

Asian Journal of Chemistry

www.asianjournalofchemistry.co.in

Synthesis and Spectroscopic Properties of Spiro, Ansa and Bino Phosphazenes

DIGDEM ERDENER¹ and MUSTAFA YILDIZ^{1,2,*}

¹Department of Chemistry, Faculty of Science and Arts, Çanakkale Onsekiz Mart University, TR-17100 Çanakkale, Turkey ²Nanoscience and Technology Research and Application Center (NANORAC), Çanakkale Onsekiz Mart University, TR-17100 Çanakkale, Turkey

*Corresponding author: Fax: +90 286 218 0533; Tel: +90 286 2180018/1861; E-mail: myildiz@comu.edu.tr

(Received: 22 February 2011;

Accepted: 23 November 2011)

AJC-10707

ASIAN JOURN

The spiro (1, 2), ansa (3) and bino (4) phosphaza-lariat ethers have been synthesized. The structures of the compounds (1, 2, 3 and 4) are characterized by elemental analysis, mass spectrometry, IR, ¹H, ¹³C and ³¹P NMR spectroscopy.

Key Words: Spiro, Ansa, Bino, Phosphaza-lariat ethers, Phosphazene, Spectroscopy.

INTRODUCTION

Phosphazenes are important compounds from which a large number of organophosphazenes can be derived by the reaction with amine and alcohol. A large variety of application areas of phosphazene compounds are reported by examining their features. Reaction of N₃P₃Cl₆ with difunctional reagents could, in principle, give rise to a number of different derivatives *i.e.*, spiro, ansa, bino and open chain¹⁻³. There are four possible routes known for the reactions of N₃P₃Cl₆ with difunctional reagents; i) replacement of two geminal Cl-atoms to give a spiro architecture, ii) replacement of two non-geminal Clatoms to give an ansa architecture, iii) intermolecular reactions between Cl-atoms of phosphazene rings to yield a bino architecture, or intermolecular condensation reactions to yield cyclolinear or cyclomatrix polymers. There have been considerable work in the literature concerning the reactions of phosphazenes with amine and alcohol by mono- and difunctions^{1,4-15}. Recently, phosphaza-lariat ethers, which are new types of compounds, have been obtained by reacting phosphazenes with aminopodand, cryptand and oligoethyleneglycol¹⁶⁻²⁶. The design and synthesis of phosphaza-lariat ethers are significant; as ligating agents for alkali-, alkalineearth and transition metal cations²⁷⁻²⁹. Despite the early studies on lariat ethers only a few phosphaza-lariat ethers have been reported^{16-20, 25}.

In this study, the reactions of aminopodand with hexachlorocyclotriphosphazene and mono- and di-*spiro* phenoxyphosphazene derivative are reported (**Scheme-I**). The structures of the compounds are characterized by elemental analysis, mass spectrometry, IR, ¹H, ¹³C, ³¹P NMR spectroscopy.

EXPERIMENTAL

The ¹H, ¹³C and ³¹P NMR spectra were recorded on a Bruker AVENCE-500 FT-NMR spectrometer operating at 500, 125, 7 and 202.4 MHz. Infrared absorption spectra were obtained from a Perkin Elmer BX II spectrometer in KBr discs and were reported in cm⁻¹ units. Carbon, nitrogen and hydrogen analyses were performed on a LECO CHNS-932 analyzer. Melting points were determined on an electro thermal IA 9100 apparatus using a capillary tube. LC mass spectra were obtained on an AGILENT 6410 triple quad spectrometer using electro spray ionization (ESI) with an ion source temperature at 240 °C. Hexachlorocyclotri-phosphazene was purchased from Aldrich. It was recrystallized from hexane and purified by fractional vacuum sublimation at 55 °C before use. CH₃CN was purchased from Merck, distilled over sodium hydride and stored over molecular sieves. CHCl₃ (Merck), CH₂Cl₂ (Merck), *n*-hexane (Merck), THF (Merck), petroleum ether (50:70) (Merck), triethylamine (Merck), 4-nitrophenol (Merck), triethyleneglycoldichloride (Merck), diethyleneglycoldichloride (Merck), sodium hydride (Merck), Pd-C (10 %, Merck), hydrazine monohydrate (Merck), DMF (Merck), Na₂CO₃ (Merck), silica gel (Aldrich, 70-230 mesh, 60 Å) were used as received and all reactions were monitored by using Kieselgel 60 F 254 (silica gel) precoated TLC plates. All reactions and manipulations were carried out under an atmosphere of dry argon.

