
INTRODUCTION

The algorithm of calculation of hypothermia and hyper-

thermia conditions is based on physiological data on chemical,

physical and hemodynamic heat regulation of tissues and organs

of man. Ying et al.1 developed a coupled thermo fluid model

to simulate blood flow in large vessels and living tissue. They

analyzed the human finger is an extension of the brain and

can convey the information on mechanical, thermal and tissue

damaging. The quantitative prediction of blood flow rate and

heat generation are of great importance for diagnosing blood

circulation illness and for the noninvasive measurement of

blood glucose. Different physico-mathematical models of SHF

hyperthermia was considered by Shul’man2. He observed that

living bio-tissue have great number of applications in medicine,

agriculture, space, aquanautics, military science, everyday life,

under tropic and polar conditions, etc. Blood flow is an impor-

tant factor in the formation of temperature fields inside a living

body. In local superheating of some object, e.g., a malignant

tumor, arterial blood passing through it carries away a portion

of heat supplied from without to venous beds and the local

temperature of such bio-tissue will be determined mainly by

the intensity of the blood flow. Ogulu3 studied heat and mass

transfer flow of blood in a single blood vessel. He modeled

blood as a Newtonian fluid of constant properties while the
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blood vessel is modeled as a long tube of circular section of

slowly varying radius. Dynamic response of heat and mass

transfer in blood flow through stenosed bifurcated arteries was

investigated by Chakravarty and Sen4. They observed that the

heat and mass transport phenomena of blood always play a

key role to the understanding and development of arterial

diseases in general and the heat flow together with the transport

of macromolecules with dissolved gases to and through the

arterial wall influence more on the growth and development

of atherogenetic processes, in particular.

The Newtonian and non-Newtonian rheological character

of solutions and suspensions with aggregating particles as well

as of whole blood and erythrocyte suspensions in isotonic salt

solutions is manifested at large concentrations of suspended

material5-10. Several theoretical and experimental studies have been

made to study rheological properties of blood fow are reported11-15.

Taking into an account the above analysis in mind, we have

studied the influence of heat transfer and chemical reactions

on Williamson fluid model for blood flow through a tapered

artery with a stenosis. To the best of our knowledge no investiga-

tion have been made to study the blood flow by treating blood

as Williamson fluid. Perturbation solution of the governing

equations along with the boundary conditions of stenosed

symmetric artery have been calculated. The expressions for

velocity, temperature, concentration, resistance impedance,



wall shear stress and shearing stress at the stenosis throat have

been examined. The graphical behavior of different type of

tapered arteries have been examined for different parameters of

interest. Stream lines have been plotted at the end of the article.

Formulation of the problem

Let us consider the flow of an incompressible Williamson

fluid lying in a tube having length (L). We are considering

cylinderical coordinates system )z,,r( θ such that ,u v  and

w  are the velocity components in r , θ  and z  direction,

respectively. Heat and mass transfer phenomena is taken into

account by giving temperature 
1T and concentration 

1C  to the

wall of the tube, while at the centre of the tube we are consi-

dering symmetry condition on both temperature and concen-

tration. Followed by Mekhiemer et al.11; the geometry of the

stenosis which is assumed to be symmetric is defined as:
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where d(z) is the radius of the tapered arterial segment in the

stenotic region, d0 is the radius of the non-tapered artery in the

non-stenoic region, ξ is the tapering parameter, b is the length

of stenosis, (n ≥ 2) is a parameter determining the shape of the

constriction profile and referred to as the shape parameter (the

symmetric stenosis occurs for n = 2) and a indicates its location

as shown in Fig. 1.

Fig. 1. Geometry of an axially non-symmetrical stenosis in the artery

The parameter η is given by
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where δ denotes the maximum height of the stenosis located
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The equations which governs the flow are continuity, mo-

mentum, energy and mass are
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In the above equations, p  is the pressure u ; w  are the

respective velocity components in the radial and axial directions

respectively, T  is the temperature, C  is the concentration of

fluid, ρ is the density, k denotes the thermal conductivity, cp is

the specific heat at constant pressure, Tm is the temperature of

the medium, D is the coefficients of mass diffusivity, KT is the

thermal-diffusion ratio.

The constitutive equation for Williamson fluid15 is defined

as

τ+−= PIS (9)

γγΓ−η+η+η=τ −
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in which -PI is the spherical part of the stress due to constraint

of incompressibility, τ  is the extra stress tensor, η∞ is the

infinite shear rate viscosity, η0 is the zero shear rate viscosity,

Γ is the time constant and γ& is defined as
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Here Π is the second invariant strain tensor. We consider the

constitutive eqn. 7, the case for which η∞ = 0 (because we

cannot find the solution at the infinite shear rate viscosity).

