
A J CSIAN OURNAL OF HEMISTRYA J CSIAN OURNAL OF HEMISTRY
https://doi.org/10.14233/ajchem.2024.31430

INTRODUCTION

Coumarin derivatives have attracted attention in recent
years due to their diverse pharmacological properties, including
antiviral activity [1,2]. Coumarin is an oxygenated heterocyclic
compound having diverse biological properties, which include
antiviral activity [3]. Due to the recent COVID outbreak, coum-
arin gained attention in anti-SARS-CoV-2 drug development.
Several studies have conducted in silico evaluation of coumarin
derivatives to determine their antiviral activity against SARS-
CoV-2. A study evaluated coumarin derivatives as potential
inhibitors of coronaviruses 3CLpro, a chymotrypsin-like protease
by in silico approaches, the MDA results suggested more than
half of the coumarin phytochemicals had favourable interaction
at the binding pocket of the coronaviruses 3CLpro and exhibited
better binding affinities toward 3CLpro than ritonavir and lopin-
avir [4]. Another study reported that the coumarin derivatives
have a stable binding affinity when docked against different

In silico Analysis of Antiviral Potential of New Coumarin Analogues against Coronavirus

MOHAMMAD AUWAL SA'AD
1,2, , MANICKAM RAVICHANDRAN

1, , SHIVKANYA FULORIA
3,*, , LALITHA PATTABHIRAMAN

4, ,
VEERASAMY RAVICHANDRAN

3, , FAIZUL FIKRI MOHD YUSOP
5 and NEERAJ KUMAR FULORIA

3,*,

1Department of Biotechnology, Faculty of Applied Science, AIMST University, Bedong 08100, Kedah, Malaysia
2Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Science, AIMST University, Bedong 08100, Kedah, Malaysia
3Faculty of Pharmacy, AIMST University, Bedong Kedah, Malaysia
4Faculty of Medicine, AIMST University, Bedong Kedah, Malaysia
5Veterinary Research Institute (VRI), Ipoh 31350, Malaysia

*Corresponding authors: E-mail: shivkanya_fuloria@aimst.edu.my; nfuloria@aimst.edu.my

Received: 23 February 2024; Accepted: 24 May 2024; Published online: 29 June 2024; AJC-21681

In silico designing of new chemical moieties to develop as active therapeutic agents is a continuous process. COVID-19 pandemic realized
coronaviruses to pose significant global health threat. Current study presents in silico antiviral potential of novel coumarin analogues (NCAs)
against coronaviruses through molecular docking analysis (MDA) and quantitative structure-activity relationship (QSAR) analysis. This
study explores the binding affinity and structure-activity relationships of NCAs, focusing on their interaction with the SARS-CoV-2 spike
protein N-terminal domain. MDA, particularly highlighting compound 5e, suggests promising binding interactions. Additionally, the
QSAR studies identified key molecular descriptors influencing coronavirus inhibition activity and cytotoxicity (CC50), leading to the
development of robust QSAR models meeting OECD criteria. These models demonstrate the stability, validity and applicability of NCAs
as potential antiviral agents against coronaviruses. The promising result of new coumarin analogues provides a foundation for the development
of novel therapeutics aimed to combat coronaviruses.

Keywords: Coronaviruses, SARS-CoV-2, Coumarin, QSAR, Molecular docking.

Asian Journal of Chemistry;   Vol. 36, No. 7 (2024), 1609-1619

This is an open access journal, and articles are distributed under the terms of the Attribution 4.0 International (CC BY 4.0) License. This
license lets others distribute, remix, tweak, and build upon your work, even commercially, as long as they credit the author for the original
creation. You must give appropriate credit, provide a link to the license, and indicate if changes were made.

proteins (Spike S1-subunit, NSP5, NSP12, NSP15 and NSP16)
of the SARS-CoV-2.

The molecular docking analysis (MDA) results further
revealed that three of the coumarin derivatives have a better
binding affinity compared to hydroxychloroquine, favipiravir
and warfarin, but lower than the binding affinity of remdesivir
[5]. Similarly, another in silico study approach revealed that three
coumarin derivatives exhibit binding affinity towards the Mpro

