Asian Journal of Chemistry; Vol. 24, No. 3 (2012), 961-963

Asian Journal of Chemistry



www.asianjournalofchemistry.co.in

## Complexes of Cu(II) and Ni(II) Sulphate with Acetone and Acetaldehyde Hydrazones Derived from Valeric Acid and Isovaleric Acid

H.D. ALIYU<sup>\*</sup> and A.S. OJO

Department of Chemistry, University of Abuja, Abuja, Nigeria

\*Corresponding author: E-mail: dedeji22@yahoo.com

(Received: 5 August 2010;

Accepted: 31 October 2011)

AJC-10571

Eight complexes of Ni(II) and Cu(II) sulphates with valeric acid and isovaleric acid hydrazones of acetone and acetaldehyde were synthesized and characterized. The hydrazones act as a bidentate ligands coordinating through the oxygen of the carbonyl and the azomethine nitrogen, while the  $SO_4^{2-}$  ions occurs in the outer sphere complex. The microbial activities of the ligands and their metal complexes are encouraging.

Key Words: Complexes, Cu(II), Ni(II), Hydrazones, Valeric acid, Isovaleric acid.

## INTRODUCTION

Much attention is given to acylhydrazones and some other hydrazines derivatives because of their biological and physiological activities<sup>1</sup>. They generally exhibit strong antibacterial activity which is enhanced on complexation to some transition metal ions<sup>2</sup>. Generally the acylhydrazones are tridentate ligands and the coordination chemistry of these ligands is of interest<sup>3,4</sup>. We report here the Cu(II) and Ni(II) sulphate complexes of acetone and acetaldehyde valeric and isovaleric acid hydrazones and their biological activity.

## **EXPERIMENTAL**

Valeric acid, isovaleric acid, hydrazine, ethanol, Ni(II) sulphate and Cu(II) sulphate and all other organic solvents are products of BDH Ltd.

**Valeric acid hydrazide:** 8.37 mL (8.6.2 g, 0.17 mol) of hydrazine hydrate was added to 18.85 mL (17.5 g, 0.17 mol) of vateric acid in 50 mL of ethanol in a 250 mL round bottom flask was refluxed for 6 h, on a water bath. The mixture was concentrated and left to stand for 2 days. The resulting crystals was dried over silica gel in a vaccum desiccator.

Acetaldehyde valeric acid hydrazone (AVAH): 9 g (0.08 mol) of valeric acid hydrazide in 20 mL of ethanol was refluxed with 4.4 g (0.1 mol) of acetaldehyde in a 250 mL round bottom flask for 6 h. The resulting solution was concentrated and left to crystallize after 1 week. The same procedure was employ for the synthesis of acetaldehyde valeric acid hydrazone (AAVAH), acetone isovaleric acid hydrazone (AAIVAH) and acetaldehyde acetone isovaleric acid hydrazone (AAIVAH).

Synthesis of complexes [Ni(AVAH)]: 1.60 g (0.0113 mol) of acetone valeric acid hydrazone was dissolved in 30 mL of ethanol and was added into  $1.4 \text{ g} (0.0056 \text{ mol}) \text{ NiSO}_{4.}6\text{H}_2\text{O}$  in 20 mL of deionized distilled water gently, while stirring. The resulting green crystal was filtered, recrystallized and dried over silica gel in a vacuum dessicator.

Similar procedure was followed for the preparations of [Ni(AAVAH)], [Cu(AVAH)] [Cu(AAVAH)], [Ni(AIVAH)] [Ni(AAIVAH)], [Cu(AIVAH)] and [Cu(AAIVAH)].

