101 °C. ¹H NMR (DMSO-*d*₆ + CDCl₃): δ 1.40 (t, J = 7.1 Hz, 3H), 4.40 (q, J = 7.1 Hz, 2H), 6.18 (bs, NH, 1H), 7.26 (dt, $J_1 = 8.1$ Hz, $J_2 = 1.9$ Hz, 1H), 7.32 (t, J = 7.7 Hz, 1H), 7.38 (dt, $J_1 = 7.7$ Hz, $J_2 = 1.7$ Hz, 1H), 7.56 (t, J = 1.9 Hz, 1H), 9.38 (bs, NH, 1H), ¹³C NMR (DMSO-*d*₆ + CDCl₃) δ (ppm): 14.51, 60.32, 75.22, 119.90, 123.05, 123.97, 128.35, 131.09, 137.70, 162.97, 165.50, 166.80. FT-IR (v_{max}, cm⁻¹): 3523, 3300, 1715, 1706, 1595, 1482, 1417, 1326, 1213, 1122, 1013, 796.

Ethyl 3-(3-ethoxycarbonylphenyl)amino-5-oxo-2,5dihydroisoxazole-4-carboxylate (6, 3-CO₂EtC₆H₄): This compound was prepared as described above using diethyl (3-ethoxycarbonylphenyl)thiocarbamoylmalonate (5, 3-CO₂EtC₆H₄) and refluxing for 24 h to give the desired product. Yield (60 %) as white needles, m.p. 187-188 °C. ¹H NMR (DMSO- d_6) δ (ppm) 1.29 (t, J = 7.1 Hz, 3H), 1.38 (t, J = 7.1Hz, 3H), 4.20 (q, J = 7.1 Hz, 2H), 4.40 (q, J = 7.1 Hz, 2H), 4.55 (bs, exchanged by D_2O addition, 1H, NH), 7.50 (t, J =8.0 Hz, 1H), 7.72 (bd, J = 7.8 Hz, 1H), 7.70 (dt, $J_1 = 8.2$ Hz, J_2 = 1.2 Hz, 1H), 8.10 (bs, 1H), 9.15 (s, exchanged by D₂O addition, 1H, NH). ¹³C NMR (DMSO- d_6) δ (ppm): 14.10, 14.54, 58.291, 60.73, 72.01, 119.66, 122.69, 123.61, 129.34, 130.69, 139.36, 161.40, 164.89, 165.64, 169.19. FT-IR (v_{max} , cm⁻¹): 3410, 2987, 1700, 1694, 1621, 1565, 1482, 1465, 1374, 1300, 1215, 1123, 1074, 1023, 785.

Ethyl 3-(4-methylphenyl)amino-5-oxo-2,5-dihydroisoxazole-4-carboxylate (6, 4-MeC₆H₄): This compound was prepared as described above using diethyl (4-methyl) thiocarbamoylmalonate (5, 4-MeOC₆H₄) and Refluxing for 24 h gave colourless crystals. Yield (85 %), m.p. 164-166 °C (dec.). ¹H NMR (DMSO- d_6 + CDCl₃) δ (ppm): 0.95 (t, *J* = 7 Hz, 3H), 1.94 (s, 3H), 3.91 (q, J = 7 Hz, 2H), 6.78 (d, J = 9.2Hz, 2H), 6.79 (bs, 1H, NH), 6.80 (d, J = 9.2 Hz, 2H), 8.85 (bs, 1H, NH). ¹³C NMR (DMSO- d_6 + CDCl₃) δ (ppm): 14.52, 20.85, 60.08, 74.69, 121.53, 130.13, 133.29, 135.64, 163.59, 165.51, 166.74. FT-IR (ν_{max} , cm⁻¹): 3669, 2979, 2746, 1705, 1669, 1615, 1331, 1208, 1115, 1023, 800.

Ethyl 3-(4-methoxyphenyl)amino-5-oxo-2,5-dihydroisoxazole-4-carboxylate (6, 4-MeOC₆H₄): This compound was prepared as described above using diethyl (4-methoxy) thiocarbamoylmalonate (5, 4-MeOC₆H₄) and refluxing for 24 h gave the desired product. Yield (80 %) which was recrystallized from ethanol/acetone (1:1) as a white solid, m.p. 206-207 °C (dec.); ¹H NMR (DMSO- d_6 + CDCl₃) δ (ppm): 0.95 (t, J = 7.0 Hz, 3H), 3.35 (s, 3H), 3.83 (q, J = 7.0 Hz, 2H), 6.38 (d, J = 8.5 Hz, 2H), 6.94 (d, J = 8.5 Hz, 2H), 6.96 (bs, 1H, NH), 7.70 (bs, 1H, NH); ¹³C NMR (DMSO- d_6 + CDCl₃) δ (ppm): 15.64, 55.55, 58.37, 73.5, 114.6, 118.6, 135.73, 153.7, 165.73, 168.14, 174.81. FT-IR (v_{max}, cm⁻¹): 3407, 1708, 1615, 1554, 1248, 1077, 792.

Ethyl 3-(4-bromophenyl)amino-5-oxo-2,5-dihydroisoxazole-4-carboxylate (6, 4-BrC₆H₄): This compound was prepared as described above using diethyl (4-bromophenyl) thiocarbamoylmalonate (5, 4-BrC₆H₄) and refluxing for 24 h gave the desired product. Yield (80 %) which was recrystallized from acetone as a white solid, m.p. 200-202 °C (dec.); ¹H NMR (DMSO-*d*₆) δ (ppm): 1.25 (t, *J* = 7.1 Hz, 3H), 4.21 (q, *J* = 7.1 Hz, 2H), 7.37 (d, *J* = 8.4 Hz, 2H), 7.57 (d, *J* = 8.4 Hz, 2H), 8.30 (bs, 1H, NH), 9.39 (bs, 1H, NH). ¹³C NMR (DMSO-*d*₆) δ (ppm): 15.31, 59.96, 74.69, 118.02, 125.08, 132.94, 137.10, 163.53, 164.74, 167.39. FT-IR (v_{max}, cm⁻¹): 3250, 2950, 2740, 1723, 1696, 1666, 1607, 1563, 1456, 1398, 1316, 1183, 1018, 818.

