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INTRODUCTION

Human serum albumin (HSA) is the most abundant protein

in plasma, which is a single peptide chain protein consisting

585 amino acid residues, molecular weight 66500. It is the

major storage and transport protein for numerous endogenous

and exogenous compounds and is also capable of binding an

extraordinarily diverse range of metabolites, drugs and organic

compounds. Coumarins drugs are commonly used drugs, many

of which exhibit useful pharmaceutical activity, such as anti-

bacterial, antithrombotic, anti-inflammatory and antitumor

properties1-4. In order to make the drugs putting into the body

pharmacodynamic effect, the drugs have to reach receptor sites

through the storage and transport of plasma. The remarkable

binding capacity of drugs and human serum albumin has a

significant impact for pharmacodynamics and pharmaco-

kinetics. While the binding constant is an important parameter

measuring the binding strength, so, construction of quantitative

correlation between the molecular structure and the binding

constants of coumarins and human serum albumin has an

important significance to research drug screening and predic-

tion of protein interactions. This has stimulated a great deal of

research on the nature of the drug binding capacity and sites.

The quantitative structure-property relationship (QSPR) is a

well-established technique for estimation of the physico-

chemical properties of a compound based on the descriptors

derived from the molecular structure. It is widely used in all

(Received: 7 January 2013; Accepted: 7 October 2013) AJC-14245

Three-dimensional holographic vector of atomic interaction field (3D-HoVAIF) was used to describe the chemical structures of 20

coumarins and it was employed to the quantitative structure property relationship studies between the binding constants of coumarins and

human serum albumin. Here the quantitative structure property relationship model was built by multiple linear regression and partial least

square regression. The stability and prediction ability of the established model were strictly examined by leave-one-out cross-validation

and external validation. Meanwhile, the model of built pointed out hydrophobic interaction is important especially the hydrophobic

interaction between H atoms and sp3-hybridized O atoms (sp3O) is in favour of the binding constants. Furthermore, the satisfactory results

showed that 3D-HoVAIF could preferably express the structure information of the coumarins.
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kinds of fields,such as the prediction of gas chromatographic

relative retention times, drug activity designing and screening,

etc.5,6. To date, many researches about coumarins and protein

interaction are mainly focused on experimental and theoretical

research is relatively small7-13. In this paper, the relation between

binding constants of coumarins drugs and human serum albumin

molecules were investigated utilizing three-dimensional

holographic vector of atomic interaction field (3D-HoVAIF)

as the descriptor, with the help of multiple stepwise linear

regression, the QSPR model on human serum albumin (HSA)

was established. Meanwhile, the influence of molecular struc-

ture on the binding was also discussed. The model could predict

the binding constants of coumarins and human serum albumin

with satisfactory results. The paper provides a new way for

the structures characterization of coumarins and derivative and

determine which group will help the binding by virtue of their

different parameters, the binding of coumarins to human serum

albumin shows a relationship with electrostatic and hydrophobic

interaction of coumarins molecules, which is useful for the

design and screening of medicines.

EXPERIMENTAL

Here 20 coumarins are studied (Table-1), whose molecular

structures and the binding constants taken from reference4,13-16.

The binding constants of the 20 samples were gained in the

mimic physiological condition at room temperature, together

with a wide concentration range of 1.0 × 10- 6-5.0 × 10- 4 mol L-1.
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TABLE-1 

EXPERIMENT LOGARITHM VALUES OF THE 
BINDING CONSTANT FOR 20 COUMARINS 

Compound Exp. 

7-Anilinocoumarin-4-acetic acid 5.348 

7-N-Methylamino-4-methylcoumarin 4.477 

7-Amino-4- methylcoumarin 4.00 

7-N,N-Diethylamino-4 methylcoumarin 5.909 

2,3,6,7-Terahydro-9-trifuoromethyl-1H,5H,1H-
[1]benzpyanol[6,7,8-ij]quinolizin-11-one 

6.204 

7-N-Methylamino-4-trifluoromethylcoumarin 6.447 

7-N,N-Diethylamino-4-trifluoromethylcoumarin 6.833 

7-N,N-Diethylaminocoumarin 5.491 

3-(2’-N-Methylbenzimadazolyl)-7-N,N-
diethylaminocoumarin 

5.398 

7-Butylaminocoumarin-4-acetic acid 5.19 

7-Pentylaminocoumarin-4-acetic acid 5.677 

7-Hexylaminocoumarin-4-acetic acid 5.716 

7-Heptylaminocoumarin-4-acetic acid 6.25 

7-Octylaminocoumarin-4-acetic acid 6.449 

7-Nonylaminocoumarin-4-acetic acid 6.767 

7-Decylaminocoumarin-4-acetic acid 7.155 

7-Laurylaminocoumarin-4-acetic acid 7.507 

7-Tridecylaminocoumarin-4-acetic acid 7.32 

Isofraxidin 5.614 

Daphnetin 4.935 

 
Structure characterization: 3D-HoVAIF is proposed

based upon 2D structural descriptor developed by Liu et al.17-20.