protein of SARS-CoV-2 better than cinanserin and chloroquine.
All of the investigated compounds bind to the active position of
the mentioned protein [6]. Virtual drug screening and molecular
docking analysis (MDA) against nucleocapsid and NTD of
SARS-CoV-1, SARS-CoV-2, MERS-CoV, HCoV-OC43, HCoV-
NL63, HCoV-229E and HCoV-HKU1 revealed good binding
affinity to coumarin derivatives while showing low cytotoxicity
against human A549 and MRC-5 cell lines [7]. RNA-dependent
RNA polymerase (RdRp) of the SARS-CoV-2 virus is one of
the key targets that are involved in viral genome replication.
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A recent study evaluated the in silico antiviral potential
of benzophenone-coumarin derivatives (BCDs) against this
protein target. The in silico analysis resulted in BCD-8 showing
an extensive molecular interaction in comparison with that of
the standard control used (remdesivir). The drug likeliness and
pharmacokinetic analyses also proved the efficiency of BCD-8
as an effective drug without adverse effects [8]. Despite the
promising activities of coumarin derivatives, their specific
efficacy against coronaviruses and the underlying mechanism
of action remains largely unexplored [9]. Hence, the present
study was intended to provide valuable insights into the inter-
actions between novel coumarin analogues (NCAs) and viral
targets, particularly focusing on the SARS-CoV-2 spike protein
N-terminal domain. By exploring the promising properties of
coumarin derivatives and applying advanced computational
methods, this research seeks to identify promising candidates
for further preclinical and clinical investigations.

EXPERIMENTAL

Molecular docking analysis: In present study, a MDA
of designed molecules was carried out to assess the interaction
and binding mode with the target receptor/enzyme using Auto-
dock vina. The structures of all tested compounds were modelled
using the Chemsketch software. The structures were optimized
and energy was minimized using the auto dock software [10,
11]. The optimized compounds were used to perform MDA
and the 3D structures of the molecular target were obtained
from Protein Data Bank (PDB): SARS-CoV-2 spike protein
N-terminal domain (7B62), SARS-CoV-2 nucleocapsid protein
C-terminal domain (7UXZ), the co-crystal structure of SARS-
CoV-2 main protease (7DGB), SARS-CoV-2 3CL protease
(7P35). The steps for receptor preparation included the removal
of heteroatoms (water and ions), the addition of polar hydrogen
and the assignment of charge. The active sites were defined using
grid boxes of appropriate sizes around the bound cocrystal
ligands. The MDA was performed using Auto Dock Vina and
Chimera for visualization [12]. The docked pose of ligands and
their interactions were analyzed after the end of MDA.

Design of compounds: The designed NCAs included ester,
hydrazide, imino, thiazolidinone, and oxadiazole group in the
coumarin moiety, which are generally synthesized based on
incorporation of ester group on treatment with ethylchloro-
acetate [13], by incorporating of hydrazide group on treatment
with hydrazine hydrate [14], by incorporating imino group
through Schiff reaction using various aromatic aldehydes [15],
by incorporating of thiazolidinone group through cyclization
reaction using thioglycolic acid [16] and by incorporating
oxadiazole group (through cyclization reaction using various
aromatic acids), respectively [17].

2D-QSAR

Data collection: The coronavirus inhibition activity and
cytotoxicity (CC50) of 18 novel coumarin analogues (NCAs)
were applied as dependent variables which were expressed
with pIC50 = -log10IC50. Software of PaDEL-descriptor was
applied to determine the molecular descriptors. The NCAs
structures were built using ChemDraw Cambridge software

and statistics was applied using QSARINS. Designed structures
were saved into molfiles, followed by uploading into PaDEL.
In total, 1,000 MDs were determined and saved in CSV files.

2D QSAR analysis: Data was pre-treated for MDs after
normalizing to eliminate redundant data (high correlation MDs
with r2 > 0.85) and constant value (noise); thereby MDs reduce
to 4000. QSARINS was used to develop model of 2D QSAR
applying MLR process [18]. In QSARINS the prediction and
training data sets were generated by total data set division through
random selection (20 % test). QSARINS default settings was
to construct GA-MLR-based QSAR model and q2 function
was used for GA maximization [18]. For avoiding of overfit,
the selection of molecular MDs was limited to 4 MDs and all
models were validated, randomized and analyzed for AD. The
various methods were used for QSAR models quality and
validation check several methods were used [19].