Ethyl 3-(4-nitrophenyl)amino-5-oxo-2,5-dihydroisoxazole-4-carboxylate (6, 4-NO₂C₆H₄): This compound was prepared as described above using diethyl (4-nitrophenyl) thiocarbamoylmalonate (5, 2-NO₂C₆H₄) and refluxing for 24 h to give the desired product (65%) as a yellow solid, m.p. 158-160 °C. ¹H NMR (DMSO-*d*₆ + CDCl₃) δ (ppm): 1.30 (t, *J* = 7.1 Hz, 3H), 4.36 (q, *J* = 7.1 Hz, 2H), 6.32 (bs, NH, 1H), 7.51 (d, *J* = 9.1 Hz, 2H), 8.23 (d, *J* = 9.1 Hz, 2H), 9.53 (s, NH, 1H). ¹³C NMR (DMSO-*d*₆ + CDCl₃) δ (ppm): 14.43, 60.37, 76.45, 118.82, 125.33, 142.68, 143.53, 161.35, 164.74, 168.48. FT-IR (v_{max}, cm⁻¹): 3470, 1755, 1723, 1681, 1632, 1582, 1518, 1498, 1418, 1345, 1211, 1117, 1021, 857, 790, 745.

Ethyl 3-(4-ethoxycarbonylphenyl)amino-5-oxo-2,5dihydroisoxazole-4-carboxylate (6, 4-CO₂EtC₆H₄): This compound was prepared as described above using diethyl (4-ethoxycarbonylphenyl)thiocarbamoylmalonate (5, 4-CO₂EtC₆H₄) and refluxing for 24 h to give the desired product yield (70 %) as white needles, m.p. 125-126 °C. ¹H NMR (DMSO-*d*₆ + CDCl₃) δ (ppm): 1.39 (t, *J* = 7.1 Hz, 3H), 1.45 (t, *J* = 7.1 Hz, 3H), 4.38 (q, *J* = 7.1 Hz, 4H), 7.40 (d, *J* = 8.7 Hz, 2H), 7.61 (bs, exchanged by D₂O addition, 1H, NH), 8.09 (d, *J* = 8.7 Hz, 2H), 9.60 (s, exchanged by D₂O addition, 1H, NH). ¹³C NMR (DMSO-*d*₆ + CDCl₃) δ (ppm): 14.12, 14.24, 60.13, 61.18, 75.79, 119.40, 126.43, 131.10, 140.62, 162.19, 165.22, 165.76, 166.89. FT-IR (v_{max} , cm⁻¹): 3283, 2980, 2770, 1718, 1690, 1611, 1581, 1478, 1416, 1364, 1319, 1288, 1194, 1120, 1022, 801.

Ethyl 3-(2-methylphenyl)amino-2-(5-nitropyrid-2-yl)-5-oxo-2,5-dihydroisoxazole-4-carboxylate (1, Ar: 2-MeC₆H₄): Mixture of 2-chloro-5-nitropyridine (634 mg, 4 mmol) and ethyl 3-(2-methylphenyl)amino-5-oxo-2,5dihydro-isoxazole-4-carboxylate (6, Ar: 2-MeC₆H₄) (1.048 g, 4 mmol) was heated neat under an atmosphere of nitrogen in an oil bath at 130°C for 3 h. The residue was recrystallized from ethanol to give the desired isoxazolone as yellow crystals. Yield 1.216 g (75 %); m.p. 167-168 °C. ¹H NMR (CDCl₃) δ (ppm): 1.29 (t, J = 7.1 Hz, 3H); 2.45 (s, 3H); 4.28 (q, J = 7.1Hz, 2H); 7.03 (t, *J* = 7.4 Hz, 1H); 7.16 (d, *J* = 7.4 Hz, 1H); 7.01 (t, J = 7.4 Hz, 1H); 7.34 (d, J = 7.4 Hz, 1H); 7.53 (d, J =9.1 Hz, 1H); 8.54 (dd, J = 9.1 Hz, J = 2.5 Hz, 1H); 8.87 (d, J = 2.5 Hz, 1H); 10.23 (br.s, exchanged by D₂O addition, 1H, NH). ¹³C NMR spectrum (CDCl₃) δ (ppm): 14.58, 17.87, 61.44, 78.94, 115.24, 123.78, 132.39, 134.66, 137.38, 141.86, 143.45, 141.42, 154.65, 156.12, 161.45, 163.439, 163.69. MS m/z (%): 384 (M⁺, 3%), 340 (100), 294 (15), 267 (57), 248 (28), 220 (22), 144(5), 118(7), 91(11), 65(6). FT-IR (v_{max}, cm^{-1}): 3050, 1779, 1708, 1615, 1520, 1337, 1200, 1120, 1023, 757.

Ethyl 3-(2-methoxyphenyl)amino-2-(5-nitropyrid-2yl)-5-oxo-2,5-dihydroisoxazole-4-carboxylate (1, Ar: 2-**MeOC**₆**H**₄): This compound was prepared as described above, using the corresponding (6, Ar: 2-MeOC₆H₄) and 2-chloro-5-nitropyridine as yellow needles after recrystalization from ethanol. Yield (80 %); m.p. 130-132 °C. ¹H NMR (CDCl₃) δ(ppm): 1.29 (t, J = 7.1 Hz, 3H); 3.97 (s, 3H); 4.30 (q, J = 7.1 Hz, 2H,); $6.70 (td, J_1 = 7.8 Hz, J_2 = 1.2 Hz, 1H); 6.98 (dd, J_1 = 7.8 Hz, J_2)$ = 1.2 Hz, 1H); 7.09 (dd, J_1 = 7.8 Hz, J_2 = 1.2 Hz, 1H); 7.18 (td, $J_1 = 7.8$ Hz, $J_2 = 1.2$ Hz, 1H); 7.55 (dd, $J_1 = 9.1$ Hz, $J_2 =$ 0.5 Hz, 1H); 8.64 (dd, $J_1 = 9.1$ Hz, $J_2 = 2.6$ Hz, 1H); 8.97 (d, J = 2.6 Hz, 1H); 10.40 (br s, exchanged by D₂O addition, NH, 1H). ¹³C NMR spectrum (CDCl₃) δ (ppm): 14.88, 56.03, 61.95, 79.94, 111.67, 112.82, 121.48, 121.98, 123.51, 124.76, 127.95, 128.12, 134.54, 141.87, 143.55, 151.56; MS m/z (%): 400 $(M^+, 4\%), 356(6), 207(8), 149(100), 134(50), 123(42),$ 120 (43), 108 (47), 106 (40), 80 (35), 77 (33), 51 (25), 28 (66). FT-IR (v_{max}, cm⁻¹): 3450, 1770, 1700, 1600, 1580, 1550, 1525, 1345, 1130, 1020, 760.

