Asian Journal of Chemistry; Vol. 24, No. 2 (2012), 939-940

Asian Journal of Chemistry

www.asianjournalofchemistry.co.in

NOTE

Synthesis and Crystal Structure of [CuL]·(SCN)₂

JIAN-HONG BI^{1,*}, HONG XIA¹ and ZI-XIANG HUANG²

¹Hefei Normal University, Hefei, P.R. China

²Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou 350002, P.R. China

*Corresponding author: E-mail: bi010101@126.com

(<i>Received</i> : 25 May 2011;	Accepted: 24 October 2011)	AJC-10566
A new metal-organic complex [CuL] (SCN synthesized by the reaction of CuL with po	N_2 (L = 5,5,7,12,12,12,14-nexamelinyi-1,4,8,11-letraazamacroc	$r_{\rm X}$ elemental analysis and X ray
diffraction. The crystal belongs to monocl	inic crystal system and has space group $P^{2}(1)/c$ with $a = 7$	6549(6) Å b = 9.4174(8) Å c =
$16.3539 (16)$ Å. $\alpha = 90^{\circ}$, $\beta = 101.508 (4)^{\circ}$, γ	$y = 90^{\circ}$, $v = 1155.24(17)^{\circ}A^{3}$, $z = 2$, $Dc = 1.334 Mg/m^{3}$, $M_r = 46$	4.19 , F(000) = 494 and $\mu = 1.141$
mm^{-1} . The final R = 0.0861, wR = 0.2352 f	For 8186 observed reflections with I > $2\sigma(I)$. In terms of the c	crystal structure, copper(II) ion is

four-coordinated with four nitrogen atoms in the skeleton of tetraazamacrocyclotetradecane, showing a slightly distorted square geometry.

Key Words: Tetaraazamacrocycle, Synthesis, Copper(II) complex, Crystal structure.

The structure of the azamacrocyclic metal complexes is similar to the basic structural units of the metalloenzymes which exist widely in the nature^{1,2}. In recent years, it has been discovered that the azamacrocyclic complexes are important in biosimulation, biomimic catalysis, molecular recognition, photosensing material and magnetic materials³⁻⁵. Many this kind of such complexes have been reported also⁶⁻⁸.

In this paper, the synthesis and crystal structure of the complex $[CuL] \cdot (SCN)_2$ (L = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetrazamacrocyclotetra decane $\cdot 2ClO_4$) are reported.

All reagents were of AR grade and used without further purification. The CuL was synthesized according to the literature⁹. IR spectra was record on a Nexus-870 spectrophotometer. Elemental analyses for C, H and N were performed on a Elementar Vario EL-III analyzer. The crystal structure was determined by Siemens SMART CCD area-detector diffractometer.

Synthesis: 25 mL CH₃CN solution of CuL (10 mmol) was respectively added to 25 mL H₂O solution of KSCN (30 mmol), then refluxed for 1 h. After filtered, the bluish violet colour rhomboid crystals were isolated from the solution at room temperature over two weeks. IR (KBr, v_{max} , cm⁻¹): 3420, 3150, 2970, 2040,1620, 1460, 1190, 1090. Anal. calcd.: C, 46.58; H, 7.82; N, 18.10 %. Found: C, 46.52; H, 7.87; N, 18.14 %.

Structure determination: A single crystal (0.40 mm \times 0.35 mm \times 0.30 mm) was selected for crystallographic data collection at 293(±2) K and structure determinated with

graphite-monochromatic MoK_{α} radiation ($\lambda = 0.71073$ Å). A total of 8186 reflections were collected in the range of 3.47° $\leq \theta \leq 27.48^{\circ}$, of which 2621 reflections were unique with Rint = 0.0151 and R = 0.0861, wR = 0.2352, where w = 1/[$\sigma^2(F_0^2)$ + (0.1293P)² + 2.5277P] and P = (F_0^2 + 2FC²)/3. The maximum and minimum peaks on the final difference Fourier map are corresponding to 1.568 and -1.189e/Å³ (CCDC No.667028), respectively.

