

Asian Journal of Chemistry

www.asianjournalofchemistry.co.in

Phenolic Compounds from Cestrum aurantiacum

Hai-Chuan Yin^{1,2}, Zhen Liao^{1,3}, Lin Hu^{1,2} and Qun Hu^{1,3,*}

¹Key Laboratory of Ethnic Medicine Resource Chemistry (Yunnan University of Nationalities), State Ethnic Affairs Commission and Ministry of Education, Kunming 650031, P.R. China

²Department of Education, Yunnan Province, Kunming 650031, P.R. China

³Key Laboratory of Tobacco Chemistry of Yunnan Province, Yunnan Academy of Tobacco Science, Kunming 650106, P.R. China

*Corresponding author: E-mail: huqun871@163.com

(Received: 9 May 2011;

Accepted: 27 January 2012)

AJC-11018

A new phenolic compound (1), together with eight known compounds (2-9) were isolated from the leaves and stems of *Cestrum aurantiacum*. The structure was elucidated on the basis of extensive NMR and mass spectral means. The anti-HIV-1 and antioxidant activity of (1) was evaluated and showed weak anti-HIV-1 activity with Therapeutic Index 24.1 and antioxidant activity with an IC₅₀ value of 3.68 μ g/mL.

Key Words: Phenolic compounds, Leaves and stems of Cestrum aurantiacum, Anti-HIV-1 activity, Antioxidant activity.

INTRODUCTION

The *Cestrum aurantiacum* belong to the genus Solanaceae family. It is an evergreen, half-climbing shrub originated in South America. The *Cestrum aurantiacum* had introduced into China more than on century and it had widely distributed in south China (Guangdong, Fujian, Guangxi, Yunnan) now^{1,2}.

Previous phytochemical research on the genus of *Cestrum* has revealed that steroidal saponins³⁻⁵, flavonols⁶, terpenoids⁷, lignans^{8,9}, as well as phenols¹⁰ are major principles isolated from the plant of this genus. With the aim of continuing efforts to identify bioactive natural products from the plants, a chemical investigation on the leaves and stems of *Cestrum aurantiacum* indigenous to the Dali Prefecture of Yunnan Province of China was carried out. A new phenolic compound (1), together with eight known one (**2-9**) were separated from this plant. In addition, the anti-HIV-1 active and antioxidant activity of (1) were evaluated. The structure elucidation and biological activities of the isolated compounds are also reported.

EXPERIMENTAL

Optical rotations were measured with a Horiba SEPA-300 polarimeter. UV spectra were obtained using a Shimadzu UV-2401A spectrophotometer. A Tenor 27 spectrophotometer was used for scanning IR spectroscopy with KBr pellets. ¹D and ²D NMR spectra were recorded on DRX-500 spectrometer with TMS as internal standard. Unless otherwise specified, chemical shifts (δ) were expressed in ppm with reference to the solvent signals. HRESIMS was performed on an API QSTAR time-of-flight spectrometer and a VG Autospec-3000 spectrometer, respectively. Preparative HPLC was performed on a Shimadzu LC-8A preparative liquid chromatograph with a ZORBAX PrepHT GF (21.2 mm × 25 cm, 7 μ m) column or a Venusil MP C₁₈ (20 mm × 25 cm, 5 μ m) column. Column chromatography was performed with silica gel (200-300 mesh, Qing-dao Marine Chemical, Inc., Qingdao, China), Lichroprep RP-18 gel (40-63 μ m, Merck, Darmstadt, Germany) and MCI gel (75-150 μ m, Mitsubishi Chemical Corporation, Tokyo, Japan). The fractions were monitored by TLC and spots were visualized by heating silica gel plates sprayed with 5 % H₂SO₄ in EtOH.

The leaves and stems of *Cestrum aurantiacum* was collected in Dali Prefecture, Yunnan Province, P.R. China, in February 2009 and was identified by Prof. N. Yuan. A voucher specimen (No. YNNi 09-2-08) was deposited in our laboratory.

