

NOTE

Synthesis and Structural Characterization of N-(4-Pyridyl)benzamide

Xiu-Yan Dong*, Li Wang, Yu-Hua Yang, FA Wang and Yuan Li
School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P.R. China
*Corresponding author: E-mail: dxy568@163.com

(Received: 24 April 2012; Accepted: 30 January 2013) AJC-12771

Determination of the structure of N -(4-pyridyl)benzamide with the molecular formula $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}$ that the conformations of the N - H and $\mathrm{C}=\mathrm{O}$ bonds are anti to each other, The $-\mathrm{NH}-\mathrm{C}=\mathrm{O}$ - group makes dihedral angles of $33.5(2)^{\circ}$ and $17.1(2)^{\circ}$ with the benzoyl and pyridyl rings, respectively, while the angle between the benzoyl and pyridine rings is $49.9(6)^{\circ}$. In the crystal structure, $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds link the molecules into a chain along the b axis. In addition, the structure is stabilized by $\pi-\pi$ stacking interactions involving the benzene rings [centroid-to-centroid distance $=2.257(3) \AA$ A .

Key Words: N-(4-Pyridyl)benzamide, Synthesis, Crystal structure.

Benzanilide and its N -substituted derivatives have been considered to be a class of privileged structural compounds, which usually have excellent biological activities ${ }^{1,2}$. However, the literatures are full of the function of the 2 -chloro-4nitrophenyl ${ }^{1}$, 3,5-dichlorophenyl ${ }^{2}$ and 3-chlorophenyl $1^{3,4}$ and also structures of benzamide and related compounds. The aim of the present work was to combine benzamide and 4-pyridyl group in a single structure which is not well known in the literature.

Polyethylene glycol-400 and 4-aminopyridine was purchased from Alfa Aesar and used without further purification. The other reagents and solvents were of analytical reagent grade and were used without further purification. C, H and N analyses were obtained using a GmbH VarioEL V3.00 automatic elemental analysis instrument. X-Ray single crystal structure determination was carried out on a Bruker Smart 1000 CCD diffractometer. Melting points were obtained by use of a microscopic melting point apparatus made in Beijing Taike Instrument Limited Company and were uncorrected.

General procedure: N-(4-Pyridyl)benzamide was synthesized according to an analogous method reported earlier ${ }^{5-9}$. Benzoyl chloride ($1.40 \mathrm{~g}, 0.01 \mathrm{~mol}$) was reacted with ammonium thiocyanate ($1.15 \mathrm{~g}, 0.015 \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (25 mL) under soild-liquid phase transfer catalysis, using 3% polyethylene glycol-400 (0.18 g) as the catalyst and then continuring stirring for 3 h at room temperature, to give the corresponding benzoyl isothiocyanate, which was added 4 -aminopyridine $(1.42 \mathrm{~g}$, 0.015 mol). After stirring for 20 h at room temperature, the
precipitate was filtered, washed successively with water, acetone and diethyl ether. The product was dried under reduced pressure and obtain the title compound. Yield, 29.02 \% m.p. 486-487 K. Anal. calcd. (\%) for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 72.71 ; \mathrm{H}, 5.08$; N, 14.13. Found (\%): C, $72.54 ;$ H, 5.28 ; N, 13.85.

Colourless prismatic single crystals suitable for X-ray diffraction studies were obtained after two weeks by slow evaporation from a mixture of ethyl acetate/acetone (1:1) of N -(4-pyridyl)benzamide at room temperture.

X-Ray structure determination: The crystal data and structure refinement for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}$ is given in Table-1. The single crystal of $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}$ with approximate dimension of $0.48 \mathrm{~mm} \times 0.45 \mathrm{~mm} \times 0.40 \mathrm{~mm}$ was placed on a Bruker Smart 1000 CCD area detector. The diffraction were collected using a graphite monochromated MoK_{α} radition $(\lambda=0.71073 \AA)$ at 298(2) K. The structure was solved by using the program SHELXL-97 and Fourier difference technique and refined by full-matrix least-square method on F^{2}. All hydrogen atoms were added theoretically. CCDC: 877598.

X-Ray crystallographic analysis revealed the crystal structure of title compound. And the structure is shown in Fig. 1. Selected bond distances and angles are listed in Table-2. In the molecule of the title compound, the conformations of the $\mathrm{N}-\mathrm{H}$ and $\mathrm{C}=\mathrm{O}$ bonds are anti to each other, which is similar to those observed in the structures of N -(3,5-dichlorophenyl) benzamide ${ }^{2}$ and N -(3-chlorophenyl)-2-methylbenzamide ${ }^{3}$. The -NH-C=O- group makes dihedral angles of $33.5(2)^{\circ}$ and $17.1(2)^{\circ}$ with the benzoyl and pyridyl rings, respectively, while