The atomic coordinates and thermal parameters are given in Table-1 and the selected bond lengths and bond angels are in Table-2. The molecular structure of $[CuL] \cdot (SCN)_2$ is shown in Fig. 1, in which the center copper(II) ion is coordinated to four nitrogen atoms from the skeleton of tetrazamacrocyclotetradecane, showing a slightly distorted square geometry. As shown in the packing diagram (Fig. 2), there are positive

TABLE-1 ATOMIC COORDINATES (×10 ⁴) AND THERMAL PARAMETERS (×103 Å2)						
Atom	Х	Y	Z	U(eq)		
Cu	5000	5000	5000	54(1)		
S	8236(5)	1442(3)	4301(2)	132(1)		
N(1)	4918(4)	7036(3)	4542(2)	36(1)		
N(2)	2833(4)	4365(3)	4155(2)	36(1)		
N(3)	7810(30)	4192(11)	4253(8)	315(13)		
C(1)	5698(7)	6926(7)	3141(3)	67(2)		
C(2)	3912(9)	8964(6)	3527(4)	74(2)		
C(3)	4288(6)	7361(4)	3632(2)	42(1)		

TABLE-2 SELECTED BOND DISTANCES (Å) AND ANGLES (°)					
Bond	Distance	Angles	(°)		
Cu-N(1)	2.055(3)	N(2)-Cu-N(2)#1	180.000(1)		
Cu-N(2)	2.026(3)	N(2)-Cu-N(1)	93.74(13)		
S-C(9)	1.485(9)	N(2)#1-Cu-N(1)	86.26(13)		
N(1)-C(3)	1.502(5)	C(8)#1-N(1)-C(3)	115.2(3)		
N(2)-C(7)	1.476(5)	C(8)#1-N(1)-Cu	105.2(2)		
N(2)-C(5)	1.492(5)	C(3)-N(1)-Cu	122.2(2)		
N(3)-C(9)	1.125(11)	C(7)-N(2)-C(5)	113.1(3)		
C(1)-C(3)	1.524(7)	C(7)-N(2)-Cu	105.8(2)		
C(2)-C(3)	1.540(6)	C(5)-N(2)-Cu	118.5(2)		
C(3)-C(4)	1.529(6)	N(1)-C(3)-C(1)	110.3(4)		

Fig. 1. Structure of the [CuL]²⁺ cation

negative charge interactions between [CuL]²⁺ cation and two thiocyanate anions.

Fig. 2. Molecular packing arrangement

ACKNOWLEDGEMENTS

This work is financially supported by Natural Science Foundation of China (20871039). Follow-up support from the Nature Science Foundation of Anhui Universities (KJ2011Z299) and Key Disciplines Foundation of Hefei Normal University.

REFERENCES

- 1. P.D. Beer and E. Hayes, Coord. Chem. Rev., 240, 167 (2003).
- K.L. Zhang, Z. Wang, C.M. Jin and X.Z. You, *Transition Met. Chem.*, 27, 95 (2002).
- P. Mobian, J.M. Kern and J.P. Sauvage, J. Am. Chem. Soc., 125, 2016 (2003).
- 4. N.F. Curtis, Inorg. Chim. Acta, 317, 27 (2001).
- 5. T.C. Schroler and S.R. Smedley, Tetrahedron Lett., 39, 6625 (1998).
- I. Nazarovaa, A.V. Feofanov, T.A. Karmakova, G.V. Sharonov, A.D. Plyutinskaya, R.I. Yakubovskaya, V.S. Lebedeva, A.F. Mironov, J.-C. Maurizot and P. Vigny, *Russ. J. Bioorg. Chem.*, **31**, 482 (2005).
- D.F. Cook, N.F. Curtis, O.P. Gladkikh and D.C. Weatherburn, *Inorg. Chim. Acta*, 355, 15 (2003).
- 8. H. Xia and Z.X. Huang, Asian J. Chem., 22, 8261 (2010).
- 9. J.H. Bi, Acta Crystallogr., E65, m633 (2009).