
INTRODUCTION

The application of multivariate calibration methods in

chemometrics, particularly principal component regression

(PCR) and partial least squares (PLS), to multicomponent

spectrophotometric data has been increasing in recent years1-5.

Each method needs a calibration step where the relationship

between the spectra and the component concentration is deduced

from a set of reference samples, followed by a prediction step

in which the results of the calibration are used to determine

the component concentrations from the sample spectrum.

Among the multivariate calibration methodologies, there are

two categories including direct calibration methods and

indirect calibration methods. Principal component regression

and partial least squares are factor analysis-based indirect

calibration methods that have many of the full-spectrum

advantages of the direct calibration methods without suffering

the disadvantages of this more classical statistical tool6-8.

Principal component regression was chosen because experi-

ence shows that, if applied correctly, it generally performs as

well as the partial least squares methods but the mathematical

background is easier to understand.

Wavelet transform (WT) is a mathematical method

developed on the basis of Fourier transform (FT)9,10. Compared

with the Fourier transform, wavelet transform has good local
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features in both time domain and frequency domain and can

effectively extract more information from the signals of interest.

Wavelet transform is also called mathematical microscope

because it can solve many problems which are impossible for

Fourier analysis by multi-scale analyzing the signal through

operations such as scaling and translation. Wavelet analysis

already has many application aspects in chemistry11-15. Because

of its ability of multi-resolution analysis, wavelet analysis has

the capacity of decomposing the signal at different scales, thus

can get the discrete approximation and discrete details of the

original signal in different frequencies of wavelet domain. By

using the discrete approximation absorbance signal instead of

the original absorbance data for multivariate calibration model,

the data can be compressed and the impact of noise on the

calibration results can be reduced.

In this paper, we combine discrete wavelet transform with

principal component regression method to analyze the visible

spectrum data of three colourants which are safranine, phloxine

B and eosinY. After the data processing, we achieve the

simultaneous determination of three components and obtain

satisfactory prediction results. Further research shows that

models using wavelet coefficients of specific scale is superior

to the traditional full spectrum model.

Theoretical background: Wavelets are a new family of

basis functions, which can be used to describe instrumental



signals. Projection of the signal onto wavelet basis functions

is called wavelet transform. As any transform, the wavelet

transform aims to transform the signal from the original to

another domain in which some operations on the signal (i.e.

denoising, compression) can be caried out in an easier way.

Applying wavelet transform on a signal decomposes it into

different frequency sub-bands. We now briefly review wavelet-

based multi-resolution decomposition. More details can be

found in Mallat's paper16. To have multi-resolution represen-

tation of signals we can use discrete wavelet transform (DWT).

According to the discrete wavelet transform and Mallat algo-

rithm16, after j-scale (level) decomposition, the original signal

C0 can be expressed as:

C0 = C1 + D1 = C2 + D2 + D1 = ∑
=

+
j

lk

kj
DC (1)

where Cj = HCj-1, Dj = GCj-1, (2)

Operators H and G represent low pass filter and high pass

filter respectively, while Cj and Dj represent the discrete

approximation (low frequency factor) and the discrete details

(high frequency coefficients) of C0 (original signal) under 2j

resolutions, the data points of both Cj and Dj of C0 under the j

scale decomposition is 1/2j of the original data. Because the

wavelet transform is a linear transformation, and Cj and Dj

are the linear projection of C0 in wavelet space, we can use

less wavelet coefficients (Cj or Dj) instead of raw data C0 for

analyzing.

Principal component regression (PCR) is a two-step

process. The first step consists of the principal component

analysis (PCA) of the original data, i.e. absorption spectra, to

obtain a reduced number of variables, the factor scores. Then,

multiple linear regression is used to relate these scores to the

concentration values. Suppose a calibration matrix of absor-

bance X consists of ‘m’ calibration samples at ‘n’ wavelengths

and Y of the concentration matrix of l components in ‘m’

mixture samples. According to the principal component analysis

(PCA), we decompose the X matrix:

Xm×n = Tm×hPm×n + Em×n (3)

where, h is the number of principal components and E is the

residual matrix. The aim of principal component analysis is to

represent X by a set of new orthogonal variables called prin-

cipal components (PCs). The principal components are linear

combinations of explanatory variables that maximize the data

variance. The data matrix, X, is decomposed to a score matrix,

T and loadings matrix, P. The elements of the loadings matrix

give information about the contribution of the original

variables to each principal component. Since the columns of

T matrix is orthogonal, h is the optimum number of principal

components to reproduce the original data matrix X by T and

P within experimental error. After performing principal

component analysis on X, the second step in principal compo-

nent regression consists of the linear regression of the scores

and the Y of concentration. The linear model between Y and T

is of the form:

Ym×l = Tm×hBh×l (4)

with the least square solution:

B= (TtT)-1TtY = Λ-1TtY (5)

where, the superscript t denotes the transpose of the matrix.

