
INTRODUCTION

The biological and ecochemical functions of terpens have
not yet been fully investigated. Many plants produce volatile
terpenes in order to attract specific insects for pollination or
otherwise to expel certain animals using these plants as food.
Less volatile but strongly bitter-tasting or toxic terpenes also
protect some plants from being esten by animals (antifeedants).
Last, but not least, terpenes play an important role as signal
compounds and growth regulators (phytohormones) of plants,
as shown by preliminary investigations.

EXPERIMENTAL

Biosynthetic pathways

Isoprene rule: The earliest attempt to rationalize the
pattern of structures of the monoterpenes was the rule proposed
by Wallach in 1887 who envisaged such compounds to be
constructed from isoprene units a. Some 30 years later,
Robinson extended this isoprene rule by pointing out that in
monoterpenes and such higher terpenes as were then known,
the units were almost invariably linked in a head-to-tail fashion
as shown for limonene b and camphor c. However, many higher
terpenes and a few monoterpenes were later found not to obey
this amended rule and Ruzicka and his collaborators proposed1,
a biogenetic isoprene rule1 (Fig. 1).
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Fig. 1. Isoprene rule

Bicyclicmonoterpens (BCMT) are an important class of
terpens which, bicyclic cyclopropanes carane and thujane,
bicyclic cyclobutane pinane and bicyclo[2.2.1]heptanes such
as caphane, isocamphane and fenchane are the most important
skeletons of naturally occurring bicyclic monoterpenes.

The biogeneses of cyclic and polycyclic terpenes are
usually assumed to involve intermadiate carbenium ions, but
evidence for this in vivo was given only in some specific cases.
In the simple case of monocyclic monoterpenes such as
limonene the allylic cation remaining after separation of the
pyrophosphate anion cyclizes to a cyclohexyl cation, which is
deprotonated to ( R )-or (S)-limonene (Fig. 2). After dissociation
of the pyrophosphate anion, the remaining acyclic cation
undergoes a 1,3-sigmatropic hydrogen shift and thereby cyclizes
to a monocyclic carbenium ion which, itself, isomerises to the
ionic precursor of another skeleton.
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Fig. 2. Biogenesis of (R+ S)- limonene from geranylpyrophosphate

Ab inito calculation by HF method of 6-31g** level of
theory were carried out for bicyclomonoterpens as well as their
cationic intermediate. It is well known that percursers of
terpenes is geranylpyrophosphate. this compound preduces
geranyl carbocation that it can isomerises and rearrengment
to other chain, monocyclic and bicyclic carbocations. Within
biosynthetic route to terpenes, some of them convert to
bicyclomonoterpenes. Bicyclomonoterpenes (BCMT) are an
important class of terpenes, which Bicyclic cyclopropanes
carane and thujane, bicyclic cyclobutane pinane and
bicyclo[2.2.1]heptanes such as camphene, isocamphane and
fenchane are the most important skeletons of naturally occur-
ring bicyclic monoterpenes.

Computational methods: In this investigation possible
isomers of bicyclomonoterpenes and their intermediate were
designed and their structures were optimized without any
restrictions at HF/6-31g** level using Gaussian 98 program.
Considering zero point energy (ZPE) and heat of formations
(HF) including zero point energies carried out for all isomers.
Relative energy Erel (kcal/mol) for all isomers calculated are
given in Tables 1 and 2.

TABLE-1 
CALCULATED HEATS OF FORMATIONS AND ZERO-POINT 

VIBRATIONAL ENERGIES (HARTREE), ZERO-POINT 
CORRECTION AND RELATIVE ENERGIES (INCLUDING  
ZERO-POINT ENERGY, kcal/mol) FOR DIPHOSPHECINES  

FOR CARBOCATIONS. (HF/6-31G** Opt Freq) 

Structure 
HF 

(hartree) 
ZPE 

(hartree) 
ZPC 

(hartree) 
Erel 

(Kcal/mol) 
1 -388.322547 -388.063482 0.2359066 15.86 
2 -388.3237951 -388.064409 0.276103 15.28 
3 -388.3176741 -388.055280 0.262394 21.01 
4 -388.341998 -388.080276 0.261722 5.32 
5 -388.3008449 -388.041625 0.259219 29.57 
6 -388.305353 -388.044439 0.260914 27.81 
7 -388.3534294 -388.08876 0.264669 0 
8 -388.3451859 -388.085881 0.261449 1.81 
9 -388.3392642 -388.077324 0.261941 7.17 