RESULTS AND DISCUSSION

Molecular docking analysis: The MDA was performed
to determine the binding affinity of NCAs to SARS-CoV-2
spike protein N-terminal domain (PDB: 7B62), SARS-CoV-2
nucleocapsid protein C-terminal domain (PDB: 7UXZ),
SARS-CoV-2 main protease (PDB: 7DGB) and SARS-CoV-2
3CL protease (PDB: 7P35) binding site. The MDA scores of all
synthesized compounds are given in Table-1. All compounds
strongly inhibited by completely occupying active sites in target
protein. Among all compounds, compound 5d was found to be
most potent when docked with SARS-CoV-2 nucleocapsid
protein C-terminal domain (PDB: 7UXZ) and SARS-CoV-2
main protease (PDB: 7DGB); whereas compound 5e was found
to be most potent when docked with SARS-CoV-2 spike protein
N-terminal domain (7B62) and SARS-CoV-2 3CL protease
(PDB: 7P35) as exhibited the highest binding affinity. Comp-
ound 5d demonstrated favourable orientation within SARS-
CoV-2 nucleocapsid protein C-terminal domain (PDB: 7UXZ),
SARS-CoV-2 main protease (PDB: 7DGB) binding sites; where-
as compound 5e exhibited favourable orientation within the
SARS-CoV-2 spike protein N-terminal domain (7B62) and
SARS-CoV-2 3CL protease (PDB: 7P35). Based on the MDA
data of compound 5e with 7B62 (Fig. 1), it is revealed that the
2D structure of compound 5e underwent significant interactions
with the amino acids of SARS-CoV-2 spike protein N-terminal
domain. Specifically, the conventional hydrogen bonds are
formed between the oxygen atom of the chromene nucleus or
benzopyran ring of compound 5e and the tyrosine amino acid
of protein 7B62. Hydrogen bond interactions are also observed
between the nitro group of compound 5e and the serine amino
acid of the protein. Furthermore, the 3D representation of MDA
complex assures presence of such interactions, providing more
details about binding mode of compound 5e within the active
site of the SARS-CoV-2 spike protein N-terminal domain (Fig.
1). The hydrogen bonding between the ligand (compound 5e)
and the protein residues (tyrosine and serine amino acids)
stabilizes the complex and enhances its binding affinity [6].

The H-bond pose in Fig. 1 illustrates the precise orientation
of compound 5e within the binding site of protein, highlighting
the specific hydrogen bond interactions between the ligand
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and the protein residues. The significance of these interactions
lies in the potential of compound 5e to disrupt the function of
the SARS-CoV-2 spike protein, particularly the N-terminal
domain, which is crucial for the viral entry and infection [20].
By forming the hydrogen bonds with key amino acids in the
protein, compound 5e may hinder the virus’s ability to bind to
host cells and thereby reduce viral infectivity. The 2D structure
of compound 5e reveals interaction with specific amino acids
of SARS-CoV-2 3CL protease. Remarkably, the conventional
hydrogen bonds are formed between the carbonyl group present
on the chromene nucleus of compound 5e and the glycine and
cysteine amino acids of protein (Fig. 2). These interactions
are important to stabilize ligand-protein complex (LPC) and
enhance its binding affinity. The MDA complex 3D represen-
tation confirms presence of such interactions and suggests how

compound 5e fits in SARS-CoV-2 3CL protease active site
(Fig. 2).

The H-bond pose in Fig. 2 illustrates the precise orientation
of compound 5e within the binding site of 3CL protease, high-
lighting the specific hydrogen bond interactions between the
ligand and the glycine and cysteine amino acids of the protein
(Fig. 2). Similar to the previously reported study [21], here, the
molecular interaction between ligand and the proteins revealed
compound 5e to inhibit the activity of the SARS-CoV-2 3CL
protease, which is essential for the virus’s replication process.
By forming hydrogen bonds with key amino acids in the active
site of enzyme, compound 5e may interfere with the protease’s
function, ultimately hindering viral replication and spread. The
2D structure of compound 5d reveals the hydrogen bond inter-
actions with specific amino acids of SARS-CoV-2 nucleocapsid

TABLE-1 
DOCKING SCORES OF 18 COMPOUNDS AND CONTROLS 

Ligand Binding affinity 
(with 7B62) 

Ligand Binding affinity 
(with 7UXZ) 

Ligand Binding affinity 
(with 7DGB) 

Ligand Binding affinity 
(with 7P35) 

5e -9.1 5d -7.5 5d -8.7 5e -8.4 
6d -8.9 6c -7.5 4d -8.6 5d -8.0 
6c -8.8 6d -7.5 5b -8.6 5a -7.9 
6e -8.8 6e -7.5 6d -8.6 5b -7.9 
6b -8.6 4c -7.4 5e -8.5 6a -7.7 
6a -8.5 6b -7.4 6b -8.5 6e -7.7 

Biliverdin -8.5 4b -7.3 6a -8.4 5c -7.5 
4e -8.3 4e -7.3 6c -8.4 6b -7.5 
4b -8.1 5a -7.3 6e -8.4 4a -7.3 
5c -8.1 5b -7.3 4a -8.3 4d -7.3 
4d -7.9 6a -7.2 5a -8.2 6c -7.3 
5a -7.9 4d -7.1 5c -8.1 6d -7.3 
5b -7.8 4a -7.0 4b -7.9 4e -7.1 
5d -7.8 5c -7.0 4e -7.8 Rupintrivir -7.1 
4a -7.7 5e -6.6 4c -7.7 4b -6.4 
4c -7.7 Chicoric acid -6.4 3 -7.1 4c -6.0 
3 -6.8 3 -6.2 Penatanamide -6.8 3 -5.8 
2 -6.3 2 -5.9 2 -6.5 2 -5.5 
1 -5.9 1 -5.6 1 -5.8 1 -4.9 

Note: The results are shown for 19 ligands in the table. 