Since the columns of T matrix is orthogonal, TtT = Λ. Λ is a

matrix constructed by the h larger eigenvalues of XtX, thus Λ-1

is the form-only inverse. Actually, Λ-1 is a diagonal matrix

composed of inverses of eigenvalues, which can avoid errors

caused by other methods [for example, the error caused by

multiple linear regression (MLR) method in the inverse calcu-

late process]. Besides, the orthogonality of T and P eliminates

the possible collinearity when calculating the coefficient matrix

by using absorbance matrix X and concentration matrix Y

directly and thus improves the accuracy of prediction.

As for the unknown samples, Yu can be obtained by the

following formula:

Yu = TuB = XuP
tB (6)

We replace the original absorbance matrix by wavelet

coefficients for principal component regression modeling and

predicting in this paper. For the evaluation of the predictive

ability of a multivariate calibration model, the root mean square

difference (RMSD) and the relative error of prediction (REP)

can be used:
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where, xi is the true concentration of the analyte in the sample

i,
ix̂ represents the estimated concentration of the analyte in

the sample i and N is the total number of samples used in the

prediction set, were calculated. The values of the root mean

square difference (RMSD) is an indication of the average

error in the analysis for each component. The relative error of

prediction (REP), which is the square root of the mean square

of the error in prediction expressed as a percentage of the mean

of the true concentrations, can also be used to evaluate the

predictive ability of each method and for each component.

EXPERIMENTAL

A Shimadzu UV-260 ultraviolet-visible spectrophoto-

meter was used for spectral acquisition and storage of the

spectrophotometric data. An in-home program set in MATLAB

Version 7.0 for principal component regression and wavelet

transform processing was implemented on a personal com-

puter.

Safranine, phloxineB and eosinY stock solutions of 500

µg/mL were prepared with redistilled water.

A full set of calibration and test solutions for three-compo-

nent system were formed by orthogonal design. Calibration

and test set solutions were prepared serial dilution of the stock

solutions. Spectrophotometric measurements were carried out

with a Shimadzu UV-260 ultraviolet-visible spectrophotometer,

employing a 10 mm quartz cell. Absorbances of the mixtures

of three colourants between 380-600 nm wavelengths by 0.1

nm intervals against a blank of solvent were scanned and

recorded for subsequent treatment.

RESULTS AND DISCUSSION

Absorption spectrum: Fig. 1 shows the absorption spec-

trum of safranine, phloxine B and eosinY which overlapped

seriously. Using classical spectrophotometric method for

quantitative analysis may cause serious interference, while

combining chemometrics methods with spectrophotometric

analysis enable us to quantitate each component simultaneously

and accurately without separation.
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Fig. 1. Absorption spectrum of three colourants; 1 safranine, 2 phloxine B

3 eosinY

Selection of optimum number of factors: It is very impor-

tant to choose the proper number of principal components

when using principal component regression method to build

calibration model. In this paper, we used cross-validation leave-

one-out method to evaluate the optimum number of principal

components for calibration. As for the absorption spectrum of

the calibration set system of 12 samples (wavelength range

380-600 nm, with 0.1 nm intervals), we use the wavelet coeffi-

cients obtained by bior1.1 wavelet decomposition for modeling.

The optimum number of factors (latent variables) to be included

in the calibration model was determined by computing the

prediction error sum of squares (PRESS) for cross validated

models. The prediction error sum of squares values provide a

measure of how well the training set is predicting the concen-

tration for each number of factors. A common choice for the

optimum number of factors would be that number which

yielded the minimum prediction error sum of squares. To avoid

overfitting for unknown samples that were not included in the

model, the significance of prediction error sum of squares

values greater than the minimum can be determined by F

statistical test. The proper number of principal components

are 4, 5 for the three colourants.

Predict results of wavelet coefficients at different

scales: In order to investigate the influence on prediction

results by wavelet coefficients of different scales, we use 12

samples for calibration and 12 samples for prediction and

process principal component regression regression by the data

matrix of C0 (where C0 is direct absorbance signal actually),

C1-C6 and D1-D6. Statistical parameters of root mean square

difference and relative error of prediction values were summa-

rized in Table-1.

From Table 1, it is observed that since the prediction

errors of C1-C5 are comparatively small than that of C0, this

means that the prediction results of C1-C5 are better than C0.

