

Effects of Genotype and Environment on Active Components of *Salviae miltiorrhizae* by HPLC

PENG SUN¹, YU-LIN HE¹, LI-LI ZHOU¹, JIAN-JUN QI¹, YUKUI RUI² and XIAN-EN LI^{1,*}

¹Chinese Academy of Medical Sciences, Peking Union Medical College, Institute of Medicinal Plant Development, Beijing 100193, P.R. China ²College of Resources and Environment Science, China Agricultural University, Beijing 100193, P.R. China

Accepted: 15 December 2011)

*Corresponding author: E-mail: xeli@implad.ac.cn

(Received:	15 May 2011	l;
------------	-------------	----

Six cultivars and five experimental site were selected to study the effects of genotype and environment on the contents of fat-soluble components and water-soluble components in *Salviae miltiorrhizae*. The results showed that the contents of water-soluble components rosmarinic acid and salvianolic acid B in *Salvia miltiorrhiza* were significantly affected by genotype, environment and interaction effects of genotype environment and the effects of genotype were much more than the effects of environment and the interaction effects. Fat-soluble components were different from water-soluble components, contents of tanshinone I and tanshinone II_A were affected by environment al effects, for fat-soluble component salvianolic acid B, genotype and experimental site are both important. Coefficient of variation indicated that fat-soluble component in salvia is affected by external factors more easily than water-soluble component.

Key Words: Fat-soluble components, Water-soluble components, Salviae miltiorrhizae, HPLC.

INTRODUCTION

Salvia (*Salvia miltiorrhiza* Bge.) belongs to Salvia of Lamiaceae family, whose root is a valuable medicine. Active ingredient of Salvia are plant secondary metabolites, including fat-soluble components tanshinone II_A, tanshinone I and cryptotanshinone, which are Salvia's active ingredient for antiinflammatory, antibacterial and treating coronary heart disease; water-soluble composition are phenolic compounds, such as salvianolic acid A, B, C and tanshinol, protocatechualdehyde, which have the roles of antiplatelet aggregation and free radical scavenging.

Salvia is widely distributed in north, east and southwest provinces of China, including Sichuan province, Hebei province, Shandong province, Shanxi province and Anhui province. It is reported that active ingredient contents of Salvia from different regions are very different, fat-soluble components and water-soluble component content have several times or even ten times the difference^{1.2}. Xiulan *et al.*³ measured tanshinone II_A content in *Salvia miltiorrhiza* from 10 different production areas, the results indicated that *Salvia miltiorrhiza* produced from Ju County of Shandong province contain the highest levels of tanshinone II_A, followed by Henan, Hubei and Jiangsu at the middle level, Hebei and Liaoning are the lowest. The active ingredient of *Salvia miltiorrhiza* is still quite different if the same germplasm grown in different ecological environments⁴. In this study, we selected salvia lines whose genetic traits is relatively stable and consistent as the experimental materials to study the effects of genotype and origin on active ingredients of Salvia variation, which will provide the basis for the quality control of *Salvia miltiorrhiza*.

AJC-10846

EXPERIMENTAL

Field experimental design

Test point set: Test points are located in the main producing areas of Salvia: Shangluo county of Shanxi province (latitude 34°, longitude 110°). Ju County of Shandong province (latitude 36°30', longitude 118°30'); (N36° 30', E118° 30'). Bozhou of Anhui province (latitude 34°, longitude 116°); (N34°, E11°) Zhongjiang of Sichuan province (latitude 31°, longitude 105°); (N31°, E105°) Beijing Haidian Medicinal Plant Research Institute (latitude 42°, longitude 116°). (N42°, E116°)

Material: Salvia cultivars: "99-2", "99-4", "99-3", "99-5", "DS-2000" and "shh".

Field experimental design: The above six salvia cultivars were grown in five different salvia origins. The length of experimental plot length is 4.5 m, width is 2.0 m; four rows were planted in each plot and plant spacing and row spacing

are both 40 cm. A randomized block design of six salvia cultivars was used in each region, each cultivar has three replicates in each region.

Determination of the active ingredient of Salvia: Samples were dried at 60 °C, crushed by high-speed grinder. Determined the active ingredient of Salvia according to Chinese Pharmacopoeia⁵.

Instrument parameters: Waters 600 high pressure liquid chromatography, waters 2487 UV detector, Empower Chromatography workstation, Venusil ASB-C₁₈ column (5 μ m, 250 mm × 4.6 mm), flow speed: 1 mL/min, the injection volume is 10 μ L.

Parameters of detector: Detection wavelength of fatsoluble components was 270 nm and mobile phase was methanol-water (75:25); detection wavelength of water-soluble components was 286 nm, mobile phase was acetonitrilephosphoric acid, gradient elution, the gradients were as follows (Table-1).

TABLE-1 MOBILE PHASE GRADIENT CONCENTRATIONS					
Time (s)	Volume	Phosphoric acid solution	Acetonitrile		
0	1.00	85	15		
7	1.00	65	35		
12	1.00	80	20		
17	1.00	80	20		
20	1.00	85	15		
25	1.00	85	15		

Sandard curve: Weighed acurately 5 mL standard solutions of tanshinone II_A , 1 mL tanshinone I and 1.5 mL cryptotanshinone into 10 mL brown flask, respectively, constant volume with methanol, injection, 2, 4, 8, 10, 15 and 20 μ L, respectively, determined peak area, draw standard curves, calculate the regression equation just as Table-2.

Weighed acurately 0.8 mL standard solutions of rosmarinic acid and 3 mL salvianolic acid B into 5 mL brown flask, respectively, constant volume with methanol, injection, 2, 5, 8, 10, 15 and 20 μ L, respectively, determined peak area, draw standard curves, calculate the regression equation just as Table-2.

RESULTS AND DISCUSSION

Content of fat-soluble components in salvia root

Content of tanshinone I: The results showed that fat-soluble component tanshinone I in salvia was significantly affected by genotype and environment (p < 0.01) (Table-3) and the interaction effect of genotype and environment was not significant, in which the role of the environment is larger than that of genotype effect.

Contents of tanshinone I of six salvia species grown in five experimental sites had significant differences between each other (p < 0 01) and content in "99-3" grown at Bozhou of Anhui province was the highest, which is 0.1289 %; the lowest was species "shh" grown at Zhongjiang of Sichuan province, 0.0013 %, the difference is nearly 100 times. The coefficients of variation of Haidian of Beijing, Bozhou of Anhui province, Ju county of Shandong province, Shangluo of Shanxi province and Zhongjiang of Sichuan province were 71.21, 62.33, 53.36, 41.78 and 61.16 %, respectively, which showed that tanshinone I level has the greatest change in Beijing's Haidian and the least in Shangluo of Shanxi province (Table-3).

According to the genotype, the cultivar "99-3" contained the highest levels of tanshinone I, the average content of five origin was 0.1050 %, content of "shh" was the lowest, which was 0.0050 %; according to place of origin, content of tanshinone I in salvia grown at Shangluo of Shanxi province was the highest, whose average content of six cultivars was 0.0955 %, the content from Ju county of Shandong province was the lowest (0.0460 %) (Table-4).

Cryptotanshinone content in *Salvia miltiorrhiza*: Just as tanshinone I, contents of cryptotanshinone of six salvia species grown in five experimental sites have significant differences between each other (p < 0.01) (Table-3), in which the role of the main effects of genotype (F value) was maximum, secondly was the main effect of the environment, the interaction effect of genotype and environment was the least.

Contents of cryptotanshinone had significant differences between the six Salvia species at all five test point (p < 0.01) and "shh" grown at Shangluo of Shanxi province contained the highest cryptotanshinone (0.9905 %) and "99-2" at Bozhou city of Anhui province the lowest (0.0823 %). The coefficients of variation of Haidian of Beijing, Bozhou of Anhui province, Ju county of Shandong province, Shangluo of Shanxi province and Zhongjiang of Sichuan province were 47.59, 72.41, 22.86, 62.77 and 83.9 %, respectively, which showed that cryptotanshinone level has the greatest change at Zhongjiang of Sichuan province and the least at Ju county of Shandong province (Table-3).