Synthesis of 2,2-[4,4'-(2,2'-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis(oxy)dianilino]-4,4,6,6-(2,2'-dioxy-1,1'biphenyl)-cyclo-2 λ^5 ,4 λ^5 ,6 λ^5 -triphosphazatriene (*spiro*) (1): 4,4'-[2,2'-(Ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl)]-

Scheme-I Synthesis route for the compounds 1-4

bis(oxy)dianiline^{18,30,31} (0.35 g; 1.05 × 10⁻³ mol) in CH₃CN (50 mL) was added drop wise to a stirred solution of dispirophenoxyphosphazene³² (0.60 g; 1.04×10^{-3} mol) and triethylamine (0.21 g; 2.08 × 10⁻³ mol) in CH₃CN (150 mL) at -20 °C for over 1 h, with argon being passed over the reaction mixture. After the mixture had been allowed to come to ambient temperature, it was boiled under reflux (12 h) using a condenser fitted with a CaCl₂ drying tube. The precipitated salt was filtered off and the solvent removed by rotary evaporation. The crude product was dried under vacuo and chromatographed (silica gel, 100 g, eluent; CHCl₃/THF, 3:1) to give the compound 1. Then, it was recrystallized from CH₂Cl₂/petroleum ether (50:70) by the slow diffusion method yielding a white solid, m.p. 155 °C, 0.14 g (15.9 %) yields. Found: C, 60.51; H, 4.59; N, 8.40 calc. for C₄₂H₃₈N₅O₈P₃: C, 60.50; H, 4.56; N, 8.40. IR (KBr, v_{max} , cm⁻¹) v(N-H) 3373 m, v(Ar-H) 3063 m, v(C-H, aliphatic) 2920-2871 s, v(C=C) 1509 s, v(C-O-C) 1265-1093 s, v(P-O) 1230 s, v(P=N) 1172 s. ³¹P NMR-coupled (CDCl₃); δ ppm, 25.25 (d, 2P_X, P(OArO'Ar'), ²J_{PNP}: 66.81 Hz), 22.74 (t, 1P_A, P(NH-Ar-OC₂H₄OC₂H₄OC₂ H₄O-Ar-NH), ²J_{HNP}: 10.12 Hz). MS (highest peak in multiplet, based on Cl35; NaTFA solution used for ionization): m/z; 856 (M+Na)⁺, 100 %), 834(M+H)⁺, 24 %), 430 (M-2(OArO'Ar'), 76 %), 158.9 (M-(NH-Ar-OC₂H₄OC₂H₄OC₂H₄O-Ar-NH + Na), 56 %).

