

Chemical Composition and Antimicrobial Activity of the Volatile of Gladiolus atroviolaceus Boiss.

NURAN KAHRIMAN¹, MURAT YÜCEL¹, BÜSRA YAYLI¹, TAYFUN ASLAN¹, SENGÜL ALPAY KARAOGLU² and NURETTIN YAYLI^{3,*}

¹Department of Chemistry, Faculty of Science, Karadeniz Technical University, 61080 Trabzon, Turkey ²Department of Biology, Faculty of Arts and Sciences, Rize University, 53100 Rize, Turkey ³Faculty of Pharmacy, Karadeniz Technical University, 61080 Trabzon, Turkey

*Corresponding author: Fax: +90 462 3253196; Tel: +90 462 3772486; E-mail: yayli@ktu.edu.tr

(Received: 19 January 2011;

Accepted: 17 November 2011)

AJC-10691

In the present study, essential oil extracted by hydrodistillation from *Gladiolus atroviolaceus* Boiss. (Iridaceae) was analyzed by gas chromatography (GC) and GC-mass spectrometry (MS). A total of 52 compounds were identified, constituting over 93.8 % of the oil composition of *G. atroviolaceus*. Hexadecanoic acid (44.4 %) and heneicosane (6.6 %) were the major compounds in the volatile of *G. atroviolaceus*. Sesquiterpene hydrocarbons were shown to be the main groups of terpenoids in the oils (2.6 %). The major terpene constituents of the essential oil of *G. atroviolaceus* were limonene, γ -muurolene and linalool. The antimicrobial activity of the isolated essential oil of the plant was also investigated and it showed moderate antimicrobial and antifungal activities against *Staphylococcus aureus*, *Bacillus cereus*, *Mycobacterium smegmatis* and *Candida albicans*.

Key Words: Gladiolus atroviolaceus, Essential oil, Antimicrobial activity, GC-MS.

INTRODUCTION

The genus *Gladiolus* L. (Iridaceae) is represented with 9 species, 4 of them is endemics, in Turkey¹. It is a perennial bulbous plant. It has very nice flowers and a typicall ovoid corm enclosed by several layers of fibrous tunics. Aerial parts of *G. atroviolaceus* Boiss., *G. italicus* Miller and *G. kotschyanus* Boiss. are collected and sold by local people in Turkey². *G. atroviolaceus* Boiss. is mainly distributed in stony calcareous slopes, roadsides and cornfields between 650-2150 m in Inner Anatolia¹. It is known as purple gladiolus in Turkey and corms are used as aphrodisiac and vomitory³.

Previous phytochemical investigation of the genus *Gladiolus* L. (*G. atroviolaceu*, *G. gandavensis* and *G. segetum*) revealed the presence of anthocyanidins, flavonols, anthraquinones and saponin type natural compounds⁴⁻¹². The biological activities of *Gladiolus* species have also been mentioned^{13,14}. However, no previous reports dealing with any investigation on the composition and antimicrobial activity of the essential oil of *G. atroviolaceus* is available in the literature. The aim of this work is to perform a detailed compositional analysis of the volatiles isolated from the mentioned taxa originating from Turkey. Furthermore, we also tested the antimicrobial activity of the essential oil against a panel of microorganisms.

EXPERIMENTAL

G. atroviolaceus was collected in Yagmurdere valley, Gümüshane-Turkey (at heights of ~ 2020 m) in the northeastern part of Turkey in May, 2010. The plant was authenticated by Prof. S. Terzioglu. Voucher specimen was deposited in the Herbarium of the Faculty of Forestry, KATO (KATO: 9617), Karadeniz Technical University, Turkey.

Hydrodistillation apparatus and procedure: The fresh plant material (175 g) were grounded into small pieces and submitted to hydrodistillation (HD) using a Clevenger-type apparatus with cooling bath (-15 °C) system (4 h) (yield (w/w): 0.033 %). The obtained oil was extracted with HPLC grade *n*-hexane (0.5 mL) and dried over anhydrous sodium sulphate and stored at -5 °C in a sealed brown vial.

Gas chromatography (GC) and gas chromatographymass spectrometry (GC-MS) analysis: GC-FID and GC-MS analyses were done as described previously¹⁵.

Identification of constituents: The components of the oil was characterized by comparison of their mass spectra with those of a computer library or with authentic compounds (α -pinene, limonene, linalool, α -terpineol, heptadecane, henei-cosane, docosane, tricosane, tetracosane and pentacosane) and confirmed by comparison of their retention indices, either with those of authentic compounds or with data published in the literature¹⁶⁻²⁹.