Extraction and isolation: The air-dried and powdered leaves and stems of *Cestrum aurantiacum* (2.5 kg) were extracted four times with 70 % aqueous Me₂CO (4×3.5 L) at room temperature and filtered to yield a filtrate, which was successively evaporated under reduced pressure and partitioned with EtOAc (3×4 L). The EtOAc partition (126 g) was applied to silica gel (200-300 mesh) column chromatography eluting with a CHCl₃-MeOH gradient system (20:1, 9:1, 8:2, 7:3, 6:4, 5:5) to give six fractions A-E. The separation of fraction B (9:1, 18.9 g) by silica gel column chromatography eluted with CHCl₃-(Me)₂CO (9:1-1:2) yielded mixtures B1-B6. Fraction B2 (8:2, 3.25 g) was subjected to silica gel column chromatography using petroleum ether-acetone and preparative HPLC

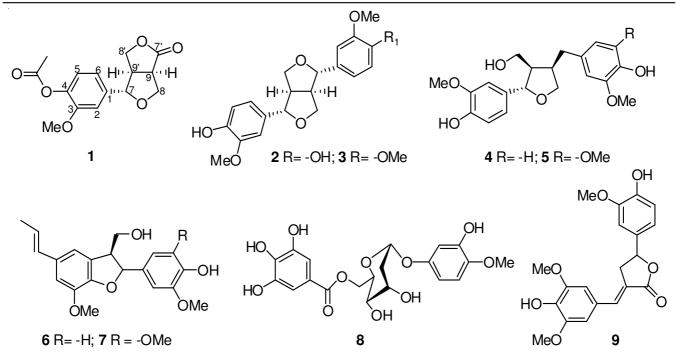


Fig. 1. Structure of phenolic compounds from the Cestrum aurantiacum

(68 % MeOH-H₂O, flow rate 12 mL /min) to give compounds **1** (12.6 mg), **3** (28.4 mg), **5** (18.5 mg), **7** (14.8 mg) and **9** (42.6 mg). Fraction B3 (7:3, 1.86 g) was subjected to silica gel column chromatography eluting with petroleum ether-acetone and then run on preparative HPLC (60 % MeOH-H₂O, flow rate 12 mL /min) to yield compounds **2** (8.62 mg), **4** (16.2 mg) and **6** (19.5 mg). Fraction B5 (1:1, 1.25 g) was subjected to silica gel column chromatography eluting with petroleum ether-acetone and then run on preparative HPLC (30 % MeOH-H₂O, flow rate 12 mL /min) to give compounds **8** (13.5 mg).

Anti-HIV-1 assay: The cytotoxicity assay against C8166 cells (CC₅₀) was assessed using the MTT method and anti-HIV-1 activity was evaluated by the inhibition assay for the cytopathic effects of HIV-1 (EC₅₀)¹¹.

Antioxidant activity assay: Antioxidant activity was determined by the detection of the oxidative products with the 2',7'-dichlorofluorescin diacetate (DCFH) method as reported previously¹².

Aurantphenol A (1), $C_{15}H_{16}O_6$, white powder; [α]_D + 11.3 (c 0.025, CH₃OH); UV (CH₃OH), λ_{max} (log ε) 210 (4.92), 258 (3.26), 280 (2.89), 325 (1.87) nm; IR (KBr, ν_{max} , cm⁻¹) : 3025, 2940, 2850, 1712, 1655, 1582, 1528, 1478, 1380, 1032, 870, 789; ¹³C NMR and ¹H NMR data (C₅D₅N, 500 MHz) (Table-1); positive ESIMS m/z 315 [M+Na]⁺; HRESIMS m/z 315.0852 [M+Na]⁺ (calcd. for C₁₅H₁₆O₆Na, 315.0845).

RESULTS AND DISCUSSION

A 70 % aq. acetone extract prepared from the leaves and stems of *Cestrum aurantiacum* was partitioned between EtOAc and H₂O. The EtOAc layer was subjected repeatedly to column chromatography on silica gel, Sephadex LH-20, RP-18 and Preparative HPLC to afford compounds **1-9** (Fig. 1), including one new phenolic compound, named aurantphenol A (**1**), together with eight known compounds, (+)-pinoresinol (**2**)¹³, (+)-mediaresinol (**3**)¹⁴, (+)-lariciresinol (**4**)¹⁵, (+)- justiciresinol (5)¹⁶, dehydrodiconiferyl alcohol (6)¹⁷, (-)-simulanol, (7)¹⁸, 4hydroxy-3-methoxy-phenyl-1-O-(6'-O-galloyl)- β -D-glucopyranoside (8)¹⁹ and oxyneolignan C (9)⁸.