TABLE-2 \quad SELECTED BOND DISTANCES (\AA) AND ANGLES $\left({ }^{\circ}\right)$ OF N-(4-PYRIDYL)BENZAMIDE					
Bond	Lengths	Bond	Lengths	Bond	Lengths
$\mathrm{N}(1)-\mathrm{C}(8)$	1.333(2)	$\mathrm{C}(2)-\mathrm{C}(3)$	1.387(2)	$\mathrm{C}(8)-\mathrm{C}(9)$	1.380(2)
$\mathrm{N}(1)-\mathrm{C}(12)$	$1.335(2)$	$\mathrm{C}(2)-\mathrm{C}(7)$	$1.389(2)$	C(9)-C(10)	1.382(2)
$\mathrm{N}(2)-\mathrm{C}(1)$	$1.363(2)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.383(2)$	$\mathrm{C}(10)-\mathrm{C}(11)$	1.391(2)
$\mathrm{N}(2)-\mathrm{C}(10)$	1.400(2)	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.378(3)$	$\mathrm{C}(11)-\mathrm{C}(12)$	1.377(2)
$\mathrm{O}(1)-\mathrm{C}(1)$	$1.222(2)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.375(3)$	-	-
$\mathrm{C}(1)-\mathrm{C}(2)$	1.496(2)	$\mathrm{C}(6)-\mathrm{C}(7)$	1.382(3)	-	-
Bond	Angles	Bond	Angles	Bond	Angles
$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(12)$	115.27(15)	$\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(1)$	122.26(16)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	118.66(16)
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(10)$	127.24(14)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	119.93(17)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	117.51(15)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{N}(2)$	123.80(15)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	120.07(18)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{N}(2)$	124.36(15)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	121.16(15)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	120.15(17)	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{N}(2)$	118.12(14)
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	115.02(14)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	120.44(18)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	118.94(16)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(7)$	119.82(16)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(2)$	119.58(18)	$\mathrm{N}(1)-\mathrm{C}(12)-\mathrm{C}(11)$	124.59(16)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	117.89(15)	$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	125.03(16)	-	-

TABLE-1	
CRYSTAL DATA AND STRUCTURE REFINEMENT	
FOR THE N-(4-PYRIDYL)BENZAMIDE	
Empirical formula	$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}$
Formula weight	198.22
Temperature	$298(2) \mathrm{K}$
Wavelength	$0.71073 \AA$
Crystal system	Monoclinic
Space group	$\mathrm{P} 2(1) / \mathrm{c}$
Cell dimensions	$\mathrm{a}=5.7119(12) \AA, \mathrm{b}=11.2316(14) \AA$,
	$\mathrm{c}=15.2446(18) \AA, \beta=95.2800(10)$
Volume	$973.8(3) \AA^{3}$
Z	4
Density (calculated)	$1.352 \mathrm{mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.089 \mathrm{~mm}^{-1}$
$\mathrm{~F}_{\text {(000) }}$	416
Index ranges	$-6 \leq \mathrm{h} \leq 6,-11 \leq \mathrm{k} \leq 13,-18 \leq 1 \leq 16$
Reflections collected/unique	$4856 / 1701\left[\mathrm{R}_{(\text {(int }}=0.0431\right]$
Independent reflections	2248
Data/restraints/parameters	$1701 / 0 / 137$
Goodness of fit indicator	1.072
$\mathrm{R}[\mathrm{I}>2 \sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0407, \mathrm{wR} \mathrm{R}_{2}=0.0996$
Largest diff. peak and hole	$0.203 \mathrm{and}-0.196 \mathrm{e} . \AA$

Fig. 1. Molecule structure of N-(4-pyridyl)benzamide with atom numbering scheme. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level
the angle between the benzoyl and pyridine rings is $49.9(6)^{\circ}$. In the crystal structure of N -(4-pyridyl)benzamide, intermolecular hydrogen bonds $\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{~N} 1$ (symmetry code: - $\mathrm{x}+1, \mathrm{y}-1 / 2$, $-\mathrm{z}+1 / 2$) link molecules into infinite chain superamolecular structure along the b axis (Fig. 2.) ${ }^{10,11}$.

Fig. 2. View of the 1D chain supramolecular structure of N -(4-pyridyl)benzamide along b axis. Intermolecular hydrogen bonds are shown as dashed lines. [Symmetry codes: $-\mathrm{x}+1, \mathrm{y}-1 / 2,-\mathrm{z}+1 / 2$]

Supplement data: Further details of the crystal structure investigation(s) may be obtained from the Cambridge Crystallographic Data Centre, Postal Address: CCDC, 12 Union Road, CAMBRIDGE CB2 1EZ, UK. Telephone: (44) 01223 762910; Facsimile: (44) 01223 336033; E-mail: deposit@ccdc.cam.ac.uk, on quoting the depository number CCDC 877598.

ACKNOWLEDGEMENTS

The authors acknowledged the financial support from 'Jing Lan' Talent Engineering Funds of Lanzhou Jiaotong University.

REFERENCES

1. A. Saeed, S. Hussain and U. Flörke, Acta Cryst., E64, o705 (2008).
2. B.T. Gowda, S. Foro, B.P. Sowmya and H. Fuess, Acta Cryst., E64, o1243 (2008).
3. B.T. Gowda, S. Foro, B.P. Sowmya and H. Fuess, Acta Cryst., E64, o861 (2008).
4. B.T. Gowda, S. Foro, B.P. Sowmya and H. Fuess, Acta Cryst., E64, o1300 (2008).
5. W.K. Dong, X.Q. Yang and J.H. Feng, Acta Cryst., E62, o3459 (2006).
6. W.K. Dong, X.Q. Yang, L. Xu, L. Wang, G.L. Liu and J.H. Feng, Z. Kristallogr. NCS, 222, 79 (2007).
7. W.K. Dong, X.Q. Yang, L.Q. Chai, Y.Q. Tian and J.H. Feng, Phosphorus Sulfur Silicon Rel Elem., 183, 1181 (2008).
8. W.K. Dong, H.B. Yan, L.Q. Chai, Z.W. Lv and C.Y. Zhao, Acta Cryst., E64, o1097 (2008).
9. Y.J. Ding, X.B. Chang, X.Q. Yang and W.K. Dong, Acta Cryst., E64, o658 (2008).
10. W.K. Dong, G. Wang, Y.X. Sun, X.Y. Dong and X.H. Gao, Z. Naturforsch., 67b, 17 (2012).
11. W.K. Dong, Y.X. Sun, Y.P. Zhang, L. Li, X.N. He and X.L. Tang, Inorg. Chim. Acta, 362, 117 (2009).