Antimicrobial activity assessment: All test microorganisms were obtained from the Hifzissihha Institute of Refik Saydam (Ankara, Turkey) and were as follows: *Escherichia coli* ATCC 25922, *Yersinia pseudotuberculosis* ATCC 911, *Pseudomonas auroginosa* ATCC 27853, *Staphylococcus aureus* ATCC 25923, *Enterococcus faecalis* ATCC 29212, *Bacillus cereus* 709 ROMA, *Mycobacterium smegmatis* ATCC607 and *Candida albicans* ATCC 60193. The oils were dissolved in hexane to prepare chemicals stock solution of 10.000 µg/400 µL.

Agar well diffusion method: Simple susceptibility screening test using agar-well diffusion method³⁰ as adapted earlier³¹ was used. Each bacterium was suspended in Mueller Hinton (Difco, Detroit, MI) broth. The yeast like fungi was suspended in yeast extracts broth. Then the microorganisms were diluted approximately 10⁶ colony forming unit (cfu) per mL. For yeast like fungi, sabouraud dextrose agar (SDA) (Difco, Detriot, MI) were used. Brain heart infusion agar (BHI) (Difco, Detriot, MI) was used for *M. smegmatis*. They were flood-inoculated onto the surface of Mueller Hinton and sabouraud dextrose agars and then dried. Five-millimeter diameter wells were cut from the agar using a sterile corkborer and 40 µL of the extract substances were delivered into the wells. The plates were incubated for 18 h at 35 °C. The M. smegmatis was grown for 3 days on brain heart infusion agar plates at 35 °C³². Antimicrobial activity was evaluated by measuring the zone of inhibition against the test organism.

Ampicillin (10 μ g), streptomycin (10 μ g) and fluconazole (5 μ g) were standard drugs. Hexane was used as control solvent.

RESULTS AND DISCUSSION

The volatile oil obtained after hydrodistillation of the G. atroviolaceus gave average yield of 0.033 %. GC-MS analyze allowed the identification of 52 volatile compounds¹⁶⁻²⁹ accounting for 93.8 % of the detected GC peak areas. The list of the identified volatile constituents as well as their grouping into eight classes, namely monoterpene hydrocarbons, oxygenated monoterpenes, sesquiterpene hydrocarbons, oxygenated sesquiterpenes, terpene related compounds, aldehydes, hydrocarbons and others with the ratios are given in Table-1. The oil was characterized by high content of acid and ester (55.2 %) and hydrocarbons (19.4 %). Hexadecanoic acid (44.4 %) and heneicosane (6.6 %) were major constituents of the oil of G. atroviolaceus. Sesquiterpene hydrocarbones were found as the major group of terpene compounds in G. atroviolaceus, constituted 2.7 % of the oils. Limonene (2.2 %), γ -muurolene (1.0%), viridiflorol (0.7%) and linalool (0.6%) were identified as the main components of terpenoids in the oil of G. atroviolaceus.

To our best of knowledge, no previous report is found dealing with any investigation on the chemical constituents of the essential oil of *Gladiolus* species. Therefore, we were not able to compare our result. Generally, the comparison of our data with those of literature with other species showed that

TABLE-1 IDENTIFIED COMPONENTS IN THE OIL OF G. atroviolaceus							
Compounds	Area ^a (%)	Exp. RI ^b	Lit. RI				
Monoterpene hydrocarbons		•					
α-Pinene ^c	0.1	939	939				
p-Mentha-1(7),8-diene	0.1	1004	1004				
Limonene ^c	2.2	1029	1031				
Monoterpenoids							
Linalool	0.6	1100	1097				
α-Terpineol ^e	0.2	1188	1189				
p-Menth-1-en-9-al	0.3	1216	1217				
β-Cyclocitral	0.2	1217	1217				
Sesquiterpene hydrocarbons							
α-Copaene	0.1	1377	1377				
Aromadendrene	0.1	1442	1441				
β-Copaene	0.3	1431	1432				
Alloaromadendrene	0.2	1460	1460				
γ-Muurolene	1.0	1479	1480				
trans-Muurola-4(14),5-diene	0.3	1493	1494				
γ-Amorphene	0.3	1496	1496				
Epizonarene	0.4	1502	1502				
Sesquiterpenoids							
Spathulenol	0.2	1579	1578				
Viridiflorol	0.7	1593	1593				
Epi-α-Muurolol	0.4	1644	1642				
Cubenol	0.2	1647	1647				
α-Cadinol	0.5	1654	1654				
Mint sulfide	0.2	1742	1741				
Terpene related compounds							
α-Ionene	0.7	1254	1255				
1,6,8-Trimethyl-1,2,3,4-tetrahydro naphthalene	1.4	1284	MS1				
1,1,5,6-Tetramethyl indane	0.4	1324	MS2				
(6E)-6-Methyl-5-(1-methylethylidene)-6,8-nonadien-2-one	1.2	1332	MS3				
1,1,6-Trimethyl-1,2-dihydronaphthalene	0.6	1352	1354				
E-β-Damascenone	0.2	1385	1385				
Geranyl acetone	0.2	1455	1455				
<i>E</i> -β-Ionone	0.3	1486	1489				
Hexahydro farnesylacetone	0.7	1847	1847				