Ethyl 3-(3-methylphenyl)amino-2-(5-nitropyrid-2-yl)-5-oxo-2,5-dihydroisoxazole-4-carboxylate (1, Ar: 3-MeC₆H₄): This compound was prepared as described above using the corresponding isoxazolone (6, Ar: 3-MeC₆H₄) and 2-chloro-5-nitropyridine to give the desired product as yellow needles. Yield (80 %). m.p. 160-162 °C. ¹HNMR (CDCl₃) δ (ppm): 1.29 (t, J = 7.1 Hz, 3H), 2.31 (s, 3H), 4.40 (q, J = 7.1 Hz, 2H), 6.80 (m, 3H), 7.16 (t, *J* = 7.7 Hz, 1H), 7.59 (d, *J* = 9.1 Hz, 1H), 8.61 (dd, $J_1 = 9.1$ Hz, $J_2 = 2.6$ Hz, 1H), 8.96 (d, J = 2.6 Hz, 1H), 10.50 (s, NH, 1H). ¹³C NMR (CDCl₃) δ (ppm): 14.45, 22.27, 61.98, 79.86, 115.82, 119.99, 124.64, 128.21, 131.14, 135.34, 138.41, 141.53, 142.45, 144.54, 155.87, 161.13, 164.15, 165.64. FT-IR (v_{max}, cm⁻¹): 3189, 1790, 1712, 1577, 1521, 1342, 1216, 1183, 1128, 968, 766. MS m/z (%): 384 (M⁺, 20 %), 341(26), 340(100), 248(36), 230(31), 158(42), 107(21),91(68), 65(25), 44(86), 40(38).

Ethyl 3-(3-bromophenyl)amino-2-(5-nitropyrid-2-yl)-5-oxo-2,5-dihydroisoxazole-4-carboxylate (1, Ar: 3-BrC₆H₄): This compound was prepared as described above using the corresponding isoxazolone (6, Ar: 3-BrC₆H₄) and 2-chloro-5-nitropyridine to give the desired product as yellow needles. Yield (80 %), m.p. 208-209 °C. ¹HNMR (DMSO- d_6 + CDCl₃) δ (ppm): 1.20 (t, J = 7.2 Hz, 3H), 4.12 (q, J = 7.2 Hz, 2H), 7.31 (t, J = 2.8 Hz, 1H), 7.4 (dt, $J_1 = 8.0$ Hz, $J_2 = 2.0$ Hz, 1H), 7.31 (dt, $J_1 = 7.2$ Hz, $J_2 = 2.0$ Hz, 1H), 7.45 (t, J = 2.0 Hz, 1H), 7.73 (d, J = 9.3 Hz, 1H), 8.80 (dd, $J_1 = 9.3$ Hz, $J_2 = 2.8$ Hz, 1H), 9.14 (d, J = 2.8 Hz, 1H), 10.81 (s, NH, 1H). ¹³C NMR (DMSO- d_6 + CDCl₃) δ 14.50, 60.59, 79.79, 115.43, 120.79, 120.94, 126.15, 129.12, 131.00, 135.23, 139.01, 141.89, 143.70, 154.32, 159.03, 160.82,161.86. FT-IR (v_{max}, cm⁻¹): 3165, 1777, 1701, 1590, 1550, 1521, 1347, 1208, 1133, 970, 768. MS m/z (%): 450(M⁺, 6 %), 448 (M⁺, 3 %), 406(55), 405(18), 404(53), 279(55), 224(10), 157(11), 155(12), 78(13), 77(17), 44(100), 40(56).

Ethyl 3-(3-ethoxyphenyl)amino-2-(5-nitropyrid-2-yl)-5-oxo-2,5-dihydroisoxazole-4-carboxylate (1, Ar: 3-CO₂EtC₆H₄): This compound was prepared as described above using the corresponding isoxazolone (6, Ar: 3-EtO₂CC₆H₄) and 2-chloro-5-nitropyridine to give the desired product (65 %) as cream needles, m.p. 195-196 °C. ¹HNMR (CDCl₃) δ (ppm): 1.34 (t, J = 7.2 Hz, 3H), 1.43 (t, J = 7.2 Hz, 3H), 4.35 (q, J = 7.2 Hz, 2H), 4.46 (q, J = 7.2Hz, 2H), 7.54 (bs, 1H, 7.34 (t, J =7.7 Hz, 1H), 7.61 (d, J = 9.3 Hz, 1H), 7.83 (bd, J = 7.0 Hz, 2H), 8.59 (dd, $J_1 = 9.3$ Hz, $J_2 = 2.5$ Hz, 1H), 8.93 (d, J = 2.5Hz, 1H), 10.64 (s, exchanged by D_2O addition, 1H, NH). ¹³C NMR (CDCl₃) δ (ppm): 14.5, 14.52, 61.21, 61.58, 79.55, 114.70, 123.03, 126.13, 127.36, 129.63, 132.15, 134.80, 138.02, 141.56, 143.66, 153.77, 160.01, 163.13, 163.71, 165.45. FT-IR (v_{max}, cm⁻¹): 3380, 3111, 2964, 1771, 1731, 1700, 1570, 1538, 1448, 1432, 1341, 1290, 1119, 1031, 974, 866, 761.