TABLE-1 ¹ H NMR AND ¹³ C NMR DATA OF COMPOUND (1) IN C ₅ D ₅ N		
No.	δ_{C} (mult.)	$\delta_{\rm H}$ (mult, <i>J</i> , Hz)
1	135.0 s	
2	110.8 d	7.18, d, <i>J</i> = 1.8
3	151.1 s	
4	142.5 s	
5	118.8 d	7.22, d, <i>J</i> = 8.2
6	120.9 d	7.02, dd, J = 1.8, 8.2
7	85.7 d	4.80, d, <i>J</i> = 6.6
8	70.2 t	4.30-4.45 overlap
9	46.7 d	3.59 m
7'	178.7 s	
8'	70.4 t	4.30-4.45 overlap
9'	48.6 d	3.19, m
3-OMe	55.9 q	3.75 s
4-OAc	21.2, 169.4	1.99 s

Compound (1), obtained as white amorphous powder, was assigned the molecular formula $C_{15}H_{16}O_6$ by HRESIMS m/z 315.0852 [M+Na]⁺ (calcd. 315.0845). Its ¹H and ¹³C NMR spectra showed signals to 16 hydrogens and 15 carbons, respectively, corresponding to one aromatic rings (3-methoxy-4-acetoxybenzyl), one carbonyl carbon (δ_C 178.7), two oxidated methylene groups, (δ_C 70.2, 70.4), one oxidated methine carbon (δ_C 86.7), two methine carbon (δ_C 46.7, 48.6), which were in accordance with the molecular formula, $C_{15}H_{16}O_6$. Strong absorption bands accounting for carbonyl group (1712) and aromatic groups (1655, 1582, 1528, 1478 cm⁻¹) could also be observed in its IR spectrum. The UV spectrum of **1** showed absorption maxima at 258, 210, 280 nm, which confirmed the existence of the aromatic function. The ¹H-¹H COSY of H-7/H-9/H-8, H-9/H-8' (Fig. 2) suggested that C-7 coupled to C-9', C-9' coupled to C-9, C-9 coupled to C-8 and C-9' coupled to C-8'. The carbonyl carbon was assigned to C-7' by the HMBC correlations of H-8' (δ_{H} 4.32), H-9 (δ_{H} 3.60), H-9' (δ_{H} 3.20) and H-8 (δ_{H} 4.43) with C-7'. The HMBC correlations of H-8' (δ_{H} 4.32) with C-7' (δ_{C} 178.7) and H-7 (δ_{H} 4.79) with C-8 (δ_{C} 70.2) indicated that C-8' coupled to C-7' and C-7 coupled to C-8 through a oxygen atom. The 3-methoxy-4-acetoxyphenyl linked to C-7 was deducted by the HMBC correlations of H-2 (δ_{H} 7.18), H-6 (δ_{H} 7.02) to C-7. Thus, the planar structure of **1** was established. The relative configurations at C-7, C-9' and C-9 of **1** could be established on the basis of ROESY correlations^{13,20}. The proposed relative stereochemistry was further supported by the NOESY experiment (Fig. 3). Thus, the structure of aurantphenol A was established as shown.

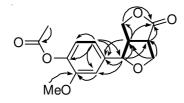


Fig. 2. Selected HMBC() and 1H-1H COSY (~) of (_)1

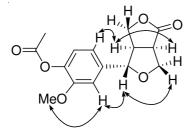


Fig. 3. Key ROESY(←→) correlations of 1

The cytotoxicity assay against C8166 cells (CC₅₀) was assessed using the MTT method and anti-HIV-1 activity was evaluated by the inhibition assay for the cytopathic effects of HIV-1 (EC₅₀)¹¹ aurantphenol A shows anti-HIV-1 activity with EC₅₀ 3.86 µg/mL, CC₅₀ 93.2 µg/mL and TI (Therapeutic Index) 24.1. This compound shows weak anti-HIV-1 activity.