The IR spectra of the ligands and complexes were run on perkin-elmer 1750 Ft spectrophotometer, while the electronic spectre was run on pe-unicam ps-750 UV-Visible spectrophotometer in ethanol and the magnetic susceptibility on MBS auto magnetic susceptibility balance, the melting point of the ligands and complexes were taken on a gahlen hamp melting point apparatus. The metal and SO<sub>4</sub> ions were determined according to standard method<sup>5</sup> while the microbial screening was by Agal-well diffusion method<sup>6</sup> against the following microbes *i.e., Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus subtilis, Kiebsiella pneumoniae and Shigella flexneri.* 

| RESULTS AND DISCUSSION |                                                                                       |         |  |  |  |  |  |  |
|------------------------|---------------------------------------------------------------------------------------|---------|--|--|--|--|--|--|
|                        | The molecular formula of the ligands are shown below:                                 |         |  |  |  |  |  |  |
|                        | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CONHNCHCH <sub>3</sub>                | [AAVAH] |  |  |  |  |  |  |
|                        | and                                                                                   |         |  |  |  |  |  |  |
|                        | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CONHNC(CH <sub>3</sub> ) <sub>2</sub> | [AVAH]  |  |  |  |  |  |  |
|                        | Their Ni(II) and Cu(II) complexes gave a 1:2, M:L ratio                               |         |  |  |  |  |  |  |
|                        | according to the general equation.                                                    |         |  |  |  |  |  |  |

$$\text{RCNHNR} + \text{MSO}_4.\text{nH}_2\text{O} \xrightarrow{\text{H}_2\text{O}} [\text{M}(\text{RCONHNR})_2]\text{SO}_4\text{H}_2\text{O}$$

962 Aliyu et al.

| TABLE-1<br>PHYSICO-CHEMICAL PROPERTIES OF THE COMPOUNDS  |                                                                   |             |             |             |                                        |               |               |             |               |
|----------------------------------------------------------|-------------------------------------------------------------------|-------------|-------------|-------------|----------------------------------------|---------------|---------------|-------------|---------------|
| Compound                                                 | m.f.                                                              | m.w.<br>(g) | Colour      | m.p. (°C) – | Elemental analysis (%): Found (calcd.) |               |               |             |               |
| Compound                                                 |                                                                   |             |             |             | С                                      | Н             | Ν             | S           | М             |
| AVAH                                                     | $C_7H_{14}N_2O$                                                   | 142         | Brown       | 146         | 50.06 (59.15)                          | 9.72 (9.86)   | 19.58 (19.62) | -           | -             |
| AAVAH                                                    | $C_8H_{16}N_2O$                                                   | 156         | Brown       | 148         | 60.87 (61.15)                          | 10.12 (10.26) | 17.76 (17.95) | -           | -             |
| AIVAH                                                    | $C_2H_{14}N_2O$                                                   | 142         | Brown       | 142         | 58.96 (59.15)                          | 9.68 (9.86)   | 19.46 (19.62) | -           | -             |
| AAIVAH                                                   | $C_8H_{16}N_2O$                                                   | 156         | Brown       | 144         | 61.10 (61.15)                          | 10.12 (1.26)  | 17.82 (17.95) | -           | -             |
| N1(AVAH)2SO4.H2O                                         | C14H30N4O6NiS                                                     | 441         | Light Brown | 194         | 37.72 (38.10)                          | 6.58 (6.80)   | 12.62 (12.70) | 7.12 (7.26) | 13.12 (13.37) |
| Cu(AAVAH) <sub>2</sub> SO <sub>4</sub> .H <sub>2</sub> O | $C_{14}H_{30}N_4O_6CuS$                                           | 446         | Dark green  | 198         | 37.60 (37.67)                          | 6.48 (6.73)   | 12.48 (12.56  | 7.10 (7.17) | 14.12 (14.35) |
| N1(AAVAH)2SO4.H2O                                        | C <sub>16</sub> H <sub>34</sub> N <sub>4</sub> O <sub>6</sub> NiS | 469         | Green       | 142         | 40.82 (40.94)                          | 7.12 (7.25)   | 11.72 (11.94) | 6.78 (6.82) | 12.32 (12.58) |
| Cu(AAVAH) <sub>2</sub> SO <sub>4</sub> .H <sub>2</sub> O | C16H34N4O6CuS                                                     | 474         | Blue        | 166         | 40.12 (40.50)                          | 7.02 (7.17)   | 11.62 (11.81  | 6.42 (6.75) | 13.28 (13.50) |
| N1(AIVAH)2SO4.H2O                                        | C14H30N4O6NiS                                                     | 461         | Green       | 188         | 38.01 (38.10)                          | 6.28 (6.80)   | 12.46 (12.70) | 7.12 (7.20) | 13.18 (13.37) |
| Cu(AIVAH) <sub>2</sub> SO <sub>4</sub> .H <sub>2</sub> O | $C_{14}H_{30}N_4O_6CuS$                                           | 446         | Blue        | 157         | 37.42 (37.67)                          | 6.52 (6.80)   | 12.46 (12.56) | 6.88 (7.17) | 14.18 14.35)  |
| N1(AAIVAH)2SO4.H2O                                       | C16H34NO6NiS                                                      | 469         | Green       | 186         | 40.68 (40.74)                          | 7.12 (7.25)   | 11.82 (11.94) | 6.68 (6.82) | 12.46 (12.58) |
| Cu(AAIVAH)2SO4.H2O                                       | C16H34NO6CuS                                                      | 474         | Blue        | 178         | 40.18 (40.50)                          | 7.12 (7.17)   | 6.58 (11.81)  | 6.56 (6.75) | 13.28 (13.50) |