Proceeding from two spatial invariants, namely atom relative

distance and atomic properties on the basis of three common

non-bonded (electrostatic, van der and hydrophobic) interaction

which are directly associated with bioactivities, 3D-HoVAIF

method derives multidimensional vectors to represent molecu-

lar steric structural characteristics. According to the defination

of 3D-HoVAIF, there are 55 interaction (Table-2) among the

10 atomic types. The binding between the drug molecule and

receptor are usually realized through non-covalent bond effect.

The different interactions are expressed with three potential

energy-static, spatial and hydrophobic, respectively. thus, there

will produce 3 × 55 = 165 pairs of atom interaction items that

are used to characterize the molecular structure information

of one organic compound. Among them, V1-V55, V56-V110 and

V111-V165 correspond to electrostatic, steric and hydrophobic

properties in turn.

Three-dimensional molecular structures of the 20

coumarins compounds are automatically generated by software

Chemoffice 8.0 and then semi-empirical quantum chemistry

software MOPAC6.0 contained in Chem3D is used to obtain

final optimized molecular structures at AM1 levels (cut-off

value of 0.001 kJ/mol). Simultaneously, atomic partial charges

are calculated by Mulliken Method in the form of single-point.

Spatial positions for all atoms in a molecule and the atomic

charges are put into C program Super-3D.EXE, giving rise to

HoVAIF descriptors by taking forms of Cartesian coordinates

and partial charges, respectively.

RESULTS AND DISCUSSION

In the present investigation, multiple linear regression

method and partial least square analysis were used with leave-

one-out cross validation for building the regression model.

Multiple linear regression analysis: Multiple linear

regression (MLR)is one of the most used modeling methods

in QSPR. In the present study, multiple stepwise linear regre-

ssion is implemented by SPSS Windows statistical package,

version 10.0. In MLR analysis, the number of compounds in

sample should be at least five times greater than the numbers

of independent. 3 descriptors (including V27, V112 and V118) were

obtained by the SPSS Windows statistical package, version

10.0. The best equation is selected on the basis of the highest

multiple correlation coefficient R2 and R2
CV. Moreover, a linear

regression analysis reveals a fair correlation between experi-

mental binding constant and the structure of coumarins. The

3D-QSPR regression model with 3 variables has good estimation

capacity (R2 = 0.898, SD = 0.324) and the best predictive ability

(R2
CV = 0.851, SDCV = 0.392), which is given below:

log K = 0.916V112 + 0.584V27 + 0.233 V118 (1)

N = 20, R2 = 0.898 R2
adj = 0.879 SD = 0.324 R2

CV = 0.851 SDCV

= 0.392.

According to commonly recognition statistical standard,

reliable model about QSAR is q2 ≥ 0.521. Therefore, the present

model is indeed excellent with a predictive ability of 85.1 %.

In eqn. 1 V27 is the electrostatic interaction between the third

type of atoms (sp2C) and the tenth type of atoms (F), V112 is

the hydrophobic interaction between the first type of atoms(H)

and the second type of atoms (sp3C), V118 is the hydrophobic

interaction between the first type of atoms(H) and the eighth

type of atoms (sp3O). From QSPR model, it can be concluded

that hydrophobic interaction is more important than electro-

static interaction. Moreover, it can be seen that the log K of

binding constant is high positively correlated with hydrophobic

and electrostatic interaction. Especially the hydrophobic

interaction between H atoms and sp3-hybridized C atoms

(sp3C), the addition of alkyl group is helpful to improve binding

constant, but alkyl chain should not be too long, because the

TABLE-2 

TEN KINDS OF ATOMS AND THEIR FIFTY-FIVE INTERACTION ITEMS IN 3D-HOVAIF 

No. Atom types H C(sp3) C(sp2) C(sp) N/P(sp3) N/P(sp2) N/P(sp) O/S(sp3) O/S(sp2) F, Cl, Br, I 