In all cultivars, the cultivar "shh" contained the highest levels of cryptotanshinone, the average content of five origin was 0.4835 %, content of "99-2" was the lowest, which was 0.1406 %; for the five places of origin, content of cryptotanshinone in salvia grown at Shangluo of Shanxi province was the highest, whose average content of six cultivars was 0.4433 %, the content from Ju county of Shandong province was the lowest (0.1025 %) (Table-4).

Tanshinone II_A content in *Salvia miltiorrhiza*: It could be concluded that contents of tanshinone II_A of six salvia species grown in five experimental sites had significant differences

TABLE-2					
STANDARD CURVE REGRESSION EQUATION OF REFERENCE SUBSTANCE					
Standard samples	Regression equation	r	Concentration range (µg mL ⁻¹)		
Tanshinone I	$Y = 3.43 \times 10^{6} X - 3.51 \times 10^{3}$	0.9994	5.05-50.51		
Cryptotanshinone	$Y = 4.62 \times 10^{6} X - 9.37 \times 10^{3}$	0.9994	4.28-42.80		
Tanshinone II _A	$Y = 6.07 \times 10^{6} X - 2.47 \times 10^{4}$	0.9993	4.16-41.60		
Rosmarinic acid	$Y = 1.68 \times 10^{6} X + 11.10 \times 10^{4}$	0.9991	3.26-32.64		
Salvianolic acid B	$Y = 1.05 \times 10^{6} X + 5.99 \times 10^{4}$	0.9999	75.12-751.20		