10 -388.3407983 -388.078814 0.261985 6.24 
11 -388.3321631 -388.068353 0.263810 12.80 
12 -388.33686 -388.07278 0.264079 10.02 
13 -388.3494832 -388.087034 0.262449 1.08 
14 -388.3268398 -388.065103 0.261737 14.84 
15 -388.3394933 -388.076694 0.262800 7.57 
16 -388.33105 -388.066653 0.264397 13.87 

 
RESULTS AND DISCUSSION

The nonclassical version of the intermediate carbenium
ion (also referred to as a carbonium ion) resulting upon disso-
ciation of the pyrophosphate anion from geranylpyrophosphate
explains the cycliztion to several cyclic carbenium ions, as

TABLE-2 
CALCULATED HEATS OF FORMATIONS AND ZERO-POINT 

VIBRATIONAL ENERGIES (HARTREE), ZERO-POINT 
CORRECTION AND RELATIVE ENERGIES (INCLUDING  
ZERO-POINT ENERGY, kcal/mol) FOR DIPHOSPHECINES  

FOR PRODUCTS (HF/6-31G** OPT FREQ) 

Structure 
HF 

(hartree) 
ZPE 

(hartree) 
ZPC 

(hartree) 
Erel 

(Kcal/mol) 
17 -389.1867389 -388.908538 0.278201 2.64 
18 -389.1833966 -388.904693 0.278703 5.05 
19 -389.1828475 -388.904092 0.278756 5.43 
20 -389.1682112 -388.892108 0.276103 12.95 
21 -389.1673184 -388.891123 0.276195 13.57 
22 -389.166914 -388.890083 0.276831 14.22 
23 -389.1666438 -388.889802 0.276841 14.39 
24 -389.1565713 -388.878703 0.277868 21.36 
25 -389.1610238 -388.883203 0.277821 18.53 
26 -389.1905586 -388.912749 0.277810 0.00 

 
demonstrated for some monoterpenes2. (Fig. 3) Additional
diversity arises from 1,2-hydride and 1,2-alkyl shifts (Wagner-
Meerwein rearrangments) and sigmatropic reactions (cope
rearengments) on the one hand and on the other hand from
the formation of diastereomers and enantiomers provided that
the cyclizations generate new asymmetric carbon atoms (Fig. 3).
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Fig. 3. Biogenesis of bicyclic monoterpenes from geranilpyrophosphate

MO calculation at the 6-31G** level indicated that among
cyclic carbocations, classical carbocation 7 was the most stable
isomer. In contrast, the non-classical carbocation 5 was the
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least stable one. In regard with studied bicyclo-monoterpenes,
24 was more unstable (21.36 kcal/mol) than 26. Table-1
presents data on relative energy of carbocations. The sequence
of stability for carbocations were 7 > 13 > 8 > 4 > 10 > 9 > 15
> 12 > 11 > 16 > 14 > 2 > 1 > 3 > 6 > 5.

On the other hand, the results indicated that among
products, the fenchane 26 was the most stable isomer. However
the pyrene type 24 was the least stable one. The results indicated
that kinetic considerations control the outcome of reaction and
thermodynamic rules have less roll in route map of biosynthesis.
The sequence of stability for carbocations were 26 > 17 > 18
> 19 > 20 > 21 > 22 > 23 > 25 > 24.

Calculations

Semiempirical calculations were carried out using AM1
method [*]. Energy minimum geometries were located by
energy minimizing, with respect to all geometrical coordinates
and without imposing any symmetry constrains. The AM1
results were used as input for the ab initio calculations, which
were carried out3 using Guassian 98 at the HF/6-31G** level
of theory for geometry optimization calculations. Vibrational
frequencies were calculated at 6-31 G** level for all geom-

etries, which were confirmed to have zero imaginary frequency.
The frequencies were scaled by a factor of 0.9135 for HF
method and used for computation of the zero-point vibrational
energies4. NBO calculations were carried out on optimized
structures at HF/6-31G** level [***] (Scheme-I).
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Scheme-I  HF/6-31G** optimized bond lengths (Å) and bond angles (º). Optimized structures are not planar
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