Asian Journal of Chemistry; Vol. 24, No. 2 (2012), 668-672

Asian Journal of Chemistry

www.asianjournalofchemistry.co.in

Calculation of CaCO₃ Solubility (Precipitability) in Natural Waters

H. QIAN*, X.D. ZHANG and P.Y. LI

School of Environmental Science and Engineering, Chang'an University, No. 126, Yanta Road, Xi'an 710054, Shaanxi, P.R. China

*Corresponding author: Fax: +86 29 82339960; Tel: +86 29 82339327; E-mail: qianhui@chd.edu.cn

(Received: 14 February 2011;

Accepted: 14 October 2011)

AJC-10503

It is an important issue to calculate the $CaCO_3$ solubility (precipitability) in natural waters in karst geochemistry. This paper pointed out some serious problems in the existing methods dealing with this issue and put forward a new method to calculate the $CaCO_3$ solubility (precipitability) in natural waters. This new method is based on the calculation of $CaCO_3$ saturation index and takes the changes of pH values, activity coefficients and concentration changes of species into account and these factors are studied in open and closed systems, respectively. The results showed that if the above-mentioned changes were ignored, there would be significant errors in the calculated results.

Key Words: Natural waters, CaCO₃ solubility (precipitability), Calculation method, Saturation index.

INTRODUCTION

Calcium carbonate is a kind of usual compound in karst area forming the minerals of calcite and aragonite. The dissolution and precipitation of CaCO₃ play a significant role in karst hydrogeology. Study on the dissolution and precipitation of CaCO₃ can help us to understand the evolution of karst aquifers and to prevent karstic environmental hazards. Some work related to the dissolution and precipitation of CaCO₃ has been done recently¹⁻⁸. For example, Cubillas *et al.*¹ studied the experimental dissolution rate of CaCO₃ at 25 °C using a pH-4 HCl inlet solution. Another recent study conducted by Veress⁴ investigated several factors on karstification and the results revealed that karren formation was more intense on slopes with *Pinus mugo* than on bare slopes and the dissolution process was controlled by wind.

Natural waters are usually in a non-equilibrium state with CaCO₃. The unsaturated water will dissolve CaCO₃, while oversaturated water will form CaCO₃ precipitation. For a given natural water, when it is unsaturated with CaCO₃, how much CaCO₃ will dissolve in it and when it is oversaturated with CaCO₃, how much CaCO₃, how much CaCO₃ will precipitate from the water? This is a key question in the research of karst geochemistry. However, this question has not been properly answered and the literatures related are rare as well. Although a limited number of literatures have discussed this issue in detail, the methods used have some problems. For example, in a study conducted by the Karst Geology Research Institute of the Academy of Chinese Geological Sciences⁹, the CaCO₃ solubility in natural water was calculated by formula (1).

 $ACa = ECa - DCa \tag{1}$

where, DCa is the Ca^{2+} concentration in water sample, ECa is the equilibrium concentration of Ca^{2+} under a given pressure of CO₂ (P_{CO2}), which is calculated by the following formula:

$$ECa = \frac{K_{c}[H^{+}]^{2} \times 40.08}{K_{1}K_{2}K_{s}\gamma_{ca}P_{co_{2}}}$$
(2)

where, K_C is the solubility product of CaCO₃, K_s is Henry constant, K_1 , K_2 are the first and second ionization constants of H₂CO₃, respectively, γ_{Ca} is the activity coefficient of Ca²⁺, [H⁺] stands for the H⁺ concentration in water. The formula (2) is derived based on the chemical reactions listed below:

$CO_2 + H_2O = H_2CO_3$	Ks
$H_2CO_3 = H^+ + HCO_3^-$	K_1
$HCO_{3}^{-} = H^{+} + CO_{3}^{2-}$	K_2
$CaCO_3 = Ca^{2+} + CO_3^{2-}$	K _C