Ethyl 3-(4-methylphenyl)amino-2-(5-nitropyrid-2-yl)-5-oxo-2,5-dihydroisoxazole-4-carboxylate (1, Ar: 4-MeC₆H₄): This compound was prepared as described for above using the corresponding isoxazolone (6, Ar: 4-MeC₆H₄) and 2-chloro-5-nitropyridine to give the desired product after recrystalization from ethanol yellow needles. Yield (85 %), m.p. 156-158 °C. ¹H NMR (CDCl₃) δ (ppm): 1.29 (t, *J* = 7.05 Hz, 3H), 2.30 (s, 3H), 4.26 (q, J = 7.05 Hz, 2H), 7.04 (d, J = 8.5 Hz, 2H, 7.07(d, J = 8.5 Hz, 2H), 7.07(d, J = 9.0 Hz, 1H),8.55 (dd, $J_1 = 9.0$ Hz, $J_2 = 2.5$ Hz, 1H), 8.91 (d, J = 2.5 Hz, 1H), 10.33 (s, 1H, NH). ¹³C NMR (CDCl₃) δ (ppm): 14.66, 21.35, 61.34, 79.05, 115.42, 122.40, 130.29, 134.74, 135.36, 136.83, 141.89, 143.92, 154.28, 160.88, 163.62, 164.19. FT-IR (v_{max}, cm^{-1}) : 3177, 1762, 1700, 1600, 1515, 1338, 1208, 1123, 976, 838. MS m/z (%): 384 (M⁺, 13%), 340 (100), 294 (57), 269 (16), 248 (40), 230 (16), 220 (16), 158 (39), 144 (13), 118 (21), 117 (20), 107 (16), 91 (67), 78 (16), 65 (20), 44 (33).

Ethyl 3-(4-methoxyphenyl)amino-2-(5-nitropyrid-2yl)-5-oxo-2,5-dihydroisoxazole-4-carboxylate (1, Ar: 4-MeOC₆H₄): This compound was prepared as described for above using the corresponding isoxazolone (6, Ar: 4-MeOC₆H₄) and 2-chloro-5-nitropyridine to give the desired product Yellow needles. Yield (80 %), m.p. 186-188 °C. ¹H NMR (CDCl₃) δ (ppm): 1.30 (t, *J* = 7.0 Hz, 3H), 3.77 (s, 3H), 4.26 (q, *J* = 7.0 Hz, 2H), 6.79 (d, *J* = 8.7 Hz, 2H), 7.10 (d, *J* = 8.7 Hz, 2H), 7.52 (d, *J* = 9.0 Hz, 1H), 8.54 (dd, *J*₁ = 9.0 Hz, *J*₂ = 2.1 Hz, 1H), 8.93 (bd, J = 2.1, 1H), 10.26 (s,1H, NH). ¹³C NMR (CDCl₃) δ (ppm): 14.72, 55.89, 61.36, 78.87, 114.85, 115.59, 124.34, 130.74, 134.68, 141.93, 143.95, 154.33, 158.40, 161.38, 163.69, 164.32. FT-IR (v_{max}, cm⁻¹): 3823, 1785, 1700, 1592, 1345, 1207, 1115, 1030, 838. MS m/z (%): 400 (M⁺, 10%), 356 (100), 310 (49), 295 (43), 264 (21), 249 (13), 221 (14), 193 (12), 194 (10), 174 (21), 146 (10), 134 (34), 133 (22), 123 (17), 92 (16), 77 (29), 44 (37).

Ethyl 3-(4-bromophenyl)amino-2-(5-nitropyrid-2-yl)-5-oxo-2,5-dihydroisoxazole-4-carboxylate (1, Ar: 4-BrC₆H₄): This compound was prepared as described for above using the corresponding isoxazolone (6, Ar: 4-BrC₆H₄) and 2-chloro-5-nitropyridine to give the desired product yellow needles. Yield (82 %), m.p. 217-218 °C. ¹H NMR (DMSO-d₆ + CDCl₃) δ (ppm): 0.99 (t, J = 7.0 Hz, 3H), 3.94 (q, J = 7.0 Hz, 2H), 6.87 (d, J = 8.5 Hz, 2H), 7.18 (d, J = 8.5 Hz, 2H), 7.73 (d, J = 9.1 Hz, 1H), 8.40 (dd, $J_1 = 9.1$ Hz, $J_2 = 2.3$ Hz, 1H), 8.75 (d, J = 2.3 Hz, 1H), 10.29 (bs, 1H, NH). ¹³C NMR $(DMSO-d_6 + CDCl_3) \delta$ (ppm): 14.41, 60.99, 79.05, 114.63, 119.46, 124.11, 132.46, 135.08, 137.21, 141.66, 143.79, 153.92, 158.31, 161.38, 165.88. FT-IR (v_{max}, cm⁻¹): 3140, 2965, 1773, 1683, 1591, 1531, 1324, 1188, 1114, 1010, 961, 832. MS m/z (%): 450 (M⁺, 27 %), 448 (M⁺, 30%), 406(74), 404(77), 279(100), 251(20), 184(35), 182(36), 157(29), 155(29), 102(22), 72(23), 44(59).

Ethyl 3-(4-nitrophenyl)amino-2-(5-nitropyrid-2-yl)-5oxo-2,5-dihydroisoxazol-4-carboxylate (1, Ar: 4-NO₂C₆H₄): This compound was prepared as described for above using the corresponding isoxazolone (6, Ar: 4-O₂NC₆H₄) and 2chloro-5-nitropyridine to give the desired product as cream solid. Yields (65 %) after recrystalization from ethanol, m.p. 223-226 °C. ¹H NMR (DMSO- d_6 + CDCl₃) δ (ppm): 1.17(t, J = 7.1 Hz, 3H), 4.12 (q, J = 7.1 Hz, 2H), 7.47 (d, J = 9.1 Hz, 2H), 7.69 (d, J = 9.1 Hz, 1H), 8.14 (d, J = 9.1 Hz, 2H), 8.71 $(dd, J_1 = 9.1 Hz, J_2 = 2.7 Hz, 1H), 9.02 (d, J = 2.7 Hz, 1H),$ 10.93 (s, NH,1H). ¹³C NMR (DMSO- d_6 + CDCl₃) δ (ppm): 14.05, 60.21, 80.66, 114.44, 121.61, 124.45, 135.11, 141.52, 143.53, 143.87, 144.43, 153.34, 158.29, 161.61, 162.43. FT-IR (v_{max}, cm⁻¹): 3114, 1782, 1687, 1602, 1553, 1428, 1337, 1261, 1202, 1122, 1082, 1011, 960, 858, 552. MS m/z (%): 415 (M⁺, 12%), 371(78), 369(11), 325(13), 300(11), 279(29), 189(18), 149(12), 70(11), 44(100), 40(38).