Compounds	Area ^a (%)	Exp. RI ^b	Lit. RI		
Aldehydes					
Benzaldehyde	0.2	0.2 959			
Benzene acetaldehyde	1.6	1041	1042		
Nonanal	1.2	1101	1101		
2E,6Z-Nonadienal	0.5	1155	1155		
2E-Nonenal	1.0	1160	1162		
2E,4E-Decadienal	0.4	1314	1317		
Hydrocarbons					
Heptadecane ^c	0.5	1704	1700		
Heneicosane ^c	6.6	2101	2100		
Docosane ^c	6.0	2203	2200		
Tricosane ^c	1.5	2300	2300		
Tetracosane ^c	2.5	2399	2400		
Pentacosane ^c	2.3	2500	2500		
Others					
2-Methyl butyl acetate	2.0	882	881		
2-Pentyl furan	0.4	992	993		
Benzyl benzoate	0.4	1764	1760		
Tetradecanoic acid	0.5	1769	1768		
Pentadecanoic acid	0.7	1867	1866		
Methyl hexadecanoate	1.3	1918	1922		
Hexadecanol	0.1	1880	1876		
Hexadecanoic acid	44.4	1981	1980		
Heptadecanoic acid	4.3	2072	2070		
Ethyl linoleate	1.1	2158	2161		
		Number of compounds			
Monoterpene hydrocarbons	2.4	3	3		
Monoterpenoids	1.3	4	4		
Sesquiterpene hydrocarbons	2.7	8	3		
Sesquiterpenoids	2.2	e	6		
Terpene related compounds	5.7	ç)		
Aldehydes	4.9	e	5		
Hydrocarbons	19.4	6	5		
Others	55.2	1	0		
Total	93.8	5	2		

^aPercentages obtained by FID peak-area normalization. ^bRI calculated from retention times relative to that of *n*-alkanes (C_6 - C_{32}) on the non-polar HP-5 column. ^cIdentified by authentic samples.; MS1: 174(24), 165(4), 160(12), 159(100), 144(16), 129(15); MS2: 174(32), 160(12), 159(100), 144(16), 105(5); MS3: 192(18), 159(20), 134(22), 121(38), 119(100), 105(42), 91(44), 65(10)

TABLE-2 SCREENING RESULT FOR ANTIMICROBIAL ACTIVITY OF THE ESSENTIAL OIL OF G. atroviolaceus									
Samplas	Stock	Microorganisms and inhibition zone (mm)							
Samples	(µg/ 400 µL)	Ec	Үр	Pa	Sa	Ef	Bc	Ms	Ca
G. atroviolaceus	10.000	-	-	-	7	-	7	25	10
Ampicillin	10	10	10	18	35	10	15	-	-
Streptomycin	10	-	-	-	-	-	-	35	
Fluconazole	5	-	-	-	-	-	-	-	25

Ec: E. coli, Yp: Y. pseudotuberculosis, Pa: P. aeruginosa, Sa: S. aureus, Ef: E. faecalis, Bc: B. cereus 702 Roma, Ms: M. smegmatis, Ca: C. albicans, (-): no activity

the main constituent of chemical composition of the investigated *G. atroviolaceus* oil was markedly different. The difference of the composition of the oil could be attributed to the family, climate and geographical origin.

The antimicrobial activity for the essential oils of *G. atroviolaceus* was tested *in vitro* using the agar-well diffusion method³⁰⁻³² with the microorganisms as given in Table-2. The essential oils showed moderate antibacterial activity against Gram-positive bacteria *S. aureus*, *B. cereus* 702 Roma, *M. smegmatis* and pathogenic fungi (*C. albicans*).

ACKNOWLEDGEMENTS

The authors thank Prof. Dr. Salih Terzioglu for characterization of plant materials. This work was supported by grants from Karadeniz Technical University Research Fund and State Planning Agency (DPT) of Turkey.