It must be noted that ECa calculated by formula (2) is the equilibrium concentration of Ca^{2+} in mg/L. ACa obtained by formula (1) stands for the solubility of CaCO₃ (in mg/L) denoted by Ca. The solubility of CaCO₃ (in mg/L) denoted by CaCO₃ can be calculated by:

$$ACa(CaCO_3) = ACa(Ca^{2+}) \times \frac{100.08}{40.08}$$
 (3)

In the method, the equilibrium concentration of Ca^{2+} calculated by formula (2) has the following problems: (1) The activity coefficients of Ca^{2+} and CO_3^{2-} will decrease with the dissolution of $CaCO_3$ in water, which will promote the dissolution of $CaCO_3$ and the dissolution of $CaCO_3$ will further make the activity coefficients of Ca^{2+} and CO_3^{2-} smaller. On the contrary, with the precipitation of $CaCO_3$, the activity coefficients

of Ca²⁺ and CO₃²⁻ will increase. Therefore, the activity coefficient changes should be taken into account in the calculation of the CaCO₃ solubility and precipitability in natural waters. (2) With the dissolution or precipitation of $CaCO_3$, CO_3^{2-} will either enter into or precipitate from the solution. In both cases, the carbonate equilibrium in the solution will be re-adjusted, causing the pH value of the solution changed. In formula (2), pH value changes during the dissolution or precipitation process of CaCO₃ are not considered. (3) Ca^{2+} exists in water in several forms, in addition to the free Ca²⁺, there are still CaCO₃⁰, CaSO₄⁰, CaHCO₃⁻, CaOH⁺, etc. The dissolution and precipitation of CaCO₃ will undoubtedly lead to the changes of their concentrations and these changes will in turn affect the dissolution or precipitation of CaCO₃. Therefore, the concentration changes of various forms of Ca²⁺ in water should be taken into account during the CaCO₃ solubility and precipitability calculation. (4) Even for the same solution, its ability to dissolve (precipitate) CaCO3 is not the same due to the environmental conditions. In an open system, the solubility of CaCO₃ in water is significantly greater than that in a closed system because of a steady supply of additional CO₂. The situation of precipitation is just the opposite. When the CaCO₃ precipitates in an open system, CO₂ will escapes from the solution, which will cause the precipitation of CaCO₃ to be greater than that in a closed system.

It can be seen from the above analysis that the calculation of solubility and precipitability of CaCO₃ in natural waters should take these changes into account and the open system and closed system should be distinguished as well.

EXPERIMENTAL

Basic principle of the methods: The calculation of $CaCO_3$ solubility in natural waters is virtually the calculation of the amount of $CaCO_3$ needs to be dissolved in water to get an equilibrium state in unsaturated solution, and the calculation of $CaCO_3$ precipitability is virtually the calculation of the amount of $CaCO_3$ needs to be precipitated from water to get an equilibrium state in oversaturated solution. The indicator measuring the saturation state is called saturation index (SI), which is defined as:

$$SI = \frac{\{Ca^{2+}\}\{CO_3^{2-}\}}{K_c}$$
(4)

In the formula (4), SI is the saturation index of water with respect to CaCO₃ (calcite), {Ca²⁺} and {CO₃²⁻} are respectively the activities of Ca²⁺ and CO₃²⁻ in the solution, K_C is the solubility product of calcite. When SI < 1, the solution is unsaturated

with CaCO₃ and CaCO₃ will dissolve, when SI > 1, the solution is oversaturated with CaCO₃ and CaCO₃ will precipitate and when SI = 1, the solution is in equilibrium with CaCO₃ and no dissolution or precipitation will occur.