Exercimenal sites Cultures Tanshinose1 Cryptotanshinose Tanshinose11, Non Rosmanine aid Salvianolic acid B 99-2 0.0314 ± 0.003 0.1339 ± 0.003 0.1741 ± 0.006 0.1794 ± 0.007 6.2772 ± 0.313 99-3 0.1117 ± 0.009 0.2331 ± 0.001 0.3037 ± 0.010 0.3408 ± 0.000 6.2570 ± 0.036 99-4 0.0054 ± 0.012 0.1688 ± 0.020 0.1899 ± 0.023 6.2570 ± 0.036 99-5 0.0074 ± 0.012 0.1688 ± 0.020 0.2185 ± 0.008 6.7539 ± 0.493 Average 0.0074 ± 0.017 0.0894 ± 0.039 0.0216 ± 0.0327 0.1998 ± 0.036 6.7539 ± 0.493 Average 0.0074 ± 0.010 0.1588 ± 0.005 0.2574 ± 0.018 6.4378 ± 0.028 6.4378 ± 0.0478 Variation 0.0712 ± 0.040 0.1588 ± 0.005 0.2574 ± 0.018 1.4474 15.99 99-2 0.0252 ± 0.011 0.0253 ± 0.001 0.2355 ± 0.006 7.3995 ± 0.380 7.3995 ± 0.380 7.3995 ± 0.380 7.3995 ± 0.380 7.3995 ± 0.380 7.3995 ± 0.380 7.3995 ± 0.380 7.3995 ± 0.380 7.3995 ± 0.380 7.3995 ± 0.380 7	TABLE-3 MEASUREMENT RESULTS OF EFFICIENCY COMPONENT IN DIFFERENT SALVIA VARIETIES GROWN AT DIFFERENT EXPERIMENTAL SITES						
Bez/Bit 00.341 ± 0.001 0.0864 ± 0.001 0.1149 ± 0.002 0.2328 ± 0.003 7.0902 ± 0.019 Haidian district 99-4 0.0366 ± 0.004 0.0114 ± 0.008 0.1144 ± 0.001 0.3360 ± 0.003 5.756 ± 0.031 99-4 0.0366 ± 0.004 0.0114 ± 0.008 0.1467 ± 0.010 0.3360 ± 0.005 5.7539 ± 0.438 99-5 0.0470 ± 0.0353 0.0179 ± 0.038 0.0161 ± 0.0320 0.278 ± 0.005 6.7539 ± 0.438 Average 0.0470 ± 0.035 0.1719 ± 0.0818 0.1616 ± 0.022 0.278 ± 0.005 6.3758 ± 0.025 Coefficient of 0.1712 0.466 ± 0.039 0.0166 ± 0.002 0.274 ± 0.016 0.1748 ± 0.005 6.2547 ± 0.016 0.1748 ± 0.005 0.2547 ± 0.016 0.1748 ± 0.005 0.2547 ± 0.016 0.1748 ± 0.005 0.2547 ± 0.016 0.1748 ± 0.005 0.250 ± 0.021 0.759 ± 0.217 Soutistic interval 99-5 0.0035 ± 0.001 0.0254 ± 0.001 0.0358 ± 0.002 0.359 ± 0.006 6.3579 ± 0.217 Average 0.0455 ± 0.002 0.0554 ± 0.001 0.0258 ± 0.002 0.3598 ± 0.006 0.5759 ± 0.217 Average		Cultivars	Tanshinone I	Cryptotanshinone	Tanshinone II_A	Rosmarinic acid	Salvianolic acid B
Bioshoo iiiy Application iiiy Bioshoo iiiy Application iiiy Applicatiiiy Application iiiy Application iiiy Application							
Haidain district Beijing city 99-4 (sh) 00.366 ± 0.004 (sh) 0.014 ± 0.001 (sh) 0.014 ± 0.001 (sh) 0.014 ± 0.001 (sh) 0.014 ± 0.001 (sh) 0.016 ± 0.002 (sh) 0.0216 ± 0.022 (sh) 0.2718 ± 0.008 (sh) 5.7035 ± 0.246 (sh) Awerage Conflicient of variation 0.0014 ± 0.001 (sh) 0.0084 ± 0.009 (sh) 0.0161 ± 0.0082 (sh) 0.0216 ± 0.022 (sh) 0.0218 ± 0.022 (sh) 0.0218 ± 0.022 (sh) 0.0218 ± 0.022 (sh) 0.0218 ± 0.022 (sh) 0.0178 ± 0.006 (sh) 0.0178 ± 0.007 (sh) 0.0178 ± 0.006 (sh) 0.0178 ± 0.006 (sh) 0.0178 ± 0.007 (sh) 0.0173 ± 0.007 (sh) 0.0172 ± 0.017 (sh) 0.0173 ± 0.027 (sh) <							
Haidian district Beijing city 99-5 sh Ampiinade Average 0.0014/10010 0.0014/0.1007 0.0084/0.0030 0.0016 + 0.002 0.0216 + 0.002 0.0216 + 0.002 0.2788 + 0.0036 0.0216 + 0.002 5.7005 + 0.206 0.7789 + 0.0036 Ampiinade Average 0.0014/0.1017 0.0364+0.039 0.0216 + 0.022 0.2718 + 0.0156 6.7789 + 0.476 Coefficient 0 0.1719 + 0.0318 0.1613 + 0.0982 0.2718 + 0.0216 6.4378 + 0.4766 Variation Fvalue 115.99 104.36 0.1814 14.74 15.99 99-5 0.0252 + 0.001 0.0253 ± 0.002 0.3646 ± 0.002 7.8466 ± 0.023 7.857 ± 0.217 Anhui province 39-5 0.0485 ± 0.001 0.0253 ± 0.002 0.3592 ± 0.006 6.7579 ± 0.217 Anhui province shh 0.0078-0.1289 0.001 0.0254 ± 0.001 0.0235 ± 0.000 0.303 ± 0.124 8.306 ± 0.017 Anhui province shh 0.0078-0.1289 0.0082 ± 0.0101 0.1187 ± 0.003 5.6033 ± 0.124 6.378 ± 0.216 Anaplituide 0.0079-0.1289 0.0221 ± 0.011 0.1187 ± 0.003 5.6033 ± 0.124 6.378 ± 0.216 Anaplitui							
Haidman district Beijing city Beijing city shh 0.0014 ± 0.001 0.3393 ± 0.034 0.021 ± 0.022 0.251 ± 0.051 6.753 ± 0.493 Beijing city Ampiinule 0.0014 ± 0.017 0.363 ± 0.034 0.021 ± 0.0327 0.1998.0.3360 5.7035 7.0992 Coefficient of variation 0.7121 0.04710 0.0364 ± 0.0081 0.161 ± 0.0982 0.1738 ± 0.006 8.558 ± 0.4786 Po-2 0.0520 ± 0.001 0.0523 ± 0.002 0.1784 ± 0.006 8.5589 ± 0.380 99-3 0.1289 ± 0.001 0.0523 ± 0.002 0.1738 ± 0.006 6.7559 ± 0.164 99-4 0.0746 ± 0.001 0.1733 ± 0.005 0.2528 ± 0.002 0.2029 ± 0.017 5.5350 ± 0.568 99-4 0.0746 ± 0.012 0.558 ± 0.021 0.0228 ± 0.014 0.177 ± 0.017 5.5350 ± 0.568 Ampiinude 0.0078 ± 0.025 0.5861 ± 0.001 0.0235 ± 0.099 0.3965 0.1555 Ampiinude 0.0746 ± 0.010 0.2247 ± 0.116 0.1477 ± 0.013 5.5350 ± 0.068 0.1555 ± 0.027 1.233 1.738 Ampiinude 0.0745 ± 0.072 0.5861 ± 0.001 0.2355 ± 0.097							
Beijing city Amplitude Average 0.00194.0101 0.0170 ± 0.035 0.0031 ± 0.000 0.0170 ± 0.0318 0.01198-0.0305 0.01198-0.0308 0.01198-0.0305 0.01198-0.0308 0.01198-0.0305 0.01198-0.0318 0.01198-0.0305 0.01198-0.0318 0.01198-0.0305 0.01198-0.0318 0.01198-0.0305 0.0118 0.01198-0.0316 0.0118-0.2078 0.0118-0.2078 0.0118-0.2078 0.0118-0.2078 0.0118-0.2078 0.0118-0.2078 0.0118-0.2078 0.0118-0.2078 0.0118-0.2078 0.0118-0.2078 0.0118-0.2078 0.0118-0.2078 0.0018-0.2078 0.0018-0.2078 0.0073 0.0073 0.0073 0.0073 0.0073 0.0019 0.0118-0.002 0.0586 ± 0.001 0.0156 ± 0.001 0.0173 ± 0.005 0.0254 ± 0.001 0.0173 ± 0.005 0.0254 ± 0.003 0.0360 ± 0.012 0.0202 ± 0.0103 0.0365 ± 0.010 0.0164 ± 0.002 0.0265 ± 0.010 0.0164 ± 0.002 0.0256 ± 0.010 0.0125 ± 0.003 0.0365 ± 0.010 0.0126 ± 0.010 0.0265 ± 0.010 0.0265 ± 0.010 0.0265 ± 0.010 0.0265 ± 0.010 0.0265 ± 0.010 0.0265 ± 0.010 0.0265 ± 0.010 0.0265 ± 0.027 0.0278 ± 0.011 0.7378 ± 0.0278 Borbonic Curfficient of variation variation variation	Haidian district						