1 H 1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9 1-10 

2 C(sp3) – 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10 

3 C(sp2) – – 3-3 3-4 3-5 3-6 3-7 3-8 3-9 3-10 

4 C(sp) – – – 4-4 4-5 4-6 4-7 4-8 4-9 4-10 

5 N/P(sp3) – – – – 5-5 5-6 5-7 5-8 5- 5-10 

6 N/P(sp2) – – – – – 6-6 6-7 6-8 6-9 6-10 

7 N/P(sp) – – – – – – 7-7 7-8 7-9 7-10 

8 O/S(sp3) – – – – – – – 8-8 8-9 8-10 

9 O/S(sp2) – – – – – – – – 9-9 9-10 

10 F, Cl, Br, I – – – – – – – – – 10-10 
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big bulkness of alkyl chain will cause steric hindrance. The

hydrophobic interaction between H atoms and sp3-hybridized

O atoms (sp3O) is in favour of the binding constants. On the

other hand, the electrostatic interaction between sp2-hybridized

C atoms (sp2C) and halogen atoms (F) is also propitious to

binding. For the compounds, the influence mainly reflected

in the fourth substituent group. The larger electronegativity

substituent group can reduces the electron density between

the third and fourth C atoms, resulting in the higher molecular

conjugation and lower energy and make the binding be tight.

Fig. 1 showed plots of calculated binding constant (log K)

against experimental log K values of all samples. From Fig. 1,

it can be seen that almost all samples are uniformly distributed

around diagonal, not obviously exceptional point has selected.

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

 MLR

 MLR CV

lo
g

 K
ca

l

log Kexp

Fig. 1. Plot of log K calculated vs. experimental value by MLR model

Partial least square model: Partial least square (PLS) is

a novel multivariate data analysis method, can solve many

important problems which can not be solved by common

multiple regression analysis method. Such as avoiding the

harmful effects of multicollinearity and being capable of

building the models when the number of observations is less

than the number of variables,etc.In this work, PLS was perfor-

med in Simca-P 10.0 and the PLS latent variable number for

each original variable matrix in PLS was determined by default

standards. The selected three variables by SMR were then

modeled by PLS, which the two principal components

explained 89.1% and 77.2 % variance of Y and cross-validation

variance of Y, respectively. Fig. 2 presents different loading

contributions of 3 variables to the first two principal compo-

nents. V27 and V112 had prominent contributions to PC1 loadings

well correlative to Y variables, while V27 had prominent contri-

butions to PC2. Meanwhile, dependent variable is further away

from PC1 than PC2, this indicated that PC1 had prominent

contributions to dependent variable. Besides, variable impor-

tance of projection (VIP) index of original variables is presented

in Fig. 3. The most contributive top V112 indicated an intimate

relationship between log K and hydrophobic interaction. The

plot of log K calculated by PLS model versus those experi-

mental is shown in Fig. 4.

Finally, in order to further verification the reliability of

3D-HoVAIF model, the whole data set was divided into two
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Fig. 4. Plot of log K calculated vs. experimental value by PLS model

subsets. In Table-1, the binding constants were rearranged from

large to small. The tenth and twentieth sample were chosen to

create a test set and the remaining 18 samples were regarded

as the training set. Then, 18 training samples were utilized to

construct the QSPR model. The other 2 samples were utilized

to validate the external prediction power of the model developed.
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Consequently, a 3-variable MLR model was constructed for

the training set with its R2cum = 0.894, Q2
LOO = 0.841 and

RMSE 0.324. The constructed model was then utilized to

predict the test set, with the result of Q2ext = 0.919. All of

these depict the model has favorable simulative for internal

samples and predictive ability for external samples.

Conclusion

In this paper, the descriptor-3D-HoVAIF derived solely

from chemical structures and easily obtained,involving

classical electric, steric and hydrophobic interactions. Further-

more, the obtained model with obvious physicochemical

meaning. From QSPR model, it can be concluded that hydro-

phobic interaction is more important than electrostatic inter-

action. Moreover, it can be seen that the log K of binding

constant is high positively correlated with hydrophobic and

electrostatic interaction. In other words, hydrophobic groups

will promote the binding constants. Thus it is suggested the

3D-HoVAIF descriptor behaves quite well in structural charac-

terization ability and will be extremely useful in QSAR studies.

Mean while, these descriptors have been applied in the QSAR/

QSPR studies on many complicated molecular systems,such

as steroids and anti HIVdrugs, etc.22-25.
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