According to the definition of saturation index, when calculating the CaCO₃ solubility in natural waters, a preliminary dissolution amount of CaCO3 named testing dissolution amount (TDA) can be given according to the water chemistry analysis results and calculated results of saturation index. Using testing dissolution amount, SI can be calculated by formula (4). If SI > 1, it shows the given testing dissolution amount is too large and it needs to be reduced, if SI < 1, it shows the given testing dissolution amount is too small and needs to be increased and when SI = 1, it shows the given testing dissolution amount is exactly the amount of CaCO₃ that the solution can dissolve. Whether SI > 1 or SI < 1, the CaCO₃ solubility can be obtained by reducing or increasing the testing dissolution amount. Similarly, when calculating the CaCO3 precipitability of oversaturated solutions, a testing precipitation amount (TPA) can be given and SI is calculated by formula (4) using testing precipitation amount. If SI > 1, it shows the given testing precipitation amount is too small. If SI < 1, it shows the given testing precipitation amount is too large and if SI = 1, the given testing precipitation amount is equal to the amount of CaCO₃ that can be precipitated from the solution. Whether SI > 1 or SI < 1, the amount of CaCO₃ can be precipitated from the solution can be obtained by reducing or increasing the testing precipitation amount.

It can be seen from the above discussion, the key point for calculating CaCO₃ solubility or precipitability in natural water is the calculation of SI after a certain amount of CaCO₃ is dissolved into or precipitated from the water, which in turn needs to calculate the activities of Ca²⁺ and CO₃²⁻ in solution.

Calculation of Ca²⁺ and CO₃²⁻ activities: Activity is obtained by multiplying the activity coefficient and the concentration. In natural waters, due to the complicated complexation of anions and cations, the water chemistry analysis results is unable to reflect the real forms of the species in the solution. Table-1 lists the water chemistry analysis results of 8 natural waters. In the solutions, Ca²⁺ can be joined by other anions, forming CaSO₃⁰, CaCO₃⁰, CaHCO₃⁺ and CaOH⁺. Similarly, other cations and anions can also be joined by the oppositely charged ions to form complex species. Table-2 lists the solution chemical model according to the water analysis results listed in Table-1 and the model contains a total of 26 species, including 9 basic components and 17 derived species. Since species are interacted by the chemical equilibrium in water, the

TABLE-1											
CHEMICAL ANALYSIS RESULTS OF WATER SAMPLES (mg/L)											
Sample No.	pН	t ℃	Cl	SO_4^{2-}	CO3 ²⁻	HCO ₃ ⁻	Na ⁺	K^+	Ca ²⁺	Mg ²⁺	SI
1	7.36	16.0	4.25	5.76	0.0	53.70	1.05	0.86	18.04	0.97	0.064
2	7.61	13.0	2.84	6.72	0.0	73.24	0.60	0.30	23.25	2.92	0.180
3	6.76	20.0	24.82	29.78	0.0	165.97	14.45	2.15	62.52	2.92	0.129
4	7.39	21.3	9.22	7.68	0.0	180.62	3.55	0.55	60.92	2.19	0.807
5	8.62	12.0	2.84	18.25	9.6	165.97	0.30	0.00	64.13	1.06	10.340
6	8.26	20.0	4.96	12.49	4.8	234.23	1.00	0.00	85.37	0.44	10.435
7	7.50	22.7	2.84	2.88	0.0	200.15	0.85	0.65	63.33	2.68	1.277
8	8.17	23.0	3.30	277.00	0.0	296.00	4.40	15.10	163.00	27.30	16.420