Synthesis of 2,2-[4,4'-(2,2'-oxybis(ethane-2,1diyl)bis(oxy))dianilino]-4,4,6,6-(2,2'-dioxy-1,1'-biphenyl)cyclo- $2\lambda^5$, $4\lambda^5$, $6\lambda^5$ -triphosphazatriene (*spiro*) (2): 4, 4'-(2, 2'oxybis(ethane-2,1-diyl)bis(oxy))dianiline^{18,30,31} (0.41 g; 1.42 $\times 10^{-3}$ mol) in CH₃CN (50 mL) was added drop wise to a stirred solution of dispiro-phenoxyphosphazene³² (0.82 g; $1.42 \times$ 10^{-3} mol) and triethylamine (0.29 g; 2.87×10^{-3} mol) in CH₃CN (150 mL) at -20 °C for over 1 h, with argon being passed over the reaction mixture. The compound 2 was isolated as the compound 1. Compound 2, white solid, m.p. 167 °C, 0.24 g (21.4 %) yields. Found : C, 60.83; H, 4.30; N, 8.87 calc. for $C_{40}H_{34}N_5O_7P_3$: C, 60.83; H, 4.31; N, 8.87. IR (KBr, v_{max} , cm⁻¹) v(N-H) 3363 m, v(Ar-H) 3063 w, v(C-H, aliphatic) 2926-2871 m, v(C=C) 1510 s, v(C-O-C) 1270-1093 s, v(P-O) 1229 s, v(P=N) 1174 s. ³¹P NMR-coupled (CDCl₃); δ ppm, 23.34 (d, 2P_X, P(OArO'Ar'), ²J_{PNP}: 48.58 Hz), 22.68 (t, 1P_A, P(NH-Ar-OC₂H₄OC₂H₄O-Ar-NH), ²J_{PNP}: 48.58 Hz, ²J_{HNP}: 14.11 Hz). MS (highest peak in multiplet, based on Cl³⁵; NaTFA solution used for ionization): m/z; 812 ((M+Na)⁺, 100 %), 790 (M+H)⁺, 46 %), 430 (M-2(OArO'Ar'), 67 %), 158.9 (M-(NH-Ar- $OC_2H_4OC_2H_4O$ -Ar-NH + Na), 77 %).

Synthesis of 2,4-[4,4'-(2,2'-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis(oxy)dianilino]-2,4,6,6-tetrachlorocyclo-2 λ^5 ,4 λ^5 ,6 λ^5 -triphosphazatriene (*ansa*) (3): 4,4'-(2,2'-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis(oxy)

dianiline^{18,30,31} (1.00 g; 3.01×10^{-3} mol) in CH₃CN (50 mL) was added drop wise to a stirred solution of hexachlorocyclotriphosphazene (0.52 g; 1.49×10^{-3} mol) and triethylamine (0.91 g; 9.00×10^{-3} mol) in CH₃CN (150 mL) at -20 °C for over 1 h, with argon being passed over the reaction mixture.

The compound **3** was isolated as the compound **1**. Compound **3**, white solid, m.p. 223 °C, 0.40 g (44 %) yields. Found : C, 35.60; H, 3.65; N, 11.54 calc. for $C_{18}H_{22}Cl_4N_5O_4P_3$: C, 35.61; H, 3.65; N, 11.54. IR (KBr, v_{max} , cm⁻¹) v(N-H) 3204 s, v(Ar-H) 3075 w, v(C-H, aliphatic) 2930-2871 s, v(C=C) 1512 s,

v(C-O-C) 1280-1172-1109 s, v(P=N) 1195 s, v(P-Cl) 584-519 s. ³¹P NMR-decoupled (CDCl₃); δ ppm, 25.32 (t, 1PA, PCl₂, ²J_{PNP}: 51.68 Hz), 15.39 (d, 2PX, PCl(NH-Ar-OC₂H₄OC₂H₄OC₂H₄O-Ar-NH), ²J_{PNP}: 51.68 Hz). MS (highest peak in multiplet, based on Cl35): m/z; 607 (M+, 70 %), 258 $(M-(NH-Ar-OC_2H_4OC_2H_4OC_2H_4O-Ar-NH) + Cl, 45\%).$