Arrage Coefficient 0.470 ± 0.0335 0.7121 0.4759 0.6091 0.6091 0.218 ± 0.0318 0.6091 6.4378 ± 0.4786 0.0703 F value 15.99 10.366 91.84 14.74 15.99 99-2 0.0526 ± 0.001 0.0223 ± 0.002 0.1614 ± 0.002 0.2846 ± 0.021 7.8095 ± 0.286 99-3 0.0278 ± 0.001 0.0253 ± 0.002 0.1614 ± 0.002 0.2846 ± 0.021 7.8095 ± 0.286 99-4 0.0746 ± 0.001 0.0253 ± 0.002 0.3550 ± 0.066 6.7759 ± 0.217 99-4 0.0746 ± 0.001 0.0285 ± 0.002 0.3261 ± 0.016 0.2214 ± 0.017 5.5032 ± 1.514 99-4 0.0748 ± 0.002 0.5861 ± 0.010 0.0285 ± 0.006 0.3501 ± 0.124 8.3106 ± 0.017 Anhui provinci 0.6233 0.8390 0.0285 ± 0.006 0.3501 ± 0.124 8.3106 ± 0.017 Average 0.0561 ± 0.008 0.1652 ± 0.010 0.1890 ± 0.014 0.3251 ± 0.027 1.333 1.738 Ju county 99-5 0.0545 ± 0.002 0.1552 ± 0.002 0.1613 ± 0.002 0.3251 ± 0.011 6.3579 ± 0.354 6.3592 ± 0.035 6.3592 ±	Beijing city						
Coefficient of variation0.71210.47590.60910.19050.0743Psalae115.99104.3691.8414.7415.99DS-20000.0703 + 0.0060.1586 ± 0.0050.2547 ± 0.0160.1748 ± 0.0068.589 ± 0.38999-20.0526 ± 0.0010.2553 ± 0.0020.3392 ± 0.0010.1127 ± 0.0036.6446 ± 0.25399-30.1289 ± 0.0010.2553 ± 0.0020.2202 ± 0.0670.3559 ± 0.0666.7759 ± 0.21799-50.0485 ± 0.0050.0858 ± 0.0020.2085 ± 0.0010.3603 ± 0.1248.106 ± 0.071Anplitude0.0078-0.12890.0285 ± 0.0030.3603 ± 0.1248.106 ± 0.071Anglitude0.0078-0.12890.0285 ± 0.0030.3603 ± 0.1248.106 ± 0.071Neural16.2330.0285 ± 0.0100.3501 ± 0.0285.5022-5859Neural0.0560 ± 0.0080.1056 ± 0.0100.1197 ± 0.0100.3050 ± 0.0286.3072 ± 0.05699-30.0452 ± 0.0010.1137 ± 0.0010.2103 ± 0.0116.3871 ± 0.09699-30.0456 ± 0.0020.1137 ± 0.0010.3156 ± 0.0060.3521 ± 0.0467.5734 ± 0.37999-40.0475 ± 0.0020.1152 ± 0.0020.1155 ± 0.0050.3417 ± 0.0165.5702 ± 2.442499-30.0130 ± 0.0030.0155 ± 0.0170.3391 ± 0.0150.351 ± 0.0177.5734 ± 0.37999-40.0475 ± 0.0070.2151 ± 0.0470.3212 ± 0.0467.5734 ± 0.3790.2214 ± 0.01699-50.0574 ± 0.0090.0155 ± 0.0070.3151 ± 0.0170.3391 ± 0.0050.3417 ± 0.017		-					
National State Series							
DS-2000 0.0703 ± 0.006 0.1586 ± 0.002 0.2484 ± 0.006 0.8589 ± 0.380 99-2 0.0526 ± 0.001 0.0823 ± 0.002 0.1646 ± 0.002 0.2846 ± 0.021 7.8095 ± 0.298 99-3 0.1289 ± 0.001 0.3392 ± 0.006 0.3392 ± 0.007 0.3392 ± 0.007 0.550 ± 0.066 6.7759 ± 0.217 99-5 0.0485 ± 0.002 0.0585 ± 0.002 0.0289 ± 0.019 0.2214 ± 0.017 5.6302 ± 1.541 Anhui province shh 0.0678 ± 0.002 0.5861 ± 0.001 0.0285 ± 0.000 0.3505 0.0155 5.5302 ± 5.5302 Average 0.0638 ± 0.0397 0.2246 ± 0.184 0.0228 ± 0.1034 0.2515 ± 0.0997 7.2926 ± 1.1338 Ocefficient of 0.6233 0.8390 0.0598 0.3555 ± 0.026 8.5023 ± 0.039 Value 473.58 102.25 39.7 1.33 17.38 90-2 0.0452 ± 0.006 0.0827 ± 0.010 0.1497 ± 0.010 0.219 ± 0.017 0.1837 ± 0.001 0.219 ± 0.017 90-3 0.0729 ± 0.017 0.1433 ± 0.001 0.189 ± 0.016 0.3180 ± 0.016 3.518 ± 0.039 <tr< td=""><td></td><td>variation</td><td></td><td></td><td></td><td></td><td></td></tr<>		variation					
Bochou city Anhui province 99-3 0.0526 ± 0.001 0.0823 ± 0.002 0.3392 ± 0.004 0.1127 ± 0.003 6.6446 ± 0.253 Bochou city Anhui province 99-3 0.0746 ± 0.001 0.1793 ± 0.005 0.2392 ± 0.004 0.1127 ± 0.003 6.6446 ± 0.253 Anplitade 0.0078 ± 0.002 0.0285 ± 0.001 0.0285 ± 0.000 0.3032 ± 0.124 ± 0.017 5.302 ± 1.541 Average 0.0638 ± 0.0397 0.0224 ± 0.188 0.0285 ± 0.000 0.3053 ± 0.124 5.302.8581 Coefficient of variation 0.6233 0.8390 0.0285 ± 0.009 0.2515 ± 0.0997 7.2926 ± 1.1338 DS-2000 0.0560 ± 0.008 0.1056 ± 0.010 0.1147 ± 0.001 0.2103 ± 0.016 6.3070 ± 0.029 99-2 0.0472 ± 0.001 0.1133 ± 0.001 0.1161 ± 0.031 0.5550 ± 0.026 0.552 ± 0.026 0.552 ± 0.026 0.552 ± 0.026 0.552 ± 0.026 0.552 ± 0.026 0.552 ± 0.026 0.552 ± 0.026 0.552 ± 0.026 0.552 ± 0.026 0.552 ± 0.026 0.552 ± 0.026 0.552 ± 0.026 0.552 ± 0.026 0.552 ± 0.026 0.552 ± 0.026 0.552 ± 0.026 0.552 ± 0.026 0.552 ± 0.026							
Bothon city Anhui province99-3 99-4 99-50.1289 ± 0.001 0.076 ± 0.002 0.078 ± 0.002 0.088 ± 0.002 0.0285 ± 0.001 0.0285 ± 0.001 0.1899 ± 0.011 ± 0.010 0.1897 ± 0.001 0.1899 ± 0.011 ± 0.010 0.1899 ± 0.011 ± 0.010 0.1899 ± 0.011 ± 0.0101 0.1897 ± 0.001 0.1899 ± 0.014 0.0112 ± 0.002 0.1613 ± 0.001 0.1891 ± 0.011 ± 0.0161 0.2126 ± 0.011 ± 0.0101 0.1285 ± 0.028 0.3211 ± 0.011 ± 0.0101 0.1285 ± 0.028 0.3211 ± 0.011 ± 0.0101 0.1285 ± 0.028 0.3311 ± 0.013 ± 0.014 ± 0.3345 ± 0.008 0.4117 ± 0.016 ± 0.254 ± 0.235 ± 0.014 the 0.3345 ± 0.016 ± 0.025 ± 0.023 ± 0.014 the 0.3345 ± 0.016 ± 0.014 ± 0.0148 ± 0.017 ± 0.0140 ± 0.014							
Boshou city Anhui province 99-4 99-5 0.074 ± 0.001 0.085 ± 0.005 0.078 ± 0.002 0.0858 ± 0.007 0.028 ± 0.019 0.0285 ± 0.0320 0.0285 ± 0.030 0.0285 ± 0.039 0.0285 ± 0.0320 0.0285 ± 0.039 0.2085 ± 0.030 0.0285 ± 0.0397 7.202 ± 1.838 0.8390 Average 0.0633 ± 0.037 0.2285 ± 0.034 0.2285 ± 0.034 0.2185 ± 0.0043 0.2185 ± 0.0047 7.2262 ± 1.1338 Coefficient of variation 0.6233 0.8390 0.5098 0.2351 ± 0.0026 8.5023 ± 0.839 99-2 0.0450 ± 0.008 0.0185 ± 0.010 0.1916 ± 0.011 0.2351 ± 0.026 8.5023 ± 0.899 99-3 0.0729 ± 0.001 0.1837 ± 0.002 0.0587 ± 0.005 0.3521 ± 0.026 8.5023 ± 0.439 99-5 0.0546 ± 0.002 0.187 ± 0.002 0.1655 ± 0.005 0.3216 ± 0.011 7.574 ± 0.239 99-5 0.0546 ± 0.002 0.187 ± 0.021 0.337 ± 0.016 8.5695 ± 0.033 Shinh 0.013 ± 0.000 0.0837 ± 0.027 0.1635 ± 0.005 0.333 ± 0.015 0.033 ± 0.017 Prause 7434 ± 0.216 0.027 ± 0.133 0.0155 ± 0.023 0.315 ± 0.017 0.345 ± 0.028 Shinh							