REFERENCES

- K. Tan and J.R. Edmondson, Gladious L., in ed.: P.H. Davis, Flora of Turkey and The East Aegean Islands, Edinburgh University Press, Edinburgh, 8, 441 (1984).
- 2. N. Zeybek and U. Zeybek, Farmasotik Botanik, Ege Üniversitesi Basim Evi, Izmir (1994).
- 3. T. Baytop, Türkiye'de Bitkilerle Tedavi, Nobel Tib Kitabevi, Istanbul (1999).
- A. Salehian, Bull. des Travaux de la Societe de Pharmacie de Lyon, 17, 86 (1973).
- 5. R. Hajiboland and M.H. Manafi, *Acta Botanica. Croatica.*, **66**, 177 (2007).
- Z.G. Tai, L. Cai, Y.B. Yang, C.S. Liu, J.J. Xia and Z.T. Ding, *Bull. Korean Chem. Soc.*, **31**, 2786 (2010).
- Z.G. Tai, X.Q. Yang, L. Cai, W.J. Sun, Z.T. Ding and Y.B. Yang, *Zhong Yao Cai*, 33, 12579 (2010).
- D.Y. Wang , Q. Ye , B.G. Li and G.L. Zhang, *Nat. Prod. Res.*, 17, 365 (2003).
- D.Y. Wang , Q. Ye, G.L. Zhang and B.G. Li, J. Asian Nat. Prod. Res., 5, 297 (2003).

- M.A. El-Shanawany, H.A. Hassanean, M.H. Mohamed and A.M. Nafady, *Nat. Prod. Res.*, 23, 613 (2009).
- 11. B.S. Fazly Bazzaz, G. Haririzadeh, S.A. Imami and M.H. Rashed, *Pharm. Biol.*, **35**, 17 (1997).
- 12. Z. Tao, Y. Qi, F. Chun and C. Yaoming, *Chin. J. Appl. Environ. Biol.*, **5**, 8 (2007).
- 13. B.S. Bazzaz and G. Haririzadeh, Pharm. Biol., 41, 573 (2003).
- O.J. Agot, S.G. Muyala, L.C. Wanjiru and D.S. Fidahussein, *African J. Trad. Complem. Alter. Med.*, 7, 53 (2010).
- 15. N. Kahriman, G. Tosun, H. Genç and N. Yayli, *Turk. J. Chem.*, **34**, 969 (2010).
- R.P. Adams, Identification of Essential Oil Components by Gas Chromatography-Mass Spectroscopy, Allured, Carol Stream, IL, USA (2004).
- 17. D.M. Lazari, H.D. Skaltsa and T. Constantinidis, *Flav. Frag. J.*, 14, 415 (1999).
- P. Torres, J. Ayala, C. Grande, J. Anaya and M. Grande, *Phytochemistry*, 52, 1507 (1999).
- H.D. Skaltsa, C. Demetzos, D. Lazari and M. Sokovic, *Phytochemistry*, 64, 743 (2003).
- G. Flamini, P.L. Cioni, I. Morelli, L. Ceccarini, L. Andolfi and M. Macchia, *Flav. Frag.*, 18, 460 (2003).
- O. Üçüncü, N. Yayli, C. Volga, N. Yayli and S. Terzioglu, *Asian J. Chem.*, **21**, 6569 (2009).
- N. Yayli, A. Yasar, C. Güleç, A. Usta, S. Kolayli, K. Coskunçelebi and S. Karaoglu, *Phytochemistry*, 66, 1741 (2005).

- N. Yayli, A. Yasar, N. Yilmaz Iskender, N. Yayli, T. Beyza Cansu, K. Coskunçelebi and S. Karaoglu, *Pharm. Biol.*, 48, 191 (2010).
- O. Üçüncü, N. Kahriman, S. Terzioglu, S. Alpay Karaoglu and N. Yayli, *Nat. Prod. Comm.*, 5, 831 (2010).
- N. Kahriman, C.G. Albay, N. Dogan, A. Usta, S.A. Karaoglu and N. Yayli, Asian J. Chem., 22, 6437 (2010).
- N.Y. Iskender, N. Yayli, N. Yildirim, T.B. Cansu and S. Terzioglu, J. Oleo Sci., 58, 117 (2009).
- N. Yayli, T.B. Cansu, N. Yilmaz, A. Yasar, M.M. Çetin and N. Yayli, *Asian J. Chem.*, 22, 3439 (2010).
- T.B. Cansu, M. Yücel, K. Sinek, C. Baltaci, S.A. Karaoglu and N. Yayli, Asian J. Chem., 23, 1029 (2011).
- N.Y. Iskender, N. Kahriman, M. Yücel, N. Yayli, S.A. Karaoglu, S. Terzioglu and N. Yayli, Asian J. Chem., 23, 1032 (2011).
- I. Ahmad, Z. Mehmood and F. Mohammed, J. Ethnopharmacol., 62, 183 (1998).
- 31. C. Perez, M. Pauli and P. Bazerque, *Acta Biol. Med. Exper.*, **15**, 113 (1990).
- G.L. Woods, B.A. Brown-Elliott, E.P. Desmond, G.S. Hall, L. Heifets, G.E. Pfyffer, J.C. Ridderhof, R.J. Wallace Jr., N.C. Warren and F.G. Witebsky, Approved Standard NCCLS document M24-A, 23, 18 (2003).