| TABLE-2<br>MAGNETIC AND ELECTRONIC DATA                  |                                     |                                                                                          |                      |                      |  |  |  |
|----------------------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------|----------------------|----------------------|--|--|--|
| Compound                                                 | $\lambda_{max}$ (cm <sup>-1</sup> ) | Assignment                                                                               | $\mu_{\rm eff}$ B.M. | Stereochemistry      |  |  |  |
| Ni(AVAH)2SO4.H2O                                         | 25641<br>137336                     | ${}^{3}A_{2g} \rightarrow {}^{3}T_{1g}(p)$<br>${}^{3}A_{2g} \rightarrow {}^{3}T_{1g}(f)$ | 2.38                 | Distorted Octahedral |  |  |  |
| Cu(AAVAH) <sub>2</sub> SO <sub>4</sub> .H <sub>2</sub> O | 12315                               | d-d                                                                                      | 1.24                 | Distorted Octahedral |  |  |  |
| Ni(AAVAH) <sub>2</sub> SO <sub>4</sub> .H <sub>2</sub> O | 23774<br>13736                      | $^{3}A_{2g} \rightarrow ^{3}T_{1g}(p)$<br>$A_{2g} \rightarrow ^{3}T_{1g}(f)$             | 2.34                 | Distorted Octahedral |  |  |  |
| Cu(AAVAH) <sub>2</sub> SO <sub>4</sub> .H <sub>2</sub> O | 12048                               | d-d                                                                                      | 1.26                 | Distorted Octahedral |  |  |  |
| Ni(AIVAH) <sub>2</sub> SO <sub>4</sub> .H <sub>2</sub> O | 27486<br>13728                      | $^{3}A_{2g} \rightarrow ^{3}T_{1g}(p)$<br>$A_{2g} \rightarrow ^{3}T_{1g}(f)$             | 2.32                 | Distorted Octahedral |  |  |  |
| Cu(AIVAH) <sub>2</sub> SO <sub>4</sub> .H <sub>2</sub> O | 12288                               | d-d                                                                                      | 1.26                 | Distorted Octahedral |  |  |  |
| Ni(AIVAH) <sub>2</sub> SO <sub>4</sub> .H <sub>2</sub> O | 295851<br>13736                     | ${}^{3}A_{2g} \rightarrow {}^{3}T_{1g}(p)$<br>${}^{3}A_{2g} \rightarrow {}^{3}T_{1g}(f)$ | 2.33                 | Distorted Octahedral |  |  |  |
| Cu(AIVAH) <sub>2</sub> SO <sub>4</sub> .H <sub>2</sub> O | 12048                               | d-d                                                                                      | 1.28                 | Distorted Octahedral |  |  |  |