Bozhou city Anhui province 99-5 shi 0.048 ± 0.005 0.078 ± 0.007 0.058 ± 0.001 0.058 ± 0.001 0.025 ± 0.000 0.025 ± 0.009 0.021 ± 0.401 0.025 ± 0.009 5.6302 ± 1.511 8.3106 ± 0.971 Amplitude 0.063 ± 0.037 0.224 ± 0.184 0.025 ± 0.009 0.505 ± 0.099 7.2926 ± 1.133 Coefficient of variation 0.056 ± 0.008 0.1056 ± 0.010 0.116 ± 0.031 0.3550 ± 0.026 8.0252 ± 0.893 9 0.0450 ± 0.008 0.1056 ± 0.010 0.1161 ± 0.031 0.3550 ± 0.026 8.5052 ± 0.893 99-2 0.0452 ± 0.006 0.0877 ± 0.010 0.1437 ± 0.011 6.3870 ± 0.096 99-3 0.0752 ± 0.001 0.1433 ± 0.000 0.1055 ± 0.005 0.3521 ± 0.046 7.5503 ± 0.439 Sahadong province Shh 0.0013 ± 0.000 0.0834 ± 0.005 0.0155 ± 0.005 0.4117 ± 0.016 9.242 ± 0.405 Average 0.0460 ± 0.0246 0.0254 ± 0.031 0.0155 ± 0.037 0.0155 ± 0.037 0.0155 ± 0.037 0.307 ± 0.017 7.1043 0.0165 ± 0.036 0.317 ± 0.028 0.3297 ± 0.017 9.4469 ± 0.454 Ju county Average 0.0465 ± 0.007 0.2315 ± 0.04							
B00.00 City Anhui province shh 0.0078 ± 0.002 0.5861 0.0028 ± 0.000 0.0283 ± 0.030 0.0283 ± 0.030 0.0283 ± 0.030 0.2215 ± 0.093 5.6302 ± 8.5859 Average 0.0638 ± 0.0397 0.2246 ± 0.184 0.2215 ± 0.013 0.2315 ± 0.0997 7.2226 ± 1.1338 Variation Variation Variation 0.0598 0.2315 ± 0.0997 7.2226 ± 0.833 Variation Variation 0.0156 ± 0.010 0.1164 ± 0.011 0.3550 ± 0.0026 8.5052 ± 0.893 99.2 0.0452 ± 0.006 0.0827 ± 0.011 0.1433 ± 0.001 0.1430 ± 0.014 0.3251 ± 0.016 6.3251 ± 0.036 6.3521 ± 0.036 6.3521 ± 0.046 7.5503 ± 0.439 90.4 0.0475 ± 0.002 0.0163 ± 0.000 0.0155 ± 0.003 0.0151 ± 0.004 0.3321 ± 0.016 9.224 ± 0.405 90.4 0.0450 ± 0.0246 0.0254 ± 0.005 0.0155 ± 0.033 0.0155 ± 0.043 0.0125 ± 0.004 0.4291 ± 0.0552 0.3371 ± 0.016 9.224 ± 0.405 Sahudong Shh 0.0013 ± 0.000 0.0354 ± 0.005 0.0155 ± 0.014 0.1267 ± 0.014 0.1267 ± 0.014 0.1267 ± 0.014							
Anhui province shih 0.000 % ± 0.002 0.083 ± 0.020 0.082 ± 0.580 0.0028 ± 0.030 0.0127 ± 0.350 5.3106 ± 0.971 Average 0.063 ± 0.037 0.2246 ± 0.184 0.0228 ± 0.1034 0.251 ± 0.0997 7.2926 ± 1.133 F value 473.58 102.25 39.7 1.3.3 17.38 9-2 0.0452 ± 0.006 0.0827 ± 0.071 0.1147 ± 0.001 0.3550 ± 0.026 8.5023 ± 0.893 99-2 0.0452 ± 0.006 0.0877 ± 0.071 0.11437 ± 0.001 0.3261 ± 0.011 6.3870 ± 0.096 99-3 0.0752 ± 0.001 0.11433 ± 0.001 0.1155 ± 0.005 0.4117 ± 0.011 5.250 ± 0.039 Sahndomg Shh 0.0013 ± 0.002 0.0155 ± 0.005 0.0151 ± 0.026 0.0352 ± 0.014 6.327 ± 0.046 7.5703 ± 0.439 Sahndomg Shh 0.0013 ± 0.002 0.0834 ± 0.055 0.0155 ± 0.055 0.4117 ± 0.016 9.242 ± 0.405 province Average 0.0466 ± 0.024 0.125 ± 0.025 0.0155 ± 0.071 0.2163 ± 0.055 0.2103 ± 0.017 7.714 ± 1.0100 Coefficient of variation Varatia	Bozhou city						
Amplitude 0.0078-0.1289 0.0282-0.5861 0.0285-0.3392 0.01127-0.3603 5.6302-8.5859 Average 0.0638 ± 0.037 0.2264 ± 0.1384 0.0285 ± 0.1034 0.2515 ± 0.0097 7.2926 ± 1.133 F value 473.58 102.25 39.7 13.33 17.38 DS-2000 0.0550 ± 0.008 0.01916 ± 0.031 0.2550 ± 0.026 8.5023 ± 0.893 99-2 0.0452 ± 0.006 0.0827 ± 0.011 0.1437 ± 0.001 0.2105 ± 0.014 0.3216 ± 0.011 7.5748 ± 0.239 99-3 0.0729 ± 0.001 0.1125 ± 0.022 0.1555 ± 0.005 0.3321 ± 0.044 7.550 ± 0.439 Shandong Shh 0.0013 ± 0.002 0.0155 ± 0.005 0.4117 ± 0.016 9.2424 ± 0.405 Province Average 0.0460 ± 0.0246 0.1225 ± 0.024 0.1429 ± 0.052 0.3407 ± 0.0171 7.710 ± 1.0100 Variation Coefficient of 0.535 0.027 0.2175 ± 0.024 0.1429 ± 0.052 0.3407 ± 0.017 9.449 ± 0.484 0.3281 ± 0.047 0.2437 ± 0.017 0.3407 ± 0.017 7.710 ± 1.0100 Variation Variation							
Coefficient of F value0.62330.83900.50980.39650.1555F value473.58102.2539.713.3317.38DS-20000.056 0 ± 0.0080.1016 ± 0.0310.3550 ± 0.0268.502 ± 0.89399-20.0729 ± 0.0010.143 ± 0.0010.1890 ± 0.0140.216 ± 0.0117.574 ± 0.23999-30.0729 ± 0.0010.143 ± 0.0010.156 ± 1.0020.3521 ± 0.0467.574 ± 0.23999-40.0475 ± 0.0020.0155 ± 0.0050.3521 ± 0.0467.574 ± 0.23999-40.0475 ± 0.0020.0155 ± 0.0050.3521 ± 0.0467.574 ± 0.23999-40.0013 ± 0.0020.1125 ± 0.0230.155 ± 0.0050.4117 ± 0.0169.2424 ± 0.40599-50.0013 ± 0.0020.0125 ± 0.02340.1429 ± 0.0550.3407 ± 0.0177.9710 ± 1.0100VariatorVariator0.0406 ± 0.02460.022660.45600.20960.125 ± 0.023VariatorVariator0.351 ± 0.0310.351 ± 0.0318.3719 ± 0.1157.928 ± 0.72299-30.1126 ± 0.0100.331 ± 0.0320.315 ± 0.0318.3719 ± 0.1157.928 ± 0.72599-30.0166 ± 0.0210.3152 ± 0.0180.315 ± 0.0318.3719 ± 0.1157.928 ± 0.72599-30.0166 ± 0.0210.3152 ± 0.0180.3152 ± 0.0188.3719 ± 0.1157.928 ± 0.72599-30.0166 ± 0.0210.3152 ± 0.0180.3152 ± 0.0188.3719 ± 0.1157.928 ± 0.12599-30.0166 ± 0.0210.3152 ± 0.0180.3152 ± 0.0180.3152 ± 0.0187.927 ± 0.054 <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>		-					
variation variation F value 473.58 102.25 39.7 13.33 17.38 9.9-2 0.0550 ± 0.006 0.0550 ± 0.017 0.1437 ± 0.001 0.2103 ± 0.011 6.3570 ± 0.095 9.9-3 0.0729 ± 0.001 0.1433 ± 0.001 0.1565 ± 0.006 0.3521 ± 0.046 7.5748 ± 0.239 9.9-4 0.0475 ± 0.002 0.0877 ± 0.002 0.1555 ± 0.005 0.4117 ± 0.016 9.2424 ± 0.405 9.9-5 0.0546 ± 0.002 0.125 ± 0.002 0.155 ± 0.005 0.3211 ± 0.016 9.2424 ± 0.405 9.9-5 0.0013 ± 0.000 0.0837 ± 0.005 0.0155 ± 0.005 0.3407 ± 0.011 9.2424 ± 0.405 9.013 0.0013 ± 0.000 0.0383 ± 0.005 0.02165 0.2496 0.2107 ± 0.211 Average 0.0013 ± 0.000 0.0331 ± 0.005 0.3407 ± 0.011 7.9102 ± 1.0100 0.2017 ± 0.211 Variation 0.0314 ± 0.001 0.2315 ± 0.037 0.2437 ± 0.021 0.3297 ± 0.013 0.2987 ± 0.025 9.92 0.0075 ± 0.007 0.2315 ± 0.047 0.2437 ± 0.021 0.3297 ± 0.015 0.3194 ± 0.015 0.							
			0.6233	0.8390	0.5098	0.3965	0.1555
99-2 0.0452 ± 0.006 0.0827 ± 0.071 0.1437 ± 0.001 0.2103 ± 0.011 6.3870 ± 0.096 99-3 0.0729 ± 0.001 0.1433 ± 0.001 0.1809 ± 0.014 0.3216 ± 0.011 7.5748 ± 0.239 Ju county 99-5 0.0546 ± 0.002 0.0877 ± 0.002 0.1555 ± 0.005 0.0321 ± 0.046 7.5503 ± 0.439 Shandong Shh 0.0013 ± 0.079 0.0824 ± 0.005 0.0115 ± 0.005 0.0117 ± 0.016 9.2424 ± 0.405 Province Shh 0.0013 ± 0.079 0.0827 ± 0.1433 0.0155 ± 0.005 0.3407 ± 0.011 7.9710 ± 1.0100 Coefficient of variation View 0.2286 0.4560 0.2997 ± 0.078 9.4469 ± 0.454 99-2 0.0351 ± 0.007 0.2315 ± 0.047 0.2437 ± 0.021 0.3297 ± 0.017 9.4469 ± 0.454 99-3 0.1126 ± 0.001 0.3031 ± 0.003 0.3519 ± 0.005 0.3465 ± 0.028 7.3928 ± 0.722 99-3 0.1126 ± 0.001 0.3319 ± 0.015 0.3149 ± 0.005 0.3615 ± 0.003 8.3719 ± 0.115 99-4 0.0867 ± 0.0320 0.4581 ± 0.017 0.3349 ± 0.005 0.3121 ± 0.049							