The antioxidant activity of **1** was determined by the detection of the oxidative products with the 2',7'-dichloro-fluorescin diacetate (DCFH) method reported previously¹². It shows antioxidant activity with an IC₅₀ value of 3.68 μ g/mL. This compound shows high antioxidant activity.

ACKNOWLEDGEMENTS

This project was supported financially by the NSFC (No. 30830115 and 20902082), The Yong Academic and Technical Leader Rising Foundation of Yunnan Province (2007PY01-47) and the Natural Science Foundation of Yunnan Province (2008XY04 and 2008B0042Q).

REFERENCES

- 1. Z.X. Chen and X.K. You, Chin. J. Food. Sci., 23, 110 (2002).
- 2. Z.X. Chen and X.F. Tang, Chin. J. Herb. Med., 33, 976 (2002).
- M.A. Fouad, K.M. Mohamed, M.S. Kamel, K. Matsunami and H. Otsuka, J. Nat. Med., 62, 168 (2008).
- M. Haraguchi, Y. Mimaki, M. Motidome, H. Morita, K. Takeya, H. Itokawa, A. Yokosuka and Y. Sashida, *Phytochemistry*, 55, 715 (2000).
- Y. Zhang, H.Z. Li, Y.J. Zhang, R.M. Jaco, S.I. Khan, X.C. Li and C.R. Yang, *Steroids*, **71**, 712 (2006).
- Y. Mimaki, K. Watanabe, Y. Ando, C. Sakuma, Y. Sashida, S. Furuya and H. Sakagami, J. Nat. Prod., 64, 17 (2001).
- B. D'Abrosca, M. Dellagreca, A. Fiorentino, P. Monaco, A. Natale, P. Oriano and A. Zarrelli, *Phytochemistry*, 66, 2681 (2005).
- B. D'Abrosca, M. Dellagreca, A. Fiorentino, A. Golino, P. Monaco and A. Zarrelli, *Nat. Prod. Res.*, 20, 293 (2006).
- F. Antonio, D.G. Marina, D.A. Brigida, O. Palma, G. Annunziata, I. Angelina, Z. Armando and M. Pietro, *Biochem. System. Ecol.*, 35, 392 (2007).
- B. Abrosca, G.M. Della, A. Fiorentino, P. Monaco and A. Zarrelli, J. Agric. Food. Chem., 52, 4101 (2004).
- J.H. Wang, S.C. Tam, H. Huang, D.Y. Yang, Y.Y. Wang and Y.T. Zheng, Biochem. Biophys. Res. Commun., 317, 965 (2004).
- S. Takamatsu, A.M. Galal, S.A. Ross, D. Ferreira, M.A. Elsohly, A.R. Ibrahim and F.S. El-Feraly, *Phytother. Res.*, **17**, 963 (2003).
- 13. A. Pelter, E.S. Ward, D.J. Watson, P. Collins and I.T. Kai, J. Chem. Soc. Perkin Trans. I, 175 (1982).
- 14. L. Zhuang, O. Seligmann, K. Jurcic and H. Wagner, *Planta Med.*, 45, 172 (1982).
- 15. T. Katayama, L.B. Davin and N.G. Lewis, *Phytochemistry*, **31**, 3875 (1992).
- G.V. Subbaraju, K.K.K. Kumar, B.L. Raju, K.R. Pillai and M.C. Reddy, J. Nat. Prod., 54, 1639 (1991).
- H. Kasahara, Y. Jiao, D.L. Bedgar, S.J. Kim, A.M. Patten, Z.Q. Xia, L.B. Davin and N.G. Lewis, *Phytochemistry*, **67**, 1765 (2006).
- Y.P. Yang, M.J. Cheng, C.M. Teng, Y.L. Chang, I.L. Tsai and I.S. Chen, *Phytochemistry*, **61**, 567 (2002).
- K. Ishi maru, G.I. Nonaka and I. Nishioka, *Phytochemistry*, 26, 1147 (1987).
- P.A. Marchand, J. Zajicek and N.G. Lewis, *Can. J. Chem.*, **75**, 840 (1997).