CHEMICAL MODEL FOR THE STUDIED WATER								
Basi	c components	Derived species						
No.	Constituents	No.	Constituents	Chemical reactions				
1	Cl-	1	NaCl ⁰	$Na^+ + Cl^- = NaCl^0$				
2	SO_4^{2-}	2	KCl^{0}	$K^+ + Cl^- = KCl^0$				
3	CO ₃ ²⁻	3	$H_2SO_4^{0}$	$2H^+ + SO_4^{2-} = H_2 SO_4^{0}$				
4	Na ⁺	4	HSO_4^-	$\mathrm{H}^{+} + \mathrm{SO}_{4}^{2-} = \mathrm{HSO}_{4}^{-}$				
5	\mathbf{K}^{+}	5	$NaSO_4^-$	$Na^+ + SO_4^{2-} = NaSO_4^-$				
6	Ca ²⁺	6	KSO_4^-	$\mathrm{K}^{+} + \mathrm{SO}_{4}^{2-} = \mathrm{KSO}_{4}^{-}$				
7	Mg ²⁺	7	$CaSO_4^{0}$	$Ca^{2+} + SO_4^{2-} = CaSO_4^{0}$				
8	H^{+}	8	$MgSO_4^{0}$	$Mg^{2+} + SO_4^{2-} = MgSO_4^{0}$				
9	OH⁻	9	$H_2CO_3^{0}$	$2H^{+} + CO_{3}^{2-} = H_{2}CO_{3}^{0}$				
		10	HCO ₃ ⁻	$H^{+} + CO_{3}^{2-} = HCO_{3}^{-}$				
		11	$CaCO_3^0 Ca^{2+} + CO_3^{2-} = Cat$					
		12	$MgCO_3^0$	$Mg^{2+} + CO_3^{2-} = MgCO_3^{0}$				
		13	CaHCO ₃ ⁺	$Ca^{2+} + H^{+} + CO_3^{2-} = CaHCO_3^{+}$				
		14	MgHCO ₃ ⁺	$Mg^{2+} + H^{+} + CO_{3}^{2-} = MgHCO_{3}^{+}$				
		15	CaOH ⁺	$Ca^{2+} + OH^{-} = CaOH^{+}$				
		16	MgOH ⁺	$Mg^{2+} + OH^{-} = MgOH^{+}$				
		17	H ₂ O	$\mathrm{H}^{\scriptscriptstyle +} + \mathrm{O}\mathrm{H}^{\scriptscriptstyle -} = \mathrm{H}_2\mathrm{O}$				

TABLE-2

concentration of each species must be calculated simultaneously to determine the concentrations of Ca^{2+} and CO_3^{2-} . The following non-linear programming problems were summarized in a previous study¹⁰.

$$\min|\mathbf{ZI}| = \left|\sum_{k=1}^{m} a_{k} z_{k} + \sum_{j=1}^{n} c_{j} z_{j} - \mathbf{ZI}_{0}\right|$$
(5)

$$a_{k} + \sum_{j=1}^{n} P_{k,j} c_{j} = T_{k}$$
 k=1,2....,m (6)

$$c_{j} = K_{j}F_{j}^{-1}\prod_{k=1}^{m}a_{k}^{P_{k,j}}$$
 j=1,2,.....n (7)

where, a_k is the concentration of the k'th basic components, z_k is the electric charge of the k'th basic components, m is the number of the basic components, c_j is the concentration of the j'th derived species, z_j is the electric charge of the j'th derived species, n is the number of derived species, ZI₀ is the charge balance difference caused by water quality analysis error, $P_{k,j}$ is the stoichiometric number, F_j^{-1} is the correction factor for activity coefficient, T_k is the total concentration of all components containing the k'th basic component in water.

The non-linear programming problems can be solved by the Newton-Raphson iteration method combined with Golden Section method¹⁰⁻¹². After the calculation, the activity coefficients and the concentrations of all species in water can be obtained and of course, Ca^{2+} and CO_3^{2-} are included.

Environmental conditions: Because of the CO₂-H₂O equilibrium, the calculations of CaCO₃ solubility and precipitability are different in different environmental conditions.