99-3 0.0729 ± 0.001 0.1433 ± 0.001 0.1890 ± 0.014 0.3216 ± 0.014 7.5748 ± 0.239 99-4 0.0475 ± 0.002 0.0155 ± 0.006 0.3521 ± 0.046 7.550 3 ± 0.439 Sahndong Shh 0.0013 ± 0.000 0.0834 ± 0.005 0.0163 ± 0.000 0.0333 ± 0.015 8.5695 ± 0.093 Amplitude 0.0013 ± 0.000 0.0827 ± 0.0234 0.0155 ± 0.005 0.4117 ± 0.016 9.2424 ± 0.405 Amplitude 0.0013 ± 0.002 0.0155 ± 0.0023 0.0155 ± 0.007 0.2103 ± 0.016 0.2103 ± 0.107 7.570 ± ± 0.017 Average 0.0466 ± 0.0246 0.1025 ± 0.0234 0.1429 ± 0.0562 0.2096 0.0206 0.1267 Variation 232.22 337.16 199.31 70.38 26.86 99-2 0.0837 ± 0.003 0.559 ± 0.007 0.2315 ± 0.047 0.3297 ± 0.017 9.4469 ± 0.454 99-3 0.1126 ± 0.001 0.3319 ± 0.005 0.0515 ± 0.037 7.5972 ± 0.024 99-3 0.1126 ± 0.001 0.3319 ± 0.005 0.6161 ± 0.005 7.5972 ± 0.024 99-3 0.0166 ± 0.012 0.990 ±							
Ju county Sahndon province 99-4 0.0475 ± 0.002 0.0175 ± 0.002 0.1565 ± 0.006 0.3521 ± 0.046 7.5503 ± 0.439 Sahndon province Shh 0.0013 ± 0.000 0.0187 ± 0.002 0.0155 ± 0.005 0.4117 ± 0.016 9.2424 ± 0.405 Amplitude 0.0013 ± 0.002 0.0837 ± 0.023 0.0155 ± 0.005 0.4117 ± 0.016 9.2424 ± 0.405 Average 0.0401 ± 0.0246 0.1025 ± 0.0234 0.1429 ± 0.0652 0.3407 ± 0.0714 7.9710 ± 1.0100 Coefficient of variation 0.5336 0.2286 0.2437 ± 0.021 0.3297 ± 0.071 9.4469 ± 0.454 Shangluo 9.92 0.0765 ± 0.007 0.2315 ± 0.047 0.2437 ± 0.021 0.3297 ± 0.012 9.3287 ± 0.074 Shangluo 9.92 0.0765 ± 0.007 0.317 ± 0.002 0.3465 ± 0.003 8.3719 ± 0.115 Shangluo 9.94 0.0887 ± 0.003 0.4581 ± 0.017 0.339 ± 0.005 0.4102 ± 0.005 6.7242 ± 0.254 Shangluo 9.94 0.0887 ± 0.003 0.4581 ± 0.017 0.3492 ± 0.025 0.4102 ± 0.005 6.7242 ± 0.245 Shangluo 0.0166 ± 0.007							
Ju county Sahndong 99-5 0.0546 ± 0.002 0.1125 ± 0.002 0.1613 ± 0.002 0.3933 ± 0.015 8.5695 ± 0.093 Shn 0.0013 ± 0.000 0.0834 ± 0.005 0.0155 ± 0.005 0.4117 ± 0.016 9.2424 ± 0.405 Province Average 0.0016 ± 0.0246 0.1025 ± 0.0234 0.1429 ± 0.0652 0.3407 ± 0.0714 7.9710 ± 1.0100 Cefficient of variation 232.22 337.16 199.31 70.38 26.86 DS-2000 0.0765 ± 0.077 0.2315 ± 0.047 0.2497 ± 0.021 0.3297 ± 0.027 9.9469 ± 0.454 99-2 0.0837 ± 0.007 0.2315 ± 0.047 0.2497 ± 0.021 0.3297 ± 0.028 7.3928 ± 0.722 99-3 0.1126 ± 0.001 0.3091 ± 0.003 0.3519 ± 0.005 0.3615 ± 0.002 7.3928 ± 0.722 99-3 0.1126 ± 0.001 0.3092 ± 0.003 0.4102 ± 0.005 6.7592 ± 0.025 7.3928 ± 0.722 99-3 0.1166 ± 0.001 0.3095 ± 0.020 0.3192 ± 0.031 7.8484 ± 0.265 Shanxi province Sh 0.0166 ± 0.020 0.1433 ± 0.2782 0.2291 ± 0.031 7.8484 ± 0.265			0.0729 ± 0.001		0.1890 ± 0.014	0.3216 ± 0.011	
Sahndong province Shh Amplitude 0.0013 ± 0.000 0.0834 ± 0.005 0.0155 ± 0.005 0.4117 ± 0.016 9.2424 ± 0.405 Average 0.0460 ± 0.0246 0.0225 ± 0.0234 0.1429 ± 0.0652 0.3407 ± 0.0714 6.3870-9.2424 Average 0.0460 ± 0.0246 0.02286 0.4560 0.2096 0.1267 Variation 0.536 0.2286 0.4560 0.2096 0.1267 Variation 252.22 337.16 199.31 70.38 26.86 99-2 0.0837 ± 0.089 0.3594 ± 0.006 0.2601 ± 0.029 0.3465 ± 0.028 7.3928 ± 0.722 99-3 0.1126 ± 0.001 0.301 ± 0.003 0.3615 ± 0.003 8.3719 ± 0.115 99-4 0.0887 ± 0.003 0.4518 ± 0.017 0.349 ± 0.005 6.7924 ± 0.225 99-3 0.0166 ± 0.001 0.9905 ± 0.029 0.0552 ± 0.002 0.3192 ± 0.031 7.8484 ± 0.265 Amplitude 0.0166 ± 0.020 0.4133 ± 0.2785 0.4107 ± 0.1225 7.9083 ± 0.9158 Shanxi province sh 0.0166 ± 0.020 0.1101 ± 0.005 0.1666 ± 0.016 0.22			0.0475 ± 0.002	0.0877 ± 0.002	0.1565 ± 0.006	0.3521 ± 0.046	7.5503 ± 0.439
Maphade 0.00010 0.0125 0.0023 0.0125 0.0123 0.0120 0.01111 0.01010 0.01111 Average 0.0460 0.0226 0.0125 0.0125 0.0125 0.0125 0.0125 0.02280 0.01429 0.0652 0.0107 0.01111 7.9710 1.10100 Variation F value 232.22 337.16 199.31 70.38 26.86 99-2 0.0837 0.007 0.2315 ± 0.047 0.2437 ± 0.021 0.3297 ± 0.017 9.4469 ± 0.454 99-2 0.0837 ± 0.089 0.3594 ± 0.006 0.2010 ± 0.029 0.3465 ± 0.028 7.3928 ± 0.722 99-3 0.1126 ± 0.001 0.301 ± 0.003 0.3519 ± 0.005 0.3615 ± 0.003 8.3719 ± 0.15 99-4 0.0887 ± 0.007 0.3172 ± 0.022 0.3092 ± 0.005 0.4102 ± 0.003 6.7924 ± 0.225 Shanxi province shh 0.0166 ± 0.001 0.9905 ± 0.029 0.0552 ± 0.020 0.3192 ± 0.031 6.7924 ± 0.225 Shanxi province shh 0.0166 ± 0.007 0.1101 ± 0.005 0.0552 ± 0.002 0.3192 ± 0.031 7.8484 ± 0.265 Coefficient of variation variation variation			0.0013 ± 0.000			0.4117 ± 0.016	9.2424 ± 0.405
Coefficient of variation 0.5336 0.2286 0.4560 0.2096 0.1267 F value 232,22 337.16 199.31 70.38 26.86 DS-2000 0.0765 ± 0.007 0.2315 ± 0.047 0.2437 ± 0.021 0.3297 ± 0.017 9.4469 ± 0.454 99-2 0.0837 ± 0.089 0.3594 ± 0.006 0.2601 ± 0.029 0.3465 ± 0.028 7.3928 ± 0.722 99-3 0.1126 ± 0.001 0.3031 ± 0.003 0.3519 ± 0.005 0.3615 ± 0.003 8.3719 ± 0.115 99-4 0.0887 ± 0.007 0.3172 ± 0.022 0.3092 ± 0.005 0.4102 ± 0.005 6.7924 ± 0.225 Shanxi province shh 0.0166 ± 0.010 0.9905 ± 0.029 0.0552 ± 0.008 0.4102 ± 0.005 6.7924 ± 0.225 Shanxi province shh 0.0166 ± 0.012 0.2135 ± 0.020 0.3192 ± 0.031 7.8484 ± 0.265 Coefficient of variation variation 0.6277 0.4180 0.3049 0.0158 Pose2000 0.5056 ± 0.020 0.1478 0.6271 0.4180 0.3049 0.4174 ± 0.046 5.7046 ± 0.156 5.7046 ± 0.156 <tr< td=""><td>province</td><td></td><td>0.0013-0.0729</td><td></td><td></td><td></td><td>6.3870-9.2424</td></tr<>	province		0.0013-0.0729				6.3870-9.2424