Ethyl 3-(4-ethoxyphenyl)amino-2-(5-nitropyrid-2-yl)-5-oxo-2,5-dihydroisoxazol-4-carboxylate (1, Ar: 4- $CO_2EtC_6H_4$): This compound was prepared as described above using the corresponding isoxazolone (6, Ar: 4-EtO₂CC₆H₄) and 2-chloro-5-nitropyridine to give the desired product (70 %) as white needles, m.p. 198-200 °C. ¹H NMR (CDCl₃) δ (ppm): 1.20 (t, J = 7.1 Hz, 3H), 1.40 (t, J = 7.1 Hz, 3H), 4.25 (q, J = 7.1 Hz, 2H), 4.39 (q, J = 7.1 Hz, 2H), 7.22 (d, J = 8.6 Hz, 2H), 7.51 (d, J = 9.1 Hz, 1H), 7.96 (d, J = 8.4 Hz, 2H), 8.59 (dd, J_1 = 9.1 Hz, $J_2 = 2.6$ Hz, 1H), 8.90 (d, J = 2.6 Hz, 1H), 10.54 (s, exchanged by D₂O addition, 1H, NH). ¹³C NMR (CDCl₃) δ (ppm): 14.52, 29.80, 61.34, 61.33, 79.90, 114.62, 120.91, 128.05, 131.01, 134.73, 141.64, 141.63, 143.32, 153.73, 159.82, 162.88, 163.74, 165.43. FT-IR (v_{max}, cm⁻¹): 3392, 3148, 2983, 1777, 1713, 1606, 1473, 1428, 1350, 1280, 1200, 1180, 1128, 1023, 864, 756.

Ethyl 2-(2-methylphenyl)amino-6-nitroimidazo[1,2-a] pyridine-3-carboxylate (2, Ar: 2-MeC₆H₄): Pyrolysis (580 °C, 0.01 mm Hg, sublimation flask 110 °C, 1 h) of isoxazolone $(1, \text{Ar: } 2\text{-MeC}_6\text{H}_4)$ (100 mg, 0.26 mmol) gave the desired imidazole as pale red needles. Yield (79.68 mg, 90 %), m.p. 179-181 °C. ¹H NMR (CDCl₃) δ (ppm): 1.55 (t, *J* = 7.1 Hz, 3H), 2.41 (s, 3H), 4.59 (q, J = 7.1 Hz, 2H), 7.12 (t, J = 7.6 Hz, 1H), 7.33 (d, J = 7.6 Hz, 1H), 7.33 (t, J = 7.6 Hz, 1H), 7.58 (d, J = 9.7 Hz, 1H), 8.21 (dd, $J_1 = 9.7$ Hz, $J_2 = 2.0$ Hz, 1H), 8.41 (d, J = 7.6 Hz, 1H); 8.97 (br, 1H); 9.27 (br, 1H, exchanged by)D₂O addition, NH). ¹³C NMR (CDCl₃) δ (ppm): 15.19, 18.22, 61.70, 98.13, 113.16, 124.01, 125.18, 126.90, 127.51, 131.43, 131.92, 135.33, 138.67, 143.99, 153.74, 160.784. FT-IR (v_{max}, cm⁻¹): 3332, 3111, 2978, 1670, 1631, 1609, 1500, 1486, 1343, 1309, 1213, 1087, 756. MS m/z (%): 340 (M⁺, 1%), 281 (66), 264 (72), 253 (95), 207 (40), 14 (100), 90 (37), 28 (100).

Ethyl 2-(2-methoxyphenyl)amino-6-nitroimidazo[1,2a] pyridine-3-carboxylate (2, Ar: 2-MeOC₆H₄): Pyrolysis (580 °C, 0.01 mm Hg, sublimation flask 110 °C, 1 h) of isoxazolone (1, Ar: 2-MeOC₆H₄) (100 mg, 0.25 mmol) gave the desired imidazole as yellow needles. Yield (80.36 mg, 90 %), m.p. 219-221 °C. ¹H NMR (CDCl₃) δ (ppm): 1.61 (t, J = 7.0 Hz, 3H), 4.01(s, 3H), 4.57 (q, J = 7.0 Hz, 2H), 6.98 (dd, $J_1 = 7.5$ Hz, $J_2 = 1.9$ Hz, 1H), 7.05 (td, $J_1 = 7.5$ Hz, $J_2 =$ 1.9 Hz, 1H), 7.10 (td, $J_1 = 7.5$ Hz, $J_2 = 1.9$ Hz 1H); 7.55 (d, J = 9.71 Hz, 1H); 8.17 (dd, $J_1 = 9.7$ Hz, $J_2 = 2.31$ Hz, 1H), 8.76 (d, J = 7.5 Hz, 1H); 8.77 (br.s, 1H); 10.31 (br. s, exchanged by D₂O addition, 1H NH). ¹³C NMR (CDCl₃) δ (ppm): 14.51, 55.66, 61.88, 84.50, 96.67, 99.34, 110.13, 114.23, 117.66, 121.21, 122.09, 122.56, 126.77, 129.51, 137.12, 147.12, 154.90. FT-IR (v_{max}, cm⁻¹): 3379, 1674, 1611, 1577, 1467, 1349, 13185, 1301, 1233, 1110, 1035, 752. MS m/z (%): 356 $(M^+, 3\%), 296 (38), 267 (100), 207 (9), 190 (14), 158 (13),$ 130 (22), 107 (20), 77 (11), 28 (23).