| TABLE-3<br>KEY IR BANDS (cm <sup>-1</sup> ) OF THE LIGANDS AND COMPLEXES |       |           |        |                  |             |                 |             |  |
|--------------------------------------------------------------------------|-------|-----------|--------|------------------|-------------|-----------------|-------------|--|
| Compound                                                                 | v(OH) | $\nu(NH)$ | v(C=O) | $\Delta \nu(CO)$ | $\nu$ (C=N) | $\Delta v(C=N)$ | $\nu(SO_4)$ |  |
| AVAH                                                                     | -     | 3203      | 1710   | -                | 1589        | -               | -           |  |
| N <sub>1</sub> (AVAH) <sub>2</sub> SO <sub>4</sub> .H <sub>2</sub> O     | 3428  | 3210      | 1641   | 69               | 1461        | 128             | 1093        |  |
| Cu(AVAH) <sub>2</sub> SO <sub>4</sub> .H <sub>2</sub> O                  | 3442  | 3188      | 1642   | 68               | 1465        | 124             | 1105        |  |
| AIVAH                                                                    | -     | 3220      | 1728   | -                | 1592        | -               | -           |  |
| N <sub>1</sub> (AIVAH) <sub>2</sub> SO <sub>4</sub> .H <sub>2</sub> O    | 3448  | 3216      | 1629   | 99               | 1459        | 133             | 1089        |  |
| Cu(AIVAH)2SO4.H2O                                                        | 3492  | 3216      | 1664   | 64               | 1441        | 131             | 1099        |  |
| AAVAH                                                                    | -     | 3195      | 1656   | -                | 1548        | -               | -           |  |
| N <sub>1</sub> (AAVAH) <sub>2</sub> SO <sub>4</sub> .H <sub>2</sub> O    | 3488  | 3178      | 1621   | 35               | 1459        | 89              | 1086        |  |
| Cu(AAVAH)2SO4.H2O                                                        | 3462  | 3180      | 1612   | 44               | 1461        | 87              | 1093        |  |
| AAIVAH                                                                   | -     | 3195      | 1662   | -                | 1535        | -               | -           |  |
| N <sub>1</sub> (AAIVAH) <sub>2</sub> SO <sub>4</sub> .H <sub>2</sub> O   | 3496  | 3192      | 1633   | 29               | 1461        | 74              | 1097        |  |
| Cu(AAIVAH)2SO4.H2O                                                       | 3448  | 3188      | 1666   | 14               | 1454        | 81              | 1083        |  |

Their physicochemical properties are given in Table-1, shows a moderate melting points and are soluble in both the polar and non polar solvents.

**Electronic properties:** Their electronic data in ethanol are shown in Table-2. Reveal a *d-d* transition for the Cu(II) complexes around 12000 cm<sup>-1</sup> of a distorted octahedral symmery, while the Ni(II) complexes gave two bad, which has been assigned to the spin allowed transitions  ${}^{3}A_{2g} \rightarrow {}^{3}T_{1g}$ (p) and  ${}^{3}A_{2g} \rightarrow {}^{3}T_{1g}$  (F) usually observed for distorted octahedral summery of Ni(II) complexes(1). The room temperature magnetic moment for both Ni(II) and Cu(II) complexes fall in the range of 1.24-1.28 and 2.32-2.38 BM, respectively and are within the range for distorted octahedral complexes<sup>7</sup>. **IR spectra:** The relevant features of IR bands for the ligands and complexes are shown in Table-3. The broad band, around 3400 cm<sup>-1</sup> is been attributed to the v(OH) of water of crystallization which obscured the v(NH) bands. The amide I band v(C=O) in the ligand, located around 1662 and 1682 for AVAH and AAVAH respectively is been lowered between by between 14-99 cm<sup>-1</sup> in the spectra of the complexes due to the coordination *via* the carbonyl oxygen<sup>8</sup>. The vibrational frequency of the azomethine group v(C=N) is similarly altered indicating coordination *via* the nitrogen of this group<sup>4,8</sup>. The stretching vibration of the SO<sub>4</sub><sup>2-</sup> is observed as a sharp singlet around 1100 cm<sup>-1</sup> implying that the group is acting as a counter ion.