variation variation value 232.22 337.16 199.31 70.38 20.86 DS-2000 0.0765 ± 0.07 0.2315 ± 0.047 0.2401 ± 0.021 0.3297 ± 0.012 9.4469 ± 0.454 99-2 0.0837 ± 0.089 0.3594 ± 0.006 0.2601 ± 0.029 0.3465 ± 0.028 7.3928 ± 0.722 99-3 0.1126 ± 0.011 0.331 ± 0.003 0.3519 ± 0.005 0.3615 ± 0.003 8.3719 ± 0.115 99-4 0.0887 ± 0.003 0.4581 ± 0.017 0.3349 ± 0.008 0.6431 ± 0.005 7.5972 ± 0.634 99-5 0.0807 ± 0.007 0.3172 ± 0.029 0.0552 ± 0.020 0.3192 ± 0.031 7.584 ± 0.265 Shanxi province shh 0.0166 ± 0.012 0.9955 ± 0.029 0.0552 ± 0.023 0.4102 ± 0.035 6.7924 ± 0.255 Average 0.0166 ± 0.012 0.4178 0.2592 ± 0.1083 0.4107 ± 0.125 7.9083 ± 0.915 Variation Variation 0.4178 0.6277 0.4180 0.4017 ± 0.125 7.9083 ± 0.916 Variation No566 ± 0.020 0.1115 ± 0.018 0.1566 ± 0.012 0.1158 ± 0.016 5.0227 ± 0		-			0.1429 ± 0.0652		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		variation					
Shangluo Shangluo99-2 99-3 0.0837 ± 0.089 0.1126 ± 0.001 0.331 ± 0.003 0.331 ± 0.003 0.3519 ± 0.005 0.3615 ± 0.003 7.3928 ± 0.722 8.3719 ± 0.115 0.3349 ± 0.008 0.3615 ± 0.003 0.6431 ± 0.005 8.3719 ± 0.115 7.5972 ± 0.054 Shangluo Shanxi province99-5 0.0807 ± 0.007 0.0807 ± 0.007 0.3172 ± 0.002 0.0905 ± 0.029 0.04102 ± 0.005 0.4102 ± 0.003 6.7924 ± 0.225 0.3192 ± 0.031 7.8484 ± 0.265 0.7924 ± 0.225 Average variation 0.0166 ± 0.012 0.0166 ± 0.029 0.0552 ± 0.023 0.0552 ± 0.023 0.4107 ± 0.025 0.3192 ± 0.031 7.9083 ± 0.918 $0.3192 \cdot 0.6431$ Variation 0.0166 ± 0.012 Variation 0.0566 ± 0.027 0.0166 ± 0.012 0.4178 0.2592 ± 0.1083 0.4017 ± 0.1225 $0.3192 \cdot 0.6431$ Port 116.7 449.95 420.99 153.93 39.69 DS-2000 0.0566 ± 0.007 0.0566 ± 0.007 0.1101 ± 0.005 0.1566 ± 0.016 0.2297 ± 0.029 6.7412 ± 0.049 99-2 0.0577 ± 0.005 0.0291 ± 0.014 0.1686 ± 0.012 0.1744 ± 0.046 5.7046 ± 0.165 5.3237 ± 0.346 Shengling Sichuan province $99-3$ 0.0565 ± 0.002 0.013 ± 0.007 0.2592 ± 0.013 0.0882 ± 0.017 0.2562 ± 0.0103 Shengling Sichuan province $99-5$ 0.0557 ± 0.034 0.013 ± 0.000 0.2187 ± 0.014 0.0230 ± 0.014 0.2114 ± 0.001 Average Sichuan province 0.0013 ± 0.004 $0.021 - 0.4534$ 0.0230 ± 0.001 0.1180 ± 0.011 0.0662 ± 0.105 Si							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Shangluo						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
Coefficient of variation 0.4178 0.6277 0.4180 0.3049 0.1158 F value 116.7 449.95 420.99 153.93 39.69 DS-2000 0.0566 ± 0.007 0.1101 ± 0.005 0.1566 ± 0.016 0.2297 ± 0.029 6.7412 ± 0.049 99-2 0.0577 ± 0.005 0.0921 ± 0.014 0.1686 ± 0.012 0.1744 ± 0.046 5.7046 ± 0.165 99-3 0.1076 ± 0.007 0.2293 ± 0.007 0.2562 ± 0.013 0.0882 ± 0.017 5.3237 ± 0.346 99-4 0.0566 ± 0.002 0.1458 ± 0.008 0.2187 ± 0.014 0.2114 ± 0.001 4.8010 ± 0.073 99-5 0.0557 ± 0.006 0.1115 ± 0.018 0.2057 ± 0.010 0.2961 ± 0.046 5.7594 ± 0.318 Sichuan province shh 0.0013 ± 0.000 0.4534 ± 0.052 0.0230 ± 0.001 0.1180 ± 0.011 5.0662 ± 0.100 Amplitude 0.0013 · 0.1076 0.0921 · 0.4534 0.0230 · 0.2562 0.0882 · 0.2961 4.8010 · 6.7412 Average 0.0557 ± 0.0341 0.1904 ± 0.1378 0.1180 ± 0.011 5.0660 ± 0.6828 Coefficient of variation variation<							
variationF value116.7449.95420.99153.9339.69DS-20000.0566 \pm 0.0070.1101 \pm 0.0050.1566 \pm 0.0160.2297 \pm 0.0296.7412 \pm 0.04999-20.0577 \pm 0.0050.0921 \pm 0.0140.1686 \pm 0.0120.1744 \pm 0.0465.7046 \pm 0.16599-30.1076 \pm 0.0070.2293 \pm 0.0070.2562 \pm 0.0130.0882 \pm 0.0175.3237 \pm 0.34699-40.0566 \pm 0.0020.1458 \pm 0.0080.2187 \pm 0.0140.2114 \pm 0.0014.8010 \pm 0.07399-50.0557 \pm 0.0560.1115 \pm 0.0180.02057 \pm 0.01010.2961 \pm 0.0465.7594 \pm 0.31899-50.0557 \pm 0.0560.1115 \pm 0.0180.0230 \pm 0.0115.0662 \pm 0.10099-50.0557 \pm 0.03410.0921 $-$ 0.45340.0230 $-$ 2.5620.0882 $-$ 0.29614.8010 $-$ 6.7412Average0.0557 \pm 0.03410.1904 \pm 0.13780.1715 \pm 0.08110.1863 \pm 0.07625.5660 \pm 0.6828Coefficient of variation0.61160.72410.47270.40880.1227F value351.99118.84200.3513.3317.38F value5.92**643.95**114.13**104.21**119.94**F value5.92**643.95**114.13**104.21**119.94**F (g x e)1.59*549.04**349.28**36.89**24.05**F (g x e)1.5786.81**11.00**15.01**7.62**		-					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.4178	0.6277	0.4180	0.3049	0.1158
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			0.0566 ± 0.007	0.1101 ± 0.005		0.2297 ± 0.029	6.7412 ± 0.049
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			0.0577 ± 0.005		0.1686 ± 0.012		5.7046 ± 0.165
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		99-3	0.1076 ± 0.007	0.2293 ± 0.007	0.2562 ± 0.013	0.0882 ± 0.017	5.3237 ± 0.346
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				0.1458 ± 0.008			4.8010 ± 0.073
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.0557 ± 0.006				5.7594 ± 0.318
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		shh		0.4534 ± 0.052	0.0230 ± 0.001	0.1180 ± 0.011	5.0662 ± 0.100
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Amplitude	0.0013-0.1076	0.0921-0.4534	0.0230-0.2562	0.0882-0.2961	
$\begin{tabular}{ c c c c c c } \hline variation & $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$			0.0557 ± 0.0341	0.1904 ± 0.1378	0.1715 ± 0.0811	0.1863 ± 0.0762	5.5660 ± 0.6828
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			0.6116	0.7241	0.4727	0.4088	0.1227
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
F valueF(e) 12.96^{**} 549.04^{**} 349.28^{**} 36.89^{**} 24.05^{**} F(g × e) 1.57 86.81^{**} 11.00^{**} 15.01^{**} 7.62^{**}							
$F(g \times e)$ 1.57 86.81^{**} 11.00^{**} 15.01^{**} 7.62^{**}		-					
	F value						
	444 (1)	-		86.81	11.00	15.01	7.62