Ethyl 2-(3-methylphenyl) amino-6-nitroimidazo[1,2-a] pyridine-3-carboxylate (2, Ar: 3-MeC₆H₄): Pyrolysis (580 °C, 0.01 mm Hg, sublimation flask 110 °C, 1 h) of isoxazolone (1, Ar: 3-MeC₆H₄) (100 mg, 0.26 mmol) gave the desired imidazole as yellow solid. Yields (74.9 mg, 85 %), m.p. 167-169-221 °C. ¹H NMR (CDCl₃) δ (ppm): 1.60 (t, J = 7.1 Hz, 3H), 2.50 (s,3H), 4.58 (q, J = 7.1 Hz, 2H), 6.93 (d, J = 7.4Hz,1H), 7.24 (t, J = 7.8 Hz, 1H), 7.51-7.56 (m, 3H), 8.17 (d, J= 9.7 Hz,1H), 8.88 (bs,1H), 9.96 (bs,1H). ¹³C NMR (CDCl₃) δ (ppm): 14.79, 21.72, 61.25, 98.78, 114.14, 115.94, 119.50, 122.50, 124.48, 126.97, 129.11, 139.21, 139.34, 145.23, 146.35, 156.23, 167.67. FT-IR (v_{max} , cm⁻¹): 3406, 1657, 1618, 1579, 1556, 1499, 1341, 1310, 1219, 959, 768 MS m/z (%): 340 (M⁺, 100 %), 296(15), 294(41), 255(24), 248(26), 118(15), 91(27), 86(19), 44(10), 40(36).

Ethyl 2-(3-Bromophenyl)amino-6-nitroimidazo[1,2-a] pyridine-3-carboxylate (2, Ar: 3-BrC₆H₄): Pyrolysis (580 °C, 0.01 mm Hg, sublimation flask 110 °C, 1 h) of isoxazolone (1, Ar: 3-BrC₆H₄) (100 mg, 0.22 mmol) gave the desired imidazole as yellow solid. Yields (80.76 mg, 95 %), m.p. 162-163 °C. ¹H NMR ((DMSO- d_6 + CDCl₃) δ (ppm): 1.57 (t, J = 7.2 Hz,3H), 4.58 (q, J = 7.2 Hz, 2H), 7.32 (bdd, J_1 = 8.1 Hz, J_2 = 1.7 Hz, 1H), 7.24 (t, J = 7.8 Hz, 1H), 7.59 (dt, J_1 = 7.6 Hz, J_2 = 2.0 Hz, 1H), 7.61 (d, J = 9.7 Hz, 1H), 8.12 (bs, 1H), 8.19 (dd, $J_1 = 9.7$ Hz, $J_2 = 2.1$ Hz, 1H), 8.94 (bs,1H), 9.88 (bs,1H). ¹³C NMR (DMSO- d_6 + CDCl₃) δ (ppm): 14.74, 61.56, 99.32, 114.71, 116.76, 117.34, 116.23, 121.31, 122.65, 122.63, 125.67, 126.90, 130.54, 137.22, 140.87, 160.31. FT-IR (v_{max}, cm⁻¹): 3309, 1676, 1591, 1568, 1453, 1407, 1341, 1309, 1212, 1139, 1109, 848, 764. MS m/z (%): 406 (M⁺, 87 %), 404 (M⁺, 85 %), 279(100), 251(17), 233(13), 206(14), 184(10), 182(11),102(12), 78(12), 77(10), 44(21), 40(55).

Ethyl 2-(3-ethoxyphenyl)amino-6-nitroimidazo[1,2-a] pyridine-3-carboxylate (2, Ar: 3-CO₂EtC₆H₄): Pyrolysis (580 °C, 0.01 mm Hg, sublimation flask 110 °C, 1 h) of isoxazolone $(1, \text{Ar: } 3\text{-CO}_2\text{EtC}_6\text{H}_4)$ (100 mg, 0.22 mmol) gave the desired imidazole as yellow solid. Yield (81.94 mg, 92 %), m.p. 172-173 °C. Anal. calc. for C₁₉H₁₈N₄O₆: C, 58.28; H,4.52; N,14.07 %; found: C, 58.21; H, 4.41; N,14.32 %. ¹H NMR (CDCl₃) δ (ppm): 1.47 (t, J = 7.1 Hz, 3H), 1.58 (t, J = 7.1 Hz, 3H), 4.41 (q, J = 7.1 Hz, 2H), 4.58 (q, J = 7.1 Hz, 2H), 7.47 (t, J = 7.9 Hz, 1H), 7.58 (d, J = 9.7 Hz, 1H), 7.78 (bd, J = 7.7 Hz, 1H), $8.09 (dd, J_1 = 8.03 Hz, J_2 = 1.3 Hz, 1H), 8.17 (dd, J_1 = 9.7 Hz)$ $J_2 = 1.7$ Hz, 1H), 8.26 (bs, 1H), 9.03 (bs, exchanged by D₂O addition, 1H, NH), 9.86 (bs, 1H). ¹³C NMR (CDCl₃) δ (ppm): 14.38, 14.65, 61.16, 61.26, 99.14, 114.37, 119.69, 122.57, 122.89, 123.75, 126.96, 129.27, 131.55, 137.12, 139.62, 146.86, 166.40. FT-IR (v_{max}, cm⁻¹): 3406, 3328, 2923, 1716, 1675, 1612, 1576, 1550, 1496, 1346, 1315, 1281, 1230, 1108, 755.