The component of extra stress tensor therefore, can be

written as

γγΓ+η=γγΓ−η=τ −
&&&& )]1[(])1[( 0

1

0
(12)

We introduce the non-dimensional variables
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in which Sr is the Soret number, Sc Schmidt number, u0 is the

velocity averaged over the section of the tube of the width d0

and σ is concentration.

Making use of eqns. 12 and 13; into eqns. 4 to 8, the

appropriate equations describing the steady flow of an incom-

pressible Williamson fluid in the case of mild stenosis
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can be written as
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where Br = Ec Pr.

The imposed boundary conditions for the problem under

consideration are
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where ξ = tan φ, φ is called tappered angle and for converging

tapering (φ < 0), non-tapered artery (φ = 0) and the diverging

tapering (φ > 0) (as shown in Fig. 2).

Solution of the problem

Perturbation solution: To get the perturbation solution

we expand w, θ, p and Q by taking We as a perturbation

parameter as follow

w = w0 + We w1 + O (We)2 (20a)

Fig. 2. Geometry of the axially stenosied tapered artery for different tapered

angle

θ = θ0 + We θ1 + O (We)2 (20b)

p = p0 + We p1 + O (We)2 (20c)

Q = Q0 + We Q1 + O (We)2 (20d)

Expression for velocity, temperature, concentration field

and pressure gradient for small We can be written as follows
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The pressure drop (∆p = p at z = 0 and ∆p = –p at z = L)

across the stenosis between the section z = 0 and z = L is

obtain from (24) as done by [5] is de.ned as

∫ 
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Resistance impedance

The expression for resistance impedance is obtained from

eqn. 25 defined as:
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Eqn. 26 can also be written as
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Expression for the wall shear stress

The expression for wall shear stress is defined as
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With the help of eqn. 21; eqn. 29 takes the following form
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The final expressions for the dimensionless resistance to

λ, wall shear stress τrz and the shearing stress at the throat τs

are defined as follows













+















−








−=λ ∫

+ba

a

dz)z(F
L

1

5

Q128
We4

L

b
1

3

4
(34)

]))z(R(WeQ4)z(R[S 2

rz += (35)

])J(WeQ4J[ 2

s +=τ (36)

in which

Q4,L3,
~

,
~

,

~

00

0

s
s

0

rz
rz

0

=τ=λ
τ

τ
=τ

τ

τ
=τ

λ

λ
=λ

here λ0, τ0 are the resistance to flow and the wall shear stress

for a flow in a normal artery (no stenosis).

RESULTS AND DISCUSSION

The quantitative effects of the Weissenberg number (We);

the stenosis shape n and maximum height of the stenosis δ for

converging tapering, diverging tapering and non-tapered

arteries for Williamson fluid are observed physically through

Figs. 3-15. Figs. 3-6 are prepared to see the variation of

impedance resistance for different parameters of interest, it is

noticed that the impedance resistance decreases for converging

tapering, diverging tapering and non-tapered arteries when we

increase n, L, We and Q. We also observed that resistive

impedance in a diverging tapering appear to be smaller than

those in converging tapering because the flow rate is higher in

the former than that in the latter, as anticipated and impedance

resistance attains its maximum values in the symmetric stenosis

case (n = 2). Figs. 7-9 show, how the converging tapering,

diverging tapering and non-tapered arteries influence on the

wall shear stress τrz. It is observed that with an increase in n, δ
and We shear stress increases, the stress yield diverging tapering

with tapered angle φ > 0, converging tapering with tapered

angle φ < 0 and non-tapered artery with tapered angle φ = 0.

Figs. 10 and 11 are prepared to see the variation of the shearing

stress at the stenosis throat τs with δ. It is analyzed through

figures that shearing stress at the stenosis throat increases with

an increase in Q and decreases with an increase in We. It is

also depicted that shearing stress at the throat τs possess an

inverse variation to the flow resistance λ with respect to flow

rate Q and Weissenberg number (We). Finally, the variation of

axial velocity for m, We, δ and n for the case of a converging

tapering, diverging tapering and non-tapered arteries are

displayed in Figs. 12-15. From Figs. 12-15, we observed that

with an increase in We, δ and n velocity profile decreases while

increases with an increase in Q. It is also seen that for the case

of converging tapering velocity gives larger values as compa-

red to the case of diverging tapering and non-tapered arteries.