In a closed system, there is no further recharge of CO₂. For the calculation of CaCO₃ solubility and precipitability, all we have to do is simply adjust the testing dissolution (precipitation) amount of CaCO₃ and solve the non-linear programming problems of (5), (6) and (7) repeatedly until SI = 1. When SI = 1, the testing dissolution (precipitation) is equal to the amount of CaCO₃ that can be dissolved into or precipitated from water in a closed system. When a testing dissolution (precipitation) amount is added, the total concentrations of species containing Ca^{2+} and CO_3^{2-} in the solution will change according to the following relations:

$$T_{Ca} = T^{0}{}_{Ca} + \Delta T$$

$$T_{C} = T^{0}{}_{C} + \Delta T$$
(8)
(9)

where, T_{Ca} and T_{C} are the total concentrations of species containing Ca²⁺ and CO₃²⁻ respectively after a given amount of testing dissolution (precipitation) is added, T^{0}_{Ca} and T^{0}_{C} are respectively the total concentrations of species containing Ca²⁺ and CO₃²⁻ in the original solution, and ΔT is the testing dissolution (precipitation) amount of CaCO₃.

In an open system, in addition to the dissolution and precipitation of CaCO₃, the dissolution and escape of CO₂ must also be taken into account for the calculation of CaCO₃ solubility (precipitability) in natural waters. This is because the atmospheric CO₂ and water have a close contact in an open system. For a given open system, the partial pressure of atmospheric CO₂ is constant. Therefore, the concentration of $H_2CO_3^0$ in water should be kept constant in accordance with the Henry's law:

$[H_2CO_3^0] = K_sP_{CO_2}$

When CaCO₃ dissolves into or precipitates from water, the carbonate equilibrium will readjust. In order to maintain the equilibrium, the atmospheric CO₂ will dissolve into the water or the soluble CO₂ will escape from water. Therefore, in an open system, for a given testing dissolution (precipitation) amount, the total concentrations of species containing CO_3^{2-} should be calculated as follows:

$$T_{\rm C} = T^0_{\ \rm C} + \Delta T + \Delta C \tag{10}$$

where, ΔC is the amount of CO_2 dissolved into or escaped from water in order to maintain the equilibrium between the atmospheric CO_2 and water, ΔT is the testing dissolution (precipitation) amount of CaCO₃. For the calculation of ΔC , the nonlinear programming problem of (5), (6) and (7) is also needed to be solved. After the testing dissolution (precipitation) amount is added, if the concentration of H₂CO₃⁰ in water increases, then CO₂ will escape from the water. The ΔC is negative, then adjust ΔC repeatedly and solve the nonlinear programming problem, when the concentration of H₂CO₃⁰ equals to that in the original solution, ΔC is the escaped amount of CO₂ corresponding to ΔT . If the concentration of H₂CO₃⁰ in water reduces after the testing dissolution (precipitation) amount is added, then the atmospheric CO₂ will dissolves into the water. At this moment, ΔC is positive, the dissolution amount of CO₂ corresponding to ΔT can be get by adjusting ΔC and solving the nonlinear programming problem repeatedly. The solubility (precipitability) of CaCO₃ in natural waters in an open system is the testing dissolution (precipitation) amount when SI = 1 after adding ΔT and ΔC at the same time.

RESULTS AND DISCUSSION

Validation of the calculation methods: The solubility of calcite and aragonite at 25 °C in pure water was calculated with the methods above to verify the calculation method. The parameters used in the calculation are listed in Table-3. The calculated results were compared with the results reported in literatures¹³⁻¹⁵. The solubility of calcite given by Yuan and Cai¹³ and Karst Research Group of the Institute of Geology of the Chinese Academy of Sciences (KRGIGCAS)¹⁴ is 14 mg/L, while the calcite solubility given by Ren and Liu¹⁵ is 14.3 mg/ L. The aragonite solubility given by the previous reports is the same, being 15.3 mg/L. Using the above method, the calculated solubilities of calcite and aragonite at 25 °C in pure water are 14.02 and 15.84 mg/L, respectively. It can be seen that the calculated solubilities of calcite and aragonite in pure water at 25 °C have good agreement with the reported results, which indicates that the methods developed here can be successfully used to calculate the solubility of CaCO3 in natural water.