The fact that the errors of C6 are a little larger may come of

that some information details of the original signal are lost

and the influence of edge effects is increasing as the scale

increasing. Among the prediction errors based on D1-D6, the

prediction errors of D3-D6 are smaller while the errors of D1

and D2 is rather large which tells us that in wavelet analysis,

discrete details of small-scale have random noise (high

frequency), while large-scale of high frequency coefficients

represent the frequency characteristics of the signal. As for

the simultaneous visible-spectrometric determination of three

colourants in this paper, it is better to use the low frequency

wavelet coefficients at proper small scale of the original

absorbance data to build the model for principal component

regression regression and the prediction results is better than

using full spectrum of direct absorption spectra.

Application to synthesis mixtures: We use the low-

frequency wavelet coefficient C1 of original absorption spectra

of 12 synthesis samples as calibration set, with 5 factors model,

to predict the ternary mixtures of safranine, phloxine B and

eosin Y by principal component regression procedure. The

results are listed in Table-2.

As we can see that the satisfactory results with recoveries

ranging from 94.73 % to 114.09 % of safranine, 89.00 % to

108.60 % of phloxine B and 92.48 % to105.33 % of eosin Y.

The relative errors of prediction (REP) for tree components in

12 synthesis mixtures are 3.87, 4.46 and 3.24 % respectively,

were obtained by the proposed method. Furthermore, using

wavelet coefficients for principal component regression model

can not only improve the prediction accuracy by eliminating

some noises of the original signal, but can also improve the

computing efficiency by large amount of data compression. It

TABLE-1 
RELATIVE ERROR OF PREDICTION (RMSD) AND RELATIVE ERROR OF PREDICTION (REP) VALUES OF PREDICTING THE  
3 COMPONENTS IN 12 SAMPLES BY WETLET-PRINCIPAL COMPONENT REGRESSION METHOD AT DIFFERENT SCALES 

Safranine Phloxine B Eosin Y  

RMSD REP (%) RMSD REP (%) RMSD REP (%) 
Scale j 

0.0907 3.887 0.0894 4.472 0.0894 3.250 0 

0.0902 3.866 0.0892 4.459 0.0890 3.237 1 

0.0903 3.869 0.0893 4.464 0.0891 3.238 2 

0.0905 3.881 0.0894 4.472 0.0892 3.242 3 

0.0903 3.872 0.0894 4.4168 0.0890 3.237 4 

0.0902 3.865 0.0895 4.473 0.0889 3.234 5 

Discrete 
Approximation 

0.0959 4.109 0.0933 4.666 0.0927 3.372 6 

/ / / / / / 0 

0.9764 41.84 0.3677 18.39 0.4192 15.24 1 

0.6078 26.05 0.2331 11.65 0.1971 7.165 2 

0.2613 11.20 0.0977 4.886 0.1138 4.136 3 

0.1969 8.437 0.0934 4.668 0.1086 3.948 4 

0.1378 5.907 0.0787 3.934 0.0916 3.329 5 

Discrete detail 

0.1162 4.978 0.0721 3.604 0.0762 2.769 6 
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has been shown that combining wavelet transform-principal

component regression method with visible spectrophotometric

analysis provides us a new simple and reliable way for simulta-

neous analysis of mixture colourant mixtures without separation.

Conclusion

Multivariate calibration method wavelet transform-

principal component regression allows the simultaneous

determination of safranine, phloxine B and eosin Y in ternary

mixtures based on the wavelet coefficients of absorption

spectra at different scales. The present study shows that the

wavelet transform can be a good method conceiving ability of

signal denoized and data compressed for calibration model-

ling. A satisfactory result with good prediction accuracies in

synthetic samples demonstrates the utility of this procedure

for the simultaneous determination of safranine, phloxine B

and eosin Y, without tedious pretreatment.
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TABLE-2 
PREDICTION RESULTS OF MIXTURE SAMPLES BY WAVELET- PRINCIPAL COMPONENT  

REGRESSION METHOD (PRINCIPAL COMPONENT NUMBER IS 5) 

Safranine Phloxine B Eosin Y 
Mixture 

Added (µg/mL) Recovery Added (µg/mL) Recovery Added (µg/mL) Recovery 

1 0.50 114.09 3.50 100.70 1.50 96.92 

2 1.00 103.76 2.50 99.34 3.50 101.06 

3 1.00 94.73 1.00 103.80 2.00 102.25 

4 1.50 94.40 0.50 93.22 4.00 100.99 

5 2.00 102.50 3.50 95.24 1.50 92.48 

6 2.00 107.79 2.50 98.25 3.50 96.91 

7 2.50 97.99 1.50 108.60 2.00 105.33 

8 3.00 98.80 0.50 106.99 4.00 100.18 

9 3.00 99.01 3.50 101.16 1.50 102.21 

10 3.50 103.14 2.50 92.39 3.50 96.18 

11 4.00 95.04 1.50 103.10 2.00 100.81 

12 4.00 98.23 0.50 89.68 4.00 95.45 

RMSD 0.0902  0.0892  0.0890  

REP 3.866  4.459  3.237  
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