Figs. 16 and 17 show the variation of temperature profile for

different values of Brickmann number Br and Weissenberg

number We. It is observed that with an increase in Brickmann

number Br and Weissenberg number (We), temperature

profile increases and temperature profile gives the large values

for converging tapering as compared to the diverging and non-

tapered artery. Figs. 18 and 19 are prepared to see the variation

of concentration profile for Brickmann number Br and Soret

number Sr. It is observed that with an increase in Brickmann

number Br and Soret number Sr, concentration profile

decreases. It is also seen that concentration profile has an

opposite behaviour as compared to the temperature profile.

Trapping phenomena have been discussed through Figs. 20-

23. Fig. 20 shows the stream lines for different values of

tappered angle φ. It is observed that size of trapping bolus is

small for diverging tapering as compared to the converging

tapering and non-tapered arteries. Stream lines for different

values of the stenosis shape n is prepared in Fig. 21. It is

analyzed that the size of the trapping bolus decreases when

we increase the stenosis shape. Figs. 22 and 23 are plotted to

see the stream lines for different values of height of the stenosis

δ and Weissenberg number (We). It is depicted that the size of

the trapping bolus decreases with an increase in the height of

the stenosis and Weissenberg number.
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Fig. 3. Variation of resistance for Q = 0.2, We = 0.1, b = 1, σ = 0.0; n = 2,

z = 0.5

Fig. 4. Variation of resistance for Q = 0.9, We = 0.1; b = 1, σ = 0.0, L = 1,

z = 0.95

Fig. 5. Variation of resistance for n = 2, We = 0.1; b = 1, σ = 0.0; L = 2, z =

0.95

Fig. 6. Variation of resistance for n = 2, Q = 0.1, b = 1, σ = 0.0, L = 2, z =

0.95

Fig. 7. Variation of wall stress for Q = 0.02, We = 0.5, σ = 0.0; n = 2

Fig. 8. Variation of wall stress for Q = 0.02, We = 0.5, σ = 0.0, δ = 0.05
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Fig. 9. Variation of wall stress for Q = 0.02, n = 2, σ = 0.0, δ = 1.5

Fig. 10. Variation of shear stress at the stenosis throat for We = 0.5

Fig. 11. Variation of shear stress at the stenosis throat for Q = 0.8

Fig. 12. Variation of velocity profile for Q = 0.05, We = 0.2, n = 2, z = 0.95,

σ = 0.00

Fig. 13. Variation of velocity profile for Q = 0.02, We = 0.2, δ = 0.005, z =

0.9, σ = 0.00

Fig. 14. Variation of velocity profile for n = 2, We = 0.1, δ = 0.005, z = 0.9,

σ = 0.00
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Fig. 15. Variation of velocity profile for n = 2, Q = 0.8, δ = 0.005, z = 0.09,

σ = 0.00

Fig. 16. Variation of temperature profile for n = 11, Q = 0.3, δ = 0.5, z = 0.5,

σ = 0.00, We = 0.5

Fig. 17. Variation of temperature profile for n = 11, Q = 0.3, δ = 0.5, z = 0.5,

σ = 0.00; Br = 2

Fig. 18. Variation of concentration profile for n = 11, Q = 0.3, δ = 0.5, z =

0.5, σ = 0.00, We = 0.5, Sr = 0.5, Sc = 0.5

Fig. 19. Variation of concentration profile for n = 11, Q = 0.3, δ = 0.5, z =

0.5, σ = 0.00, We = 0.5, Br = 2, Sc = 0.5
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Fig. 20. Stream lines for different values of tapered angles (a) Converging

tapering (b) Diverging tapering (c) Non-tapered artery for n = 2, Q

= -0.1, δ = 0.1, σ = 0.1, We = 0.2

Fig. 21. Stream lines for different values of n (d) n = 2 (e) n = 4 (f) n = 6 for

φ = 3.147, Q = -0.1, δ = 0.1, σ = 0.1, We = 0.2

Fig. 22. Stream lines for different values of δ (g) δ = 0.1 (h) δ = 0.2 for φ =

3.147, Q = -0.1, n = 2, σ = 0.1, We = 0.2

Fig. 23. Stream lines for different values of We (i) We = 0.1 (j) We = 0.2 for

φ = 3.147, Q = - 0.1, n = 2, σ = 0.1, δ = 0.2
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