Ethyl 2-(4-methylphenyl)amino-6-nitroimidazo[1,2-a] pyridine-3-carboxylate (2, Ar: 4-MeC₆H₄): Pyrolysis (580 °C, 0.01 mm Hg, sublimation flask 110 °C, 1 h) of isoxazolone (1, Ar: 4-MeOC₆H₄) (100 mg, 0.26 mmol) gave the desired imidazole as pale cream needles. Yield (82.34 mg, 93 %), m.p. 187-188 °C. ¹H NMR δ (ppm): 1.27 (t, J = 6.9 Hz, 3H, CH₃), 2.36 (s, 3H, CH₃), 4.57 (q, J = 6.9 Hz, 2H, CH₂), 7.19 (d, J =8.2 Hz, 2H, Ar), 7.51 (d, J = 9.7 Hz, 1H, Ar), 7.59 (bd, J = 8.2Hz, 2H, Ar), 8.15 (bd, J = 6.7 Hz, 1H, Ar), 8.85 (bs, 1H, NH), 9.84 (bs, 1H, Ar). ¹³C NMR δ (ppm): 15.03, 21.22, 61.44, 98.99, 114.30, 119.33, 122.80, 127.26, 130.07, 132.93, 137.11, 147.34, 157.76, 161,15. FT-IR (v_{max}, cm⁻¹): 3455, 1662, 1608, 1555, 1308, 1208, 1015, 822. MS m/z (%): 340 (M⁺, 100 %), 294(48), 248(27), 220(9), 144(10), 118(13), 91(20), 78(6), 65(6).

Ethyl 2-(4-methoxyphenyl)amino-6-nitroimidazo[1,2a] pyridine-3-carboxylate (2, Ar: 4-MeOC₆H₄): Pyrolysis (580 °C, 0.01 mm Hg, sublimation flask 110 °C, 1 h) of isoxazolone (1, Ar: 4-MeOC₆H₄) (100 mg, 0.25 mmol) gave the title compound as a red solid. Yield (84.55 mg, 95%), m.p. 160-161 °C; ¹H NMR δ (ppm): 1.56 (t, J = 7.0 Hz, 3H), 3.85 (s, 3H), 4.58 (q, J = 7.0 Hz, 2H), 6.95 (d, J = 8.9 Hz, 2H), 7.50 (d, J = 9.7 Hz, 1H) 7.62 (bd, J = 8.9 Hz, 2H), 8.16 (dd, $J_1 = 9.7$ Hz, $J_2 = 1.9$ Hz, 1H), 8.78 (bs, 1H, NH), 9.88 (bs, 1H). ¹³C NMR δ (ppm): 15.05, 55.97, 61.40, 98.76, 114.19, 114.82, 121.31, 122.86, 127.24, 132.85, 137.15, 147.48, 156.16, 160.86. FT-IR (v_{max}, cm⁻¹): 3130, 1685, 1615, 1515, 1315, 1222, 1199, 1092, 824. MS m/z (%): 356 (M⁺, 100 %), 310 (34), 295 (43), 264 (12), 249 (12), 221(10), 194 (8), 193 (11), 134 (16), 92 (8), 90 (8), 78 (8).

Ethyl 2-(4-bromophenyl)amino-6-nitroimidazo[1,2-a] pyridine-3-carboxylate (2, Ar: 4-BrC₆H₄): Pyrolysis (580 °C, 0.01 mm Hg, sublimation flask 110 °C, 1 h) of isoxazolone

(1, Ar: 4-BrC₆H₄) (100 mg, 0.23 mmol) gave pale cream needles. Yield (81.17 mg, 90 %), m.p. 195-196 °C. ¹H NMR δ (ppm): 1.57 (t, J = 7.1 Hz, 3H), 4.59 (q, J = 7.1 Hz, 2H), 7.48 (d, J = 8.7 Hz, 2H), 7.56 (d, J = 9.7 Hz, 1H), 7.65 (bd, J = 8.7 Hz, 2H), 8.19 (dd, $J_1 = 9.7$ Hz, $J_2 = 1.3$ Hz, collapsed to doublet, J = 8.7 Hz, by irradiation at $\delta = 9.87$, 1H), 8.97 (bs, 1H, NH), 9.87 (bd, J = 1.3 Hz, 1H). ¹H NMR (DMSO- $d_6 \delta$ (ppm): 1.44 (t, J = 7.0 Hz, 3H), 4.46 (q, J = 7.0 Hz, 2H), 7.49 (d, J = 8.5 Hz), 7.68 (d, J = 9.7 Hz, 1H), 7.74 (d, J = 8.5 Hz, 2H), 8.19 $(dd, J_1 = 9.7 Hz, J_2 = 1.6 Hz, 1H), 8.87 (bd, J = 1.6, 1H), 9.88$ (s,1H, NH). ¹³C NMR (DMSO-*d*₆) δ (ppm): 15.25, 61.57, 99.72, 114.62, 114.97, 121.76, 123.93, 127.61, 132.38, 137.66, 140.01, 147.17, 155.28, 160.87. FT-IR (v_{max}, cm⁻¹): 3285, 2955, 1643, 1611, 1555, 1475, 1331, 1294, 1201, 1102, 1079, 1002, 820. MS m/z (%): 406 (M⁺, 62%), 404 (M⁺, 64 %), 360 (5), 358 (6), 279 (100), 251 (16), 233 (14), 205 (12), 184 (11), 182 (12), 157 (12), 155 (12), 102 (14), 78 (13), 77 (11).

Ethyl 2-(4-nitrophenyl)amino-6-nitroimidazo[1,2-a] pyridine-3-carboxylate (2, Ar: 4-NO₂C₆H₄): Pyrolysis (580 °C, 0.01 mm Hg, sublimation flask 110 °C, 1 h) of isoxazolone (1, Ar: 4-NO₂C₆H₄) (100 mg, 0.24 mmol) gave a green solid. Yield (84.68 mg, 91 %), m.p. 259-261 °C. ¹H NMR (DMSO-*d*₆ + CDCl₃) δ (ppm): 1.44 (t, *J* = 7.1 Hz, 3H), 4.50 (q, *J* = 7.1 Hz, 2H), 7.83 (d, *J* = 9.7 Hz, 1H), 8.08 (d, *J* = 9.2 Hz, 2H), 8.25 (d, *J* = 9.2 Hz, 2H), 8.28 (dd, *J*₁ = 9.7 Hz, 1H). FT-IR (v_{max}, cm⁻¹): 3381, 1664, 1609, 1575, 1509, 1475, 1317, 1273, 1209, 1102, 860, 749. MS m/z (%) 371 (M⁺, 100), 325(12), 280(9), 279(35), 251(11), 205(12), 76(9), 44(16), 40(23).