| TABLE-4<br>ANTIMICROBIAL SCREENING OF THE LIGANDS AND COMPLEXES        |                          |                                             |    |                   |                          |  |  |  |  |
|------------------------------------------------------------------------|--------------------------|---------------------------------------------|----|-------------------|--------------------------|--|--|--|--|
| Compound                                                               | Staphylococcus<br>aureus | Pseudomonas<br>aeruginosa Bacillus subtilis |    | Shigella flexneri | Kiebsiella<br>pneumoniae |  |  |  |  |
| AVAH                                                                   | +                        | -                                           | +  | _                 | -                        |  |  |  |  |
| N <sub>1</sub> (AVAH) <sub>2</sub> SO <sub>4</sub> .H <sub>2</sub> O   | ++                       | -                                           | -  | ++                | ++                       |  |  |  |  |
| Cu(AVAH) <sub>2</sub> SO <sub>4</sub> .H <sub>2</sub> O                | -                        | ++                                          | -  | ++                | ++                       |  |  |  |  |
| AIVAH                                                                  | +                        | -                                           | +  | -                 | -                        |  |  |  |  |
| N <sub>1</sub> (AIVAH) <sub>2</sub> SO <sub>4</sub> .H <sub>2</sub> O  | ++                       | -                                           | -  | ++                | ++                       |  |  |  |  |
| Cu(AIVAH)2SO4.H2O                                                      | ++                       | -                                           | -  | -                 | -                        |  |  |  |  |
| AAVAH                                                                  | -                        | -                                           | -  | -                 | -                        |  |  |  |  |
| N <sub>1</sub> (AAVAH) <sub>2</sub> SO <sub>4</sub> .H <sub>2</sub> O  | -                        | -                                           | -  | -                 | ++                       |  |  |  |  |
| Cu(AAVAH) <sub>2</sub> SO <sub>4</sub> .H <sub>2</sub> O               | ++                       | ++                                          | ++ | ++                | ++                       |  |  |  |  |
| AAIVAH                                                                 | -                        | -                                           | -  | -                 | -                        |  |  |  |  |
| N <sub>1</sub> (AAIVAH) <sub>2</sub> SO <sub>4</sub> .H <sub>2</sub> O | -                        | -                                           | -  | -                 | -                        |  |  |  |  |
| Cu(AAIVAH) <sub>2</sub> SO <sub>4</sub> .H <sub>2</sub> O              | -                        | -                                           | _  | _                 | _                        |  |  |  |  |
| L = nontially active LL = moderately active and _ = not active         |                          |                                             |    |                   |                          |  |  |  |  |

+ = partially active, ++ = moderately active and - = not active

**Microbial activity:** The microbial screening of the ligands and complexes as given in Table-4, showns no activity against the tested organisms for the ligands AAVAH and AAIVAH and their Cu(II) and Ni(II) complexes, with exception of Cu(AAVAH) complexe which gave a moderate activity. In the case of AVAH and AIVAH, which are partial active against some of the microbes shows moderate activity on complexation.

## REFERENCES

- 1. J.N. Nwabueze, J. Chem. Soc. Niger., 17, 41 (1992).
- 2. J.N. Nwabueze, Synth. React. Inorg Met.-Org. Chem., 27, 685 (1997).

- 3. J.N. Nwabueze and O.W. Salawu, J. Chem. Soc. Niger., 32, 254 (2007).
- 4. H.D. Aliyu, Pak. J. Sci. Ind. Res., 53, 312 (2010).
- J. Bassete, R.G. Denny, G.H. Jettery and J. Manham, In: Vogels Text-Book of Qualitative Inorganic Analysis, Longman, London, UK, edn. 9, Vol. 11, pp. 319-345 (1979).
- D. Karow, A.J. Savadrgs, A.J. Canin, S. Yamego, C.J. Montesano, J. Simpore, V. Colizzi and A.S. Taaore, *Afr. J. Biotechnol.*, 5, 195 (2006).
- F.A. Cotton and G. Willkinson, Advanced Inorganic Chemistry, Wiley, New York, edn. 4, pp. 773-789 (1980).
- 8. J.N. Nwabueze and O.T. Wgunmoroti, Niger. J. Chem. Res., 5, 17 (2000).