Synthesis of 2,2'-[4,4'-(2,2'-(ethane-1,2-diylbis(oxy))bis (ethane-2,1-diyl))bis(oxy) dianilino]-4,4,4',4'-(2,2'-dioxy-1,1'-biphenyl)-2,2',6,6,6',6'-hexachlorocyclo- $2\lambda^5$,2' λ^5 ,4 λ^5 , 4' λ^5 ,6 λ^5 ,6' λ^5 -triphosphazatriene (*bino*) (4): 4,4'-(2,2'oxybis(ethane-2,1-diyl)bis(oxy))dianiline^{18,30,31} (0.19 g; 5.70 $\times 10^{-3}$ mol) in CH₃CN (50 mL) was added drop wise to a stirred solution of mono*spiro*-phenoxyphosphazene³² (0.27 g; $5.86 \times$ 10^{-3} mol) and triethylamine (1.15 g; 11.38×10^{-3} mol) in CH₃CN (150 mL) at -20 °C for over 1 h, with argon being passed over the reaction mixture. Compound 4, white solid, m.p. 138 °C, 0.40 g (57.7 %) yields. Found : C, 42.69; H, 3.22; N, 9.48 calc. for C42H38Cl6N8O8P6: C, 42.68; H, 3.22; N, 9.48. IR (KBr, v_{max} , cm⁻¹) v(N-H) 3310 m, v(Ar-H) 3069 w, v(C-H, aliphatic) 2931-2884 m, v(C=C) 1510 s, v(C-O-C) 1189-1154-1094 s, v(P-O) 1191 s, v(P=N) 1171 s, v(P-Cl) 586-518 s. ³¹P NMR-decoupled (CDCl₃); δ ppm, 27.0 (q, 2P_X, (OArO'Ar'), ²J_{PANPX}: 65.07 Hz, ²J_{PBNPX}: 75.84 Hz), 18.95 (q, 2P_B, PCl₂, ²J_{PANPB}: 75.99.07 Hz, ²J_{PXNPB}: 75.84 Hz), 5.62 (q, $2P_A$, PCl(NH-Ar-OC₂H₄OC₂H₄OC₂H₄O-Ar-NH), ²J_{PXNPA}: 65.07 Hz, ²J_{PBNPA}: 75.99 Hz). MS (highest peak in multiplet, based on Cl³⁵): m/z; 1181 (M⁺, 33 %), 768 (M-2(OArO'Ar') + C₂H₄O) 60 %), 242 (M-2(OArO'Ar') + (NH-Ar-OC₂H₄OC₂H₄OC₂H₄O-Ar-NH + N₃P₃Cl₃) 35 %).

RESULTS AND DISCUSSION

The IR spectra of the compounds are given in synthetic procedures. The characteristic N-H, C-O-C and P=N bands are appeared respectively with the wave numbers (cm⁻¹) of 3373, 3363, 3204, 3310 δ(N-H), 1265-1093, 1270-1093, 1280-1172-1109, 1189-1154-1094 v(C-O-C) and 1172, 1174, 1195, 1171 v(P=N) were observed for compounds 1, 2, 3 and 4, respectively. The P-Cl band is observed at 584-519 cm⁻¹ and 586-518 cm⁻¹ for compounds **3** and **4**, while it is not observed for compounds 1 and 2. In addition, the asymmetric and symmetric vibrations of v(P-O) arise at 1230, 1229 and 1191 cm⁻¹ for 1, 2 and 4, respectively. The P=N vibration bands of **3** observed in a higher frequency such as 23, 21 and 24 cm⁻¹ than the same band of 1, 2 and 4.

In the ¹H NMR spectra (Table-1), the N-H signal is singlet $\delta = 10.30$ ppm singlet and $\delta = 10.45$ ppm for compounds 1 and **2**, while it is doublet $\delta = 5.15$ ppm (²J_{PNH}: 7.52 Hz) and δ = 4.95 ppm (${}^{2}J_{PNH}$: 9.76 Hz) for compounds 3 and 4. The phenyl protons were observed multiplet at 7.35-6.56, 7.65-6.02, 7.32-6.66 and 7.64-6.60 ppm for compounds 1, 2, 3 and 4, respectively. The protons of the etheric group at $ArOCH_2$ and ArOCH₂CH₂ in also gave a triplet at $\delta = 4.09, 4.13, 4.15$, 4.38 ppm and δ = 3.85, 3.92, 3.87, 3.80 ppm (³J_{HCCH}= 5.00, 5.12, 4.45 and 4.67 Hz), respectively, for 1, 2, 3 and 4. The OCH_2 protons were singlet at $\delta = 3.72$ ppm, 3.75 ppm and 3.68 ppm in 1, 3 and 4.