Ethyl 2-(4-ethoxyphenyl)amino-6-nitroimidazo[1,2-a] pyridine-3-carboxylate (2, Ar: 4-CO₂EtC₆H₄): Pyrolysis (580 °C, 0.01 mm Hg, sublimation flask 110 °C, 1 h) of isoxazolone (1, Ar: 4-CO₂EtC₆H₄). (100 mg, 0.22 mmol) gave the desired imidazole as as bright yellow needles. Yields (81.94 mg, 92 %), m.p. 206-207 °C. Anal. calc. for C₁₉H₁₈N₄O₆: C, 58.28; H,4.52; N,14.07 %; found: C, 58.09; H, 4.36; N,14.17 %. ¹H NMR δ (ppm): 1.44 (t, *J* = 7.1 Hz, 3H), 1.57 (t, *J* = 7.1 Hz, 3H), 4.36 (q, *J* = 7.1 Hz, 2H), 4.58 (q, *J* = 7.1 Hz, 2H), 7.58 (d, *J* = 9.6 Hz, 1H), 7.77 (d, *J* = 8.5 Hz, 2H), 8.03 (d, *J* = 8.5 Hz, 2H), 8.18 (dd, *J*₁ = 9.6 Hz, *J*₂ = 2.1 Hz, 1H), 9.19 (bs, exchanged by D₂O addition, 1H, NH), 9.86 (bs, 1H). ¹³C NMR (CDCl₃) δ (ppm): 14.45, 14.65, 60.80, 61.46, 99.66, 114.56, 117.47, 122.67, 124.17, 126.99, 131.09, 137.27, 143.47, 146.45, 166.26. FT-IR (v_{max} , cm⁻¹): 3316, 2985, 1708, 1678, 1607, 1608, 1570, 1547, 1489, 1457, 1435, 1365, 1343, 1314, 1276, 1216, 1175, 1108, 1085, 1015, 857, 767, 755.

RESULTS AND DISCUSSION

The required isoxazolones (1) were synthesized by reaction of 2-chloro-5-nitropyridine with 2*H*-isoxazolones (6) which in turn were made by modification of the procedure of Worrall^{4,5}. Thus, the reaction of the sodium salt of diethylmalonate in ethanol with arylisothiocyanates (4) gave the thiocarbamates (5) in high yield (60-90 %) and this converted to corresponding isoxazolone (6) by reaction with 2 equivalent of hydroxylamine. N-Arylation of isoxazolone (6) with 2-chloro-5-nitropyridine in solid phase condition gave the corresponding N-substituted isoxazolones (1) in fair yield (65-85%) (Scheme-III).

The rearrangement of (1) as shown in **Scheme-IV**, proceeded in 85-95 % yield under flash-vacuum-pyrolysis conditions accompanied by elimination of carbon dioxide for 1 h. The reaction pathway leads to net imidazo[1,2-a]pyridines which is consist of electronic requirement of the reaction as shown in **Scheme-V** or with the alternative pathway suggested by Prager *et al.*⁶.

 $\label{eq:area} \begin{array}{l} \text{Ar: 2-MeC_6H_4, 2-MeOC_6H_4, 3-MeC_6H_4, 3-BrC_6H_4, 3-CO_2EtC_6H_4, 4-MeOC_6H_4, 4-MeC_6H_4, 4-BrC_6H_4, 4-CO_2EtC_6H_4, 4-NO_2C_6H_4. \\ \end{array}$

Scheme-IV

With a number of imidazopyridine structures in hand, the structures of all imidazopyridines were confirmed by ¹H NMR, ¹³C NMR, FT-IR, mass spectra or microanalyses. All compounds **2** showed H-7 to have meta coupling with H-5, but the resonance for H-5 could not be clearly observed in compounds **2**. The reason for the extreme broadening of this peak is

unknown, though quadrupole coupling with N-4 is implicated. 4-methoxy derivative (1, Ar: MeOC₆H₄) reacts in refluxing ethanol with triethylamine to form a mixture of imidazopyridine (2, Ar: MeOC₆H₄) and indole (**3**) in a 2:1 ratio, respectively, but it only rearranges to imidazopyridine under flash-vacuum-pyrolysis conditions. The exact mechanism of this synthetic method has been unclear so far. However, we think that the zwitterionoic (**7**) plays a role under refluxing ethanol with triethylamine (**Scheme-VI**). This is consistent with electronic requirements of the reaction. The zwitterionic (**7**) probably can be stabilized by ethanol as protic solvent, however under flash-vacuum-pyrolysis conditions it can not be produced.

Conclusion

In conclusion we have shown that a variety of 2-pyridyl-3-arylaminoisoxazol-5(2H)-ones, rearranged under flashvacuum-pyrolysis (FVP) conditions to give imidazo [1,2-a] pyridines. These rearrangements, therefore, appear to be generally applicable to the synthesis of imidazoheterocycles which are suitable synthetic intermediates for a series of polycyclic heterocycles with possible pharmaceutical applications^{7,8}.

ACKNOWLEDGEMENTS

The authors gratefully acknowledged the financial support of this work by the research council of Islamic Azad University branch of Mahabad.

REFERENCES

- 1. K.A. Ang, J.A. Smith and C. Williams, Tetrahedron Lett., 37, 675 (1996).
- 2. J. Khalafy and D. Setamdideh, *Molecules*, **2**, 907 (2002).
- D.D. Perrin and W.L.F. Amarego, In Purification of Laboratory Chemicals, Pergamon Press, Oxford, U.K. (1988).
- 4. D.E. Worrall, J. Am. Chem. Soc., 45, 3092 (1923).
- 5. D.E. Worrall, J. Am. Chem. Soc., 40, 415 (1918).
- N. Nishiwaki, M. Nakanishi, T. Hida, Y. Miya, M. Tamura, K. Hori and M. Ariga, J. Org. Chem., 66, 7535 (2001).
- N. Tateja, T. Pham, R. Tuteja, A. Ocham and A. Falaschi, *Biochem. Biophys. Res. Commun.*, 236, 636 (1997).
- M. Stiborova, C.A. Bieler, M. Wiessler and E. Frei, *Biochem. Pharmacol.*, 62, 1675 (2001).