TABLE-3 REACTION AMONG SPECIES IN WATER AND THEIR EQUILIBRIUM CONSTANTS							
Reactions	Equilibrium constants at 25 °C						
$2H^{+} + CO_{3}^{2-} = H_{2}CO_{3}^{0}$	$10^{-16.69}$						
$H^{+} + CO_{3}^{2-} = HCO_{3}^{-}$	10 ^{-10.33}						
$Ca^{2+} + CO_3^{2-} = CaCO_3^{0}$	10 ^{-3.15}						
$Ca^{2+} + H^{+} + CO_3^{2-} = CaHCO_3^{+}$	10 ^{-11.32}						
$Ca^{2+} + OH^{-} = CaOH^{+}$	10 ^{-2.20}						
$\mathrm{H}^{\scriptscriptstyle +} + \mathrm{OH}^{\scriptscriptstyle -} = \mathrm{H}_2\mathrm{O}$	10 ^{-13.999}						
Calcite $CaCO_3(s) = Ca^{2+} + CO_3^{2-}$	10 ^{-8.34}						
Aragonite $CaCO_3(s) = Ca^{2+} + CO_3^{2-}$	10 ^{-8.22}						

The calculated solubility (precipitability) for the water samples (Table-1) are listed in Table-4. The column named formula (1) is the calculated results by formula (1). In the calculated results, the positive values denote the dissolution amount and the negative values denote precipitation amount.

It can be seen from Table-4, the errors of $CaCO_3$ solubility (precipitability) calculated by formula (1) are significant. For example, the calculated result by formula (1) is 652.171 mg/L for water sample 1, whereas using the method developed in this paper, the calculated result of $CaCO_3$ solubility in open system is 67.31 mg/L and in closed system the result is only 9.49 mg/L. The result of formula (1) is about 10 times of that calculated in an open system and more than 65 times of that in a closed system. Let's take water sample 7 for another example. The precipitability calculated by formula (1) is 39.214 mg/L, but using the method developed in this paper, the calculated precipitabilities in open system and in closed system are, respectively, 13.14 and 4.34 mg/L, which are only 1/3 and 1/ 9 of the result by formula (1). Similar situations also exist in the other water samples. In short, whether the calculation of solubility or precipitability, the results of formula (1) are too large.

TABLE-4 CALCULATED AMOUNTS OF DISSOLVED (PRECIPITATED) CaCO ₃ FOR THE WATER SAMPLES									
Sample	Formula (1)	Op	en syster	Closed system					
No.	CaCO ₃	CaCO ₃	CO_2	pН	CaCO ₃	pН			
1	652.171	67.31	29.22	7.778	9.49	8.402			
2	259.165	47.25	20.43	7.866	6.85	8.271			
3	1010.26	119.74	52.41	7.099	50.7	7.367			
4	29.686	11.35	4.94	7.423	3.66	7.464			
5	-145.906	-87.47	-35.07	8.264	-20.39	7.687			
6	-194.475	-117.01	-48.37	7.899	-35.37	7.368			
7	-39.214	-13.14	-5.69	7.463	-4.34	7.415			
8	-386.685	-173.49	-71.03	7.665	-64.5	7.121			

In addition, it can also be seen from Table-4 that the CaCO₃ solubility in open system is greater than that in closed system and the CaCO₃ precipitability in open system is also greater than that in closed system. The reason for this is that in an open system, with the dissolution of CaCO₃, the atmospheric CO₂ will dissolve into water and CO₂ will escape from the water with the precipitation of CaCO₃. For example, for water sample 3, when 119.74 mg/L of CaCO₃ dissolved into water in an open system, 52.41 mg/L of CO₂ dissolved into water along with. But in a closed system, there is no CO₂ dissolution, so the amount of dissolved CaCO₃ was only 50.70 mg/L. For water sample 5, when 87.47 mg/L of CaCO₃ precipitated in open system, 35.07 mg/L of CO2 escaped from the water. But in closed system, there is no CO₂ escaped, so the amount of precipitated CaCO₃ is only 20.39 mg/L. And because of this, the pH value of water in open system is lower than that in closed system when dissolution equilibrium is reached, and the pH value of water in open system is higher than that in closed system when precipitation equilibrium is reached.