According to the proton de-coupled ¹³C NMR spectra compounds 1, 2, 3 and 4 have 13, 12, 7 and 13 signals (Table-1).

The compounds (1, 2, 3 and 4) seem to have symmetric molecular structures in solution. The C2 is coupled with the P atom (δ = 124.93 ppm, d, 4C, ³J_{PNCC}: 3.44 Hz) in compound 3, while it is not coupled with the P atom in compounds 1, 2 and 4.

The proton de-coupled ³¹P NMR spectra of compounds were interpreted as a result of a simple AX₂, AX₂, AX₂ and ABX spin system for 1, 2, 3 and 4 (Table-1). According to the pattern of proton coupled ³¹P NMR spectra of compounds (1, 2, 3 and 4), it was concluded that the only spiro (1, 2), ansa (3) and *bino* (4) architectures were possible.

The MS spectrum of compounds (1, 2, 3 and 4) showed a well-defined parent ion at m/z 834, 790, 607 and 1181 $((M+H)^+, (M+H)^+, M^+ \text{ and } M^+)$ with the expected isotope pattern. The peaks, at m/z values of 430 and 158.9 in 1 and 2, 258 in 3 and 242 in 4 correspond to the loss of M-2(OArO'Ar') and M-(NH-Ar-OC₂H₄OC₂H₄OC₂H₄O-Ar-NH) + Na (1), M-2 (OArO'Ar') and M- $(NH-Ar-OC_2H_4OC_2H_4O-Ar-NH) + Na(2)$, $(M-(NH-Ar-OC_2H_4OC_2H_4OC_2H_4O-Ar-NH) + Cl (3)$ and M-2 (OArO'Ar') and M-(NH-Ar-OC₂H₄OC₂H₄OC₂H₄O-Ar-NH + $N_3P_3Cl_3$ (4). The fragmentation pattern of 1 and 2 was found as similar to that of 4. N₃P₃ ring system in 1, 2, 3 and 4 was not stable (dominant ion was not observed: m/z 134) during the fragmentation that indicates the first loss of biphenol and aminopodand fragments.

ACKNOWLEDGEMENTS

The authors are grateful to the Scientific and Technical Research Council of Turkey (TÜBITAK) for the financial support of this work, grant number 109T565 and, Canakkale Onsekiz Mart University Grants Commission for a research grant (Project No. : 2010/227).

