

NOTE

Novel Epoxidation Reaction of Perfluoroalkenes with Triethylamine N-oxide

XINGWEI CAI, MIN SHA and REN MING PAN*

School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, P.R. China

*Corresponding author: E-mail: xin883@163.com

(Received: 6 August 2011;

Accepted: 26 December 2011)

AJC-10903

Triethylamine *N*-oxide was found to be nice reagent for the epoxidation of *tri-* and tetra-substituted perfluoroalkenes in good to excellent yields. By coupling this reaction with the *N*-oxidation of triethylamine by hydrogen peroxide, a novel catalytic epoxidation method was developed.

Key Words: Perfluoroalkenes, Triethylamine N-oxide, Catalytic.

Epoxides play an important role in fluorocarbon chemistry¹. The methods for preparing the oxides of perfluoroolefins are extremely scanty². In the present investigation, it has been established that when aqueous solutions of alkali or alkalineearth hypohalites in alkaline solutions are used in the presence of aprotic solvents one succeeds in achieving the epoxidation of both the terminal and the internal fluoroolefins³⁻⁵. It is found that triethylamine *N*-oxide epoxidize tri- and tetra-substituted perfluoroalkenes in good to excellent yields.

Preparation of Et₃NO⁶: To a mixture of Et₃N (2 mmol), Na₂WO₄ (200 mg), water (10 mL) and H₂O₂ (30 % w/w, 6 mmol), dodecylbenzenesulfonic acid sodium (6 mg) was added. The mixture was stirred for 3.5 h at room temperature, standing, isolated, get 1.5 mmol Et₃NO, yield 75 %.

Preparation of epoxide 2: To a mixture of Et₃NO (1 mmol) and acetonitrile (2 mL), perfluoroalkene **1** (1 mmol) was added. The mixture was stirred for 20 min at room temperature, distillation gave 0.97 mmol of epoxide (**2**), yield 97 % (**Scheme-I**).

Scheme-I F-denotes all unmarked bonds are to fluorines

The epoxidation of perfluoroalkene (1) was tested using a variety of reagents and conditions summarized in Table-1.

VARIOUS REAGENTS AND CONDITIONS						
Run	Reagent	Quantity used	Solvent	Temp.	Time	Yield ^a
						(%)
1	$30 \% H_2O_2$	Large excess	H_2O	rt	1 day	N.R. ^b
2	MCPBA	1.0 equiv.	CH ₃ CN	rt	1 day	N.R.
3	CH ₃ CO ₃ H	Large excess	H_2O	rt	1 day	N.R.
4	СООН	Large excess	CH ₃ CN	rt	1 day	N.R.
5	Et ₃ NO	1.0 equiv.	CH ₃ CN	rt	20 min	97
6		1.0 equiv.	DMF	rt	-	-
7		1.0 equiv.	DMF	-20 °C	40 min	95
8		1.0 equiv.	H_2O	70 °C	2 day	85
9	NaClO	2.0 equiv.	CH ₃ CN	rt	3 h	95
10	$Ca(ClO)_2$	2.0 equiv.	CH ₃ CN	rt	10 h	47
a. GC yield based on 1 used; b N.R.= no reaction; rt = Room						

TABLE-1

EPOXIDATION OF PERFLUOROALKENE 1 WITH

temperature; MCPBA = m-Chloroperbenzoic acid

As expected, electrophilic reagents such as hydrogen peroxide, ethaneperoxoic acid, *meta*-chloroperbenzoic acid (MCPBA) and 2-carboperoxybenzoic acid, which are commonly used for epoxidation in hydrocarbon chemistry, gave no reaction with the electrophilic perfluoroalkene **1** (runs 1-4). However, the nucleophilic Et₃NO was able to epoxidize (**1**) to give a corresponding epoxide (**2**) in excellent yields. For example, a 97 % yield was achieved in CH₃CN under mild conditions (just 20 min stirring at room temperature, run 5) and only 85 % yield was obtained in water under more forcing conditions (2 days stirring at 70 °C, run 8). The reaction with Et₃NO in DMF was interesting, for at room temperature no product **2** was detected (run 6) while 95 % yield was obtained after 40 min stirring at -20 °C (run 7). Reaction results using NaClO and Ca(ClO)₂ as oxidizing agents were also listed in Table-1 (runs 9 and 10).

Et₃NO was studied further with other perfluoroalkenes, results were summarized in Table-2. Perfluoroalkenes **3** and **4** both reacted with Et₃NO in CH₃CN to give their corresponding epoxides in good yields under mild conditions (stirring at room temperature), but compound **4** reacted at a slower rate than **3** (runs 1 and 2). This probably dues to a fluorine atom directly connected to the double bond carbon atom of perfluoroalkene **3**, thus making the double bond more actively. Disubstituted perfluoroalkene **5** hardly reacted with Et₃NO under the same conditions of **1** although they are isomers (run 3). Thus, we have found that Et₃NO is a good epoxidation reagent for triand tetra-substituted perfluoroalkenes. Disubstituted perfluoroalkenes apparently are not sufficiently electrophilic for attack by Et₃NO.

Since Et_3NO can be synthesized by triethylamine and hydrogen peroxide^{6,7}, but epoxidation by sole H_2O_2 cannot be done (Table-1, run 1). So electrophilic epoxidation H_2O_2 can be used for the reaction by using triethylamine as a catalyst,

with Et₃NO formed as an intermediate nucleophilic oxygen carrier.

The reaction mechanism for this nucleophilic epoxidation is well established as shown in **Scheme-II** and **III**.

Scheme-II A catalytic cycle for the epoxidation of perfluoroalkene

Scheme-III Reaction mechanism of epoxidation of perfluoroalkenes with triethylamine N-oxide

Conclusion

In present studies, it is found that triethylamine N-oxide (Et_3NO) is a good epoxidati-on reagent for tri- and tetrasubstituted perfluoroalkenes. Qth-er tertiary amine N-oxides are under studying.

REFERENCES

- P. Tarrant, C.G. Allison, K.P. Barthold and E.C. Stump, *Fluorine Chem. Rev.*, 5, 77 (1971).
- 2. P.L. Coe, A. Sellars and J.C. Tatlow, J. Fluorine Chem., 23, 102 (1983).
- 3. A. Ya Zapevalov and E.P. Lulie, *Izv. Akad. Nauk SSSR, Ser. Khim.*, **11**, 2509 (1979).
- A. Ya Zapevalov, T.I. Filyakova and I.P. Kolenko, *Izv. Akad. Nauk SSSR*, Ser. Khim., 12, 2812 (1979).
- A. Ya Zapevalov, T.I. Filyakova, I.P. Kolenko and M.I. Kodess, *Zh.Org. Khim.*, 22, 93 (1986).
- B.M. Choudary, B. Bharathi, Ch. Venkat Reddy, M. Lakshmi Ka-ntam and K.V. Raghavan, *Chem. Commun.*, 1737, (2001).
- 7. K. Bergstad and J.-E. Backvall, J. Org. Chem., 63, 6652 (1998).