Asian Journal of Chemistry; Vol. 24, No. 6 (2012), 2821-2822

Asian Journal of Chemistry

www.asianjournalofchemistry.co.in

NOTE

Hydrothermal Synthesis and Crystal Structure of a Nickel(II) Coordination Polymer Assembled by 5-(3'-Carboxylphenyl)nicotinic Acid

XIAOYING HUA

Department of Chemistry, Dezhou University, Shandong 253023, P.R. China

Corresponding author: E-mail:shdyzhang@126.com

(Received: 27 June 2011;

Accepted: 22 January 2012)

AJC-11009

A novel nickel(II) coordination polymer with 5-(3'-carboxylphenyl)nicotinic acid [L=5-(3'-carboxylphenyl)nicotinic acid] has been prepared by hydrothermal synthesis and characterized by single-crystal X-ray diffraction X-ray diffraction analysis reveals that the ligand (L) adopt chelating bidentate and monodentate modes. The L ligands bridge Ni(II) ions to give rise to a two-dimensional structure.

Key Words: Coordination polymer, Nickel(II).

In recent years, coordination polymers have attracted much attention, owing to their potential application as functional materials¹⁻³. It is well-known that the structural and functional information of such target materials were constructed by the metal-ligand coordination bonds In this case, the design of new types of ligands such as pyridyl and/or carboxylate groups have been proven to the most important strategy, due to their potential multiple coordination mode⁴⁻⁷.

As a part of our work towards rational design and preparation of functional coordination frameworks, I selected 5-(3'-carboxylphenyl)nicotinic acid as assembly ligand to construct a new compound $\{[Ni(L)(H_2O)]\cdot H_2O\}_n$.

Preparation of compounds [Ni(L)(H₂O)₂]n: A mixture of H₂L (1 mmol), NiCl·6H₂O (1 mmol), NaOH (2 mmol) and distilled water (15 mL) was heated to 160 °C for 96 h in a 25 mL stainless steel reactor with a Teflon liner, followed by slow cooling to room temperature. Green crystals for compound were obtained in 46 % yield (based on Ni).

X-ray crystallography: Suitable single crystals were selected under a polarizing microscope and fixed with epoxy cement on fine glass fibers which were mounted on a Bruker Smart 1000 CCD diffractometer with a MoK_{α} radiation ($\lambda = 0.71073$ Å) at 293(2) K. The hydrogen atoms bound to carbon were located by geometrically calculations. All non-hydrogen atoms were refined by full-matrix least-squares techniques. All calculations were performed by the SHELXTL 97 program⁸. Crystal data, intensity collection and structure refinement details are summarized in Table-1. Selected interatomic distances and bond angles are given in Table-2.

TABLE-1 CRYSTALLOGRAPHIC DATA AND STRUCTURE REFINEMENT SUMMARY FOR COMPLEX				
Empirical formula	C ₁₃ H ₁₁ NO ₆ Ni	Z, Calculated density (mg/m ³)	4,1.870	
Formula weight	335.94	Absorption coefficient(mm ⁻¹)	1.657	
Crystal system space group	Monoclinic, P2 ₁ /c	F(000)	688	
Unit cell dimensions	a =13.386(4) Å b =11.708(3) Å c = 7.691 (2) Å	Limiting indices	$-17 \le h \le 17$ $-15 \le k \le 15$ $-9 \le 1 \le 9$	
Volume(Å ³)	1192.9(6)	Largest diff. peak and hole (e/Å ³)	2.116 and -1.961	
θ Range for data collection	1.54-27.49	Reflections collected/unique	2700/2700	
Final R indi- ces $[I > 2 \sigma(I)]$	$R_1 = 0.0671,$ $wR_2 = 0.1633$	R indices (all data)	$R_1 = 0.0961,$ $wR_2 = 0.1792$	

TABLE-2 SELECTED BOND LENGTHS(Å) AND ANGLES(°) FOR Ni(II) COMPLEX					
$Ni(1)-O(4)^{i}$	2.020(5)	$Ni(1)-N(1)^{ii}$	2.127(5)		
Ni(1)-O(6)	2.028(5)	Ni(1)-O(1)	2.152 (5)		
Ni(1)-O(5)	2.082(5)	Ni(1)-O2	2.174 (5)		
$O(4)^{i}$ -Ni(1) -O(6)	91.1(2)	O(6)-Ni(1)-N(1) ⁱⁱ	87.0(2)		
O(4) ⁱ -Ni(1)-O(5)	90.1(2)	O(5)-Ni(1)-N(1) ⁱⁱ	90.8(2)		
O(6)-Ni(1)-O(5)	177.80(19)	$O(4)^{i}-Ni(1)-O(1)$	88.07(18)		
O(4) ⁱ -Ni(1)-N(1) ⁱⁱ	119.0(2)	O(6)-Ni(1)-O(1)	91.1(2)		
Symmetry codes: (i) x-1, -y+1/2, z-1/2; (ii) -x+1, -y+1, -z+1					

Description of the crystal structure: The single-crystal X-ray diffraction analysis reveals that the compound crystallizes in the monoclinic, space group P21/c. The local coordination geometry of polymer $[Ni(L)(H_2O)_2]_n$ with atomic numbering scheme is shown in Fig. 1. The central Ni(II) ion is six-coordinated with a distorted octahedron, in which the equatorial plane consists of three carboxyl oxygen atoms and one nitrogen atom, and the axial positions are occupied by two water molecules with the O-Ni-O angel of 177.82°.

Fig. 1. Coordination environment of Ni(II) ion

Each L anions connects to three nickek(II) atoms and each nickel(II) is link by three L anions. So, the 2D complex frame-work can be simplified to 3-connected topology. The combi-

nation of nodes and connectors provides the 3-connected network of compound with the topological notation of (4.82) (Fig. 2).

Fig. 2. Schematic description of the 3-connected framework

REFERENCES

- B.O. Patrick, C.L. Stevens, A. Storr and R.C. Thompson, *Polyhedron* 24, 2242 (2005).
- Y.H. Wen, J.K. Cheng, Y.L. Feng, J. Zhang, Z.L. Li and Y.G. Yao, *Inorg. Chim. Acta*, 358, 3347 (2005).
- 3. X.L. Wang, C. Qin, E.B. Wang and L. Xu, J. Mol. Struct., 749, 45 (2005).
- 4. F. Guo, J. Coord. Chem., 62, 3606 (2009).
- 5. T.B. Lu and R.L. Luck, Inorg. Chim. Acta, 351, 345 (2003).
- 6. F. Guo, J. Coord. Chem., 62, 3621 (2009).
- R.Q. Zhong, R.Q. Zou, M. Du, L. Jiang, T. Yamada, G. Maruta, S. Takeda and Q. Xu, *Cryst-Eng. Comm.*, 10, 605 (2008).
- G.M. Sheldrick, SHELXTL NT Version 5.1. Program for Solution and Refinement of Crystal Structures, University of Göttingen, Germany (1997).