In order to study the other factors impacting $CaCO_3$ dissolution (precipitation) in natural waters, Table-5 lists some parameters including activity coefficients of Ca^{2+} and CO_3^{2-} before and after the dissolution of $CaCO_3$, the concentrations of species containing Ca^{2+} and the calculation results of pH values.

It can be concluded from Table 5 that: (1) For unsaturated solution, the activity coefficients of Ca^{2+} and CO_3^{2-} at equilibrium state, both in open system or closed system, are smaller than those in the original solution. But for oversaturated solution, the activity coefficients of Ca^{2+} and CO_3^{2-} at equilibrium in open system and closed system are larger than those in the original solution; (2) For water unsaturated with $CaCO_3$, when it reaches the equilibrium state in open system or closed system, the concentrations of $CaSO_3^0$, $CaCO_3^0$, $CaHCO_3^+$ and $CaOH^+$ in water will increase. But for water

TABLE-5 COMPARISON OF SEVERAL PARAMETERS BEFORE AND AFTER THE DISSOLUTION OF CaCO3									
Conditions	Sample No.	$\gamma_{\rm co_3^{2-}}$	$\gamma_{\rm Ca}$	Ca ²⁺ (mmol/L)	CaSO ₄ ⁰ (µmol/L)	CaCO ₃ ⁰ (µmol/L)	CaHCO ₃ ⁺ (µmol/L)	CaOH ⁺ (µmol/L)	рН
	1	0.839	0.842	0.447	1.762	0.268	2.367	0.001	7.360
	2	0.818	0.821	0.574	2.410	0.733	3.839	0.001	7.610
	3	0.730	0.738	1.520	23.242	0.563	19.298	0.001	6.760
Original	4	0.742	0.749	1.485	6.136	3.552	27.932	0.004	7.390
solution	5	0.743	0.749	1.526	13.798	41.613	22.147	0.026	8.620
	6	0.714	0.723	2.027	12.311	45.461	49.530	0.031	8.260
	7	0.740	0.747	1.541	2.395	5.682	34.063	0.005	7.500
	8	0.599	0.615	3.578	325.878	73.313	98.222	0.052	8.170
	1	0.774	0.779	1.102	3.592	4.201	14.432	0.004	7.778
	2	0.776	0.781	1.034	3.834	4.070	11.972	0.004	7.866
	3	0.677	0.687	2.653	33.745	4.356	69.671	0.003	7.099
Open system	4	0.736	0.743	1.593	6.442	4.403	32.155	0.004	7.423
	5	0.805	0.809	0.712	7.795	4.025	4.767	0.006	8.264
	6	0.786	0.791	0.942	7.196	4.357	10.661	0.007	7.899
	7	0.748	0.754	1.416	2.258	4.451	28.966	0.005	7.463
	8	0.639	0.652	2.094	222.982	4.464	18.843	0.010	7.665
Closed system	1	0.828	0.831	0.536	2.048	4.200	3.378	0.009	8.402
	2	0.811	0.814	0.638	2.627	4.070	4.662	0.006	8.271
	3	0.705	0.714	2.000	28.105	4.356	37.223	0.004	7.367
	4	0.740	0.747	1.520	6.234	4.404	29.231	0.004	7.464
	5	0.753	0.760	1.364	12.769	4.025	18.318	0.003	7.687
	6	0.731	0.739	1.728	11.097	4.358	36.848	0.003	7.368
	7	0.742	0.749	1.501	2.351	4.448	32.391	0.004	7.415
	8	0.612	0.627	3.065	293.554	4.466	66.683	0.004	7.121

oversaturated by CaCO₃, when it reaches the equilibrium state, the contents of the above-mentioned species in water will decrease to different degrees; (3) Both in open and closed systems, pH values of water will increase with the dissolution of CaCO₃ and will decrease with the precipitation of CaCO₃.