**Shows the difference reached a significant level (p < 0.01).

		TAB			
AVERAGE CONTENT OF ACTIVE INGREDIENTS OF DIFFERENT SALVIA CULTIVARS AND DIFFERENT EXPERIMENTAL SITE (%)					
Cultivars	Tanshinone I	Cryptotanshinone	Tanshinone II _A	Rosmarinic acid	Salvianolic acid B
DS-2000	0.0630b	0.1480b	0.2042b	0.2578b	7.9107a
99-2	0.0772ab	0.1406b	0.1704b	0.2679b	6.8786bc
99-3	0.1050a	0.2328b	0.2914a	0.2250b	6.8905bc
99-4	0.0610b	0.1969b	0.2154b	0.3795a	6.5959c
99-5	0.0590b	0.1576b	0.2152b	0.3199ab	6.4910c
shh	0.0050c	0.4835a	0.0288c	0.2922ab	7.4443bc
Amplitude Average Coefficient of variation	0.0050-0.1050 0.0617 ± 0.0327 0.5296	0.1406-0.4835 0.2266 ± 0.1306 0.5763	0.0288-0.2914 0.1876 ± 0.0873 0.4654	$\begin{array}{c} 0.2250\text{-}0.3795\\ 0.2904 \pm 0.0541\\ 0.1865\end{array}$	6.4910-7.9107 7.0352 ± 0.5419 0.0770
Site	Tanshinone I	Cryptotanshinone	Tanshinone II _A	Rosmarinic acid	Salvianolic acid B
HD BZ JC SL ZJ	0.0472b 0.0638b 0.0460b 0.0955a 0.0560b	0.1719d 0.2246b 0.1025e 0.4433a 0.1904c	0.1613c 0.2028b 0.1429d 0.2592a 0.1715c	0.2718c 0.2515c 0.3407b 0.4017a 0.1863d	6.4378c 7.2926b 7.9711a 7.9083a 5.5660d
Amplitude Average Coefficient of variation	0.0472-0.0955 0.0617 ± 0.0202 0.3279	0.1025 - 0.4433 0.2264 ± 0.1291 0.5700	0.1429-0.2592 0.1877 ± 0.0455 0.2422	0.1863-0.4017 0.2893 ± 0.0824 0.2846	5.5660-7.9711 7.0351 ± 1.0271 0.1460

Note: Different letters shows the difference reached a significant level (p < 0.01).

between each other (p < 0.01) (Table-3), in which the role of the main effects of environment (F value) was maximum, secondly was the main effect of the genotype and the interaction effect of genotype and environment had the least effect.

Contents of tanshinone II_A had significant differences between the six Salvia species at all five experimental sites (p < 0.01) and "99-3" grown at Shangluo of Shanxi province contained the highest tanshinone II_A (0.3519 %) and "shh" at Ju county of Shandong province the lowest (0.0155 %), which had 23 times difference. The coefficients of variation of Haidian of Beijing, Bozhou of Anhui province, Ju county of Shandong province, Shangluo of Shanxi province and Zhongjiang of Sichuan province were 60.91, 50.98, 47.27, 41.8 and 45.6 %, respectively, which showed that tanshinone II_A level had the greatest change at Haidian of Beijing and the least at Shangluo of Shanxi province (Table-3).

According to the genotype, the cultivar "99-3" contained the highest levels of tanshinone II_A, the average content of five origin was 0.2914 %, content of "shh" was the lowest, which was 0.0288 %; according to place of origin, content of tanshinone II_A in salvia grown at Shangluo of Shanxi province was the highest (0.2592 %), the content from Haidian of Beijing was the lowest (0.1613 %) (Table-4).

Content of water-soluble components in salvia root

Rosmarinic acid content in *Salvia miltiorrhiza*: The results showed that content of rosmarinic acid in *Salvia miltiorrhiza* was significantly affected by genotype, environment and the interaction effect of genotype and environment (p < 0.01) (Table-3), in which the role of the main effects of genotype (F value) was maximum, secondly was the main effect of the environment and the interaction effect of genotype and environment and the interaction effect.

Contents of rosmarinic acid had significant differences between the six Salvia species at all five experimental sites (p < 0.01) and cultivars "99-5" grown at Zhongjiang of Sichuan province contained the highest rosmarinic acid (0.6431 %) and "99-3" at Shangluo of Shanxi province the lowest (0.0882 %), which had 7 times difference. The coefficients of variation of Haidian of Beijing, Bozhou of Anhui province, Ju county of Shandong province, Shangluo of Shanxi province and Zhongjiang of Sichuan province were 19.05, 30.49, 70.38, 40.88 and 39.65 %, respectively, which showed that rosmarinic acid level had the greatest change at Ju county of Shandong province and the least at Haidian of Beijing (Table-3).

According to the genotype, the cultivar "99-4" contained the highest levels of rosmarinic acid, the average content of five origin was 0.3795 %, content of "99-3" was the lowest, which was 0.2250 %; according to place of origin, content of rosmarinic acid in salvia grown at Shangluo of Shanxi province was the highest, the average content of the six cultivars was 0.4017 %, the content from Zhongjiang of Sichuan province was the lowest (0.1863 %) (Table-4).

Salvianolic acid B content in Salvia miltiorrhiza: Table-3 showed that content of salvianolic acid B in Salvia miltiorrhiza was significantly affected by genotype, environment and the interaction effect of genotype and environment (p < 0.01), in which the role of the main effects of genotype (F value) was maximum, secondly was the main effect of the environment and the interaction effect of genotype and environment had the least effect.

Contents of salvianolic acid B had significant differences between the six salvia cultivars at all five experimental sites (p < 0.01) and cultivars "shh" grown at Shangluo of Shanxi province contained the highest salvianolic acid B (9.4469 %) and "99-4" at Zhongjiang of Sichuan province the lowest (4.8010 %). The coefficients of variation of Haidian of Beijing, Bozhou of Anhui province, Ju county of Shandong province, Shangluo of Shanxi province and Zhongjiang of Sichuan province were 7.43, 12.27, 26.86, 11.58 and 15.55 %, respectively, which showed that Salvianolic acid B level had the greatest change at Ju county of Shandong province and the least at Haidian of Beijing just the same as rosmarinic acid (Table-3). In the six cultivars, the cultivar "DS-2000" contained the highest levels of salvianolic acid B, the average content of five origin was 7.9107 %, content of "99-5" was the lowest, which was 6.4910 %; in the five place of origin, content of salvianolic acid B in salvia grown at Ju county of Shandong province was the highest, the average content of the six cultivars was 7.9711 %, the average content from Zhongjiang of Sichuan province was the lowest (5.5660 %) (Table-4).

The contents of water-soluble components rosmarinic acid and Salvianolic acid B in Salvia miltiorrhiza were significantly affected by genotype, environment and interaction effects of genotype environment and the effects of genotype were much more than the effects of environment and the interaction effects of genotype environment, which showed that water-soluble component content in Salvia miltiorrhiza was mainly affected by genetic effects. So it is the most important to breed new cultivars that contain more water-soluble components if we want to produce more rosmarinic acid and salvianolic acid B, followed by the appropriate choice of origin to plant. Fatsoluble components were different from water-soluble components, contents of tanshinone I and tanshinone IIA were affected by genotype and the interaction of genotype and environment, so if we want to increase their contents the most important thing is to select the appropriate choice of origin. But for fat-soluble component salvianolic acid B, breeding good cultivars containing more salvianolic acid B and selecting the appropriate choice of origin are both important.

Coefficient of variation of fat-soluble component content was much greater than the water-soluble components, which indicated that fat-soluble component in Salvia is affected by external factors more easily than water-soluble component.

Many factors can affect the formation of terpenoids in plants, two important factors are genetic and ecological environment factors^{6,7}. The results of this study were consistent with previous studies.

ACKNOWLEDGEMENTS

The authors appreciated the financial support of National Natural Science Foundation of China (30472154).

REFERENCES

- Y. An, L.-Q. Zhang, F. Miao and C.-C. Wang, J. Heze Med. College, 20, 67 (2008).
- D.R. Xu, K.C. Wang, J. Ding and Z.T. Wang, *Chin. Wild Plant Resour.*, 25, 40 (2006).
- 3. X.-L. Huang, B.-J. Yang, H.-Z. Huang, Y. Xu and Z.-B. Hu, *J. Integr. Plant Biol.*, **22**, 98 (1980).
- X.B. Ni, J.X. Yuan, P.J. Wu and X.S. Bao, *Chin. J. Chin. Mater. Med.*, 13, 11 (1988).
- China Pharmacopoeia Commission. Chinese Pharmacopoeia, Chemical Industry Press (2005).
- 6. R. Croteau, H. EL-Bialy and S.S. Dehal, Plant Physiol., 84, 649 (1987).
- 7. J.H. Langenheim, J. Chem. Ecol., 20, 1223 (1994).