REFERENCES

- 1. C.W. Allen, Chem. Rev., 91, 119 (1991).
- 2. V. Chandrasekhar and V. Krishnan, Adv. Inorg. Chem., 53, 159 (2002).
- V. Chandrasekhar and K.R.J. Thomas, Struct. Bonding, 81, 41 (1993).
- 3.
- 4. H.R. Allcock, Chem. Rev., 72, 315 (1972).
- 5. R.A. Shaw, B.W. Fitzsimmons and B.C. Smith, Chem. Rev., 62, 247 (1962).
- J.F. Labarre, Top. Curr. Chem., 129, 173 (1985). 6.
- H.R. Allcock, S. Al-Shali, D.C. Ngo, K.B.Visscher and M. Parvez, 7. J. Chem. Soc. Dalton Trans., 3549 (1996).
- 8. T. Hökelek, A. Kiliç, S. Begeç and Z. Kiliç, Acta Crystallogr., C55, 783 (1999).
- 9. T. Hökelek, A. Kiliç, S. Begeç, Z. Kiliç and M. Yildiz, Acta Crystallogr., C52, 3243 (1996).
- H.R. Allcock, D.C. Ngo, M. Parvez and K.B.Visscher, J. Chem. Soc. 10. Dalton Trans., 1687 (1992).
- H.R. Allcock, D.C. Ngo, M. Parvez, R.R. Whittle and W.J. Birdsall, 11. J. Am. Chem. Soc., 113, 2628 (1991).
- 12. T. Hökelek, H. Dal and Z. Kiliç, Acta Crystallogr., E 57, o1063 (2001).
- M. Yildiz, D. Erdener, H. Ünver and N.O. Iskeleli, J. Mol. Struct., 753, 13. 165 (2005).
- 14. S. Besli, S.J. Coles, D. Davarci, D.B. Davies, M.B. Hursthouse and A. Kiliç, Polyhedron, 26, 5283 (2007).
- H. Dal, S. Safran, Y. Süzen, T. Hökelek and Z. Kiliç, J. Mol. Struct., 15. 753.84 (2005)
- K. Brandt, T. Kupka, J. Drozd, J.C. van de Gramper, A. Meetsma and A.P. Jekel, Inorg. Chim. Acta, 228, 187 (1995).
- 17. K. Brandt, I. Parwolik-Czomperlik, T. Kupka, R.A. Shaw and D.B. Davies, J. Org. Chem., 60, 7433 (1995).
- M. Yildiz, Z. Kiliç and T. Hökelek, J. Mol. Struct., 510, 227 (1999). 18.
- S. Bilge, B. Özgüç, S. Safran, S. Demiriz, H. Isler, M. Hayvali, Z. Kiliç and T. Hökelek, J. Mol. Struct., 748, 101 (2005).

- B. Ölgüç, S. Bilge, N. Çaylak, S. Demiriz, H. Isler, M. Hayvali, Z. Kiliç and T. Hökelek, J. Mol. Struct., 748, 39 (2005).
- N. Asmafiliz, E.E. Ilter, M. Isiklan, Z. Kiliç, B. Tercan, N. Çaylak, T. Hökelek and O. Büyükgüngör, J. Mol. Struct., 832, 172 (2007).
- 22. S. Bilge, Z. Kiliç, N. Çaylak, T. Hökelek and J. Mol. Struct., **707**, 139 (2004).
- S. Bilge, S. Demiriz, A. Okumus, Z. Kiliç, B. Tercan, T. Hökelek and O. Büyükgüngör, *Inorg. Chem.*, 45, 8755 (2006).
- E. E Ilter, N. Çaylak, M. Isiklan, N. Asmafiliz, Z. Kiliç and T. Hökelek, J. Mol. Struct., 697, 119 (2004).
- 25. H. Özay, M. Yildiz, H. Ünver and B. Dülger, Asian J. Chem., 23, 2430 (2011).
- N. Asmafiliz, E. E Ilter, Z. Kiliç, T. Hökelek and E. Sahin, J. Chem. Sci., 120, 363 (2008).

- 27. K. Brandt, P. Seliger, A. Grzjdziak, T. J. Bartczak, R. Kuruszynski, D. Lach and J. Silberring, *Inorg. Chem.*, **40**, 3704 (2001).
- R. Kuruszynski, T. J. Bartczak, K. Brandt and D. Lach, *Inorg. Chim. Acta*, **321**, 185 (2001).
- K. Brandt, T. J. Bartczak, R. Kuruszynski and I. Parwolik-Czomperlik, *Inorg. Chim. Acta*, **322**, 138 (2001).
- J. P Dutasta, J. P Declercq, C. E Calderon and B. Tinant, J. Am. Chem. Soc., 111, 7136 (1989).
- 31. M. Yildiz, Z. Hayvali and Z. Kiliç, J. Inst. Sci. Tech. Gazi Univ., 14, 869 (2001).
- G.A. Carriedo, L. Fernandez-Catuxo, F.J. Garcia Alonso, P. Gomez-Elipe and P.A. Gonzalez, *Macromolecules*, 29, 5320 (1996).