The activity coefficients of species, the concentrations of Ca^{2+} complex and the changes of pH values are interrelated and indivisible and they all have great influences on the calculated results of CaCO₃ solubility (precipitability) in natural waters. Therefore, in the calculation of CaCO₃ solubility (precipitability) in natural waters, the above changes must be handled simultaneously.

Conclusion:

(1) The calculation of CaCO₃ solubility (precipitability) in natural waters must be based on the calculation of equilibrium distribution of species, the open system and closed system should be distinguished and at the same time, the changes of the pH values and activity of species with the CaCO3 dissolution (precipitation) should be taken into account. (2) The essence of CaCO₃ solubility (precipitability) calculation in natural waters is to calculate the amount of CaCO₃ that can dissolve into or precipitate from water when a dissolution and precipitation balance of CaCO₃ is reached. The key issue is to calculate the activity of Ca^{2+} and CO_3^{2-} in water. (3) Without considering the activity coefficients, the concentrations of Ca²⁺ complex and the changes of pH values in water, the error of CaCO₃ solubility (precipitability) calculation is significant and the calculated results will greatly exceed the actual dissolution (precipitation) ability. (4) The CaCO₃ dissolution of unsaturated water in open system is larger than that in closed system and the CaCO₃ precipitation of oversaturated water in open system is larger than that in closed system. The reason for this is that in open system, the atmospheric CO_2 will dissolve into water with the dissolution of $CaCO_3$ and the soluble CO_2 will escape from water with the precipitation of $CaCO_3$.

ACKNOWLEDGEMENTS

The work was supported by the National Natural Science Foundation (Grant No. 40772160). The authors would like to express their gratitude to Prof. G.T. Hu, J.T. Li and Y.X. Li for their guidance and help during writing.

REFERENCES

- P. Cubillas, S. Köhler and M. Prieto, C. Chaïrat and E.H. Oelkers, *Chem. Geol.*, 216, 59 (2005).
- O.S. Pokrovsky, S.V. Golubev and G. Jordan, *Chem. Geol.*, 265, 33 (2009).
- 3. F. Flukiger and D. Bernard, Chem. Geol., 265, 171 (2009).
- 4. M. Veress, Hung. Geograph. Bull., 59, 289 (2010).
- 5. F. Bouchelaghem, Appl. Math. Model., 34, 467 (2010).
- 6. D.W. Finneran and J.W. Morse, Chem. Geol., 268, 137 (2010).
- M. Xu, X.M. Hu, K.G. Knauss and S.R. Higgins, *Geochim. Cosmochim.* Acta, 74, 4285 (2010).
- E. Ruiz-Agudo, M. Kowacz, C.V. Putnis and A. Putnis, *Geochim. Cosmochim. Acta*, 74, 1256 (2010).
- Karst Geology Research Institute of the Academy of Chinese Geological Sciences. The research of Guilin karst landforms and caves. Beijing: Geological Publishing House, (1988).
- H. Qian, X.L. Song, X.D. Zhang, C. Yang and P.Y. Li, *E-J. Chem.*, 8, 657 (2011).
- 11. M. Ohnishi, Comput. Math. Appl., 24, 147 (1992).
- 12. S. Abbasbandy, Appl. Math. Comput., 145, 887 (2003).
- D.X. Yuan and G.H. Cai, Karst Environmental Science, Chongqing: Chongqing Publishing House, (1988).
- Karst Research Group of the Institute of Geology of the Chinese Academy of Sciences, Research of China Karst. Beijing: Science Press, (1979).
- 15. M.E. Ren and Z.Z. Liu, Introduction of Karst Science. Beijing: The Commercial Press (1983).