 
(a) (b) (c)

H-bonds

Donor

Acceptor

Interactions
van der Waals
Conventional hydrogen bond
Carbon hydrogen bond

Pi-Pi stacked
Pi-Pi T-shaped
Pi-Alkyl

Fig. 1. (a) 2D dock image of compound 5e with 7B62 (S), (b) 3D dock image for compound 5e with 7B62 (S), (c) H bond pose for compound
5e with 7B62
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protein C-terminal domain. The carbonyl group present on
the chromene nucleus of compound 5d forms a hydrogen bond
with the asparagine amino acid in the protein. Additionally,
another hydrogen bond interaction is observed between the
nitro group and the arginine amino acid of the protein (Fig. 3).
These interactions play a crucial role to stabilize ligand-protein
complex (LPC) and enhance its binding affinity. The 3D repre-
sentation of MDA complex also determines presence of such
interactions. The hydrogen bond interactions between the ligand
and the specific amino acids in the protein are essential for the
ligand’s optimal binding (Fig. 3).

The H-bond pose in the figure illustrates the precise orien-
tation of compound 5d within the binding site of the nucleo-
capsid protein (Fig. 3). As previously observed [22], in present
study, the molecular interactions show the potential of compound
5d to interfere with the function of SARS-CoV-2 nucleocapsid
protein, particularly the C-terminal domain. Since nucleocapsid
protein is involved in viral RNA binding and plays an important
role in viral replication & packaging [23], by forming hydrogen
bonds with key amino acids in the protein, compound 5d may
disrupt the protein’s function and inhibit viral replication and
assembly. Furthermore, the 2D structure of compound 5d reveals
significant hydrogen bond interactions with specific amino
acids of the SARS-CoV-2 main protease. The carbonyl group
present on the chromene nucleus of compound 5d forms a

hydrogen bond with the arginine amino acid in the protein.
Additionally, another hydrogen bond interaction is observed
between the nitro group of compound 5d and the glutamine
amino acid of protein (Fig. 4). Moreover, there is an interaction
between the carbonyl group present on the aldehyde benzene
ring of compound 5d and the glycine amino acid of protein.
The 3D representation shows hydrogen bond interactions
between the ligand and the specific amino acids in the protein
are essential for the ligand’s optimal binding (Fig. 4).

These interactions demonstrate the potential of compound
5d to interfere with the function of SARS-CoV-2 main protease.
The main protease is essential for viral replication and is considered
a promising target for antiviral drugs [24]. By forming hydrogen
bonds with key amino acids in the protein, compound 5d may disrupt
the protease’s function and inhibit viral replication and spread.

The variation in antiviral activity observed among NCA
derivatives can be attributed to differences in their molecular
structures and interactions with the target viral proteins. MDA
provided valuable insights into the potential binding interactions
between compound 5e and the SARS-CoV-2 spike protein
N-terminal domain. Nevertheless, it is crucial to validate these
findings through experimental studies, while MDA offers valu-
able initial insights, in vitro and in vivo experiments are essen-
tial for confirming the actual binding affinity and antiviral
efficacy of these compounds.

(a) (b) (c)

H-bonds

Donor

Acceptor

Interactions
van der Waals
Conventional hydrogen bond
Pi-Donor hydrogen bond

Pi-Sigma
Pi-Sulfur
Pi-Alkyl

Fig. 2. (a) 2D dock image for compound 5e with 7P35 (3CL), (b) 2D dock image for compound 5e with 7P35 (3CL), (c) 3D dock image for
compound 5e with 7P35 (3CL)

(a) (b) (c)

H-bonds

Donor

Acceptor

Interactions
van der Waals
Conventional hydrogen bond
Pi-Cation
Pi-Donor hydrogen bond

Pi-Sigma
Pi-Pi T-shaped
Pi-Alkyl

Fig. 3. (a) 2D dock image for compound 5d with 7UXZ (N), (b) 3D dock image for compound 5d with 7UXZ (N), (c) H bond pose for
compound 5d with 7UXZ (N)
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QSAR analysis: For the QSAR analysis, the NCAs and
their inhibition activity (pIC50) were used as the primary data.
The present study generated several QSAR models using
QSARINS, but here only models 1, 2 and 3 are discussed. The
MLR method was used for obtaining models. Table-2 presents
parameters for model 1, 2 and 3; whereas parameters involved
in Table-3 presents selected models 1, 2 and 3. Symbols expan-
sion and meaning were previously reported [19].

Model 1:
pIC50 = -0.0743 (± 0.0248) VR2_Dzs – 0.5889 (± 0.1657)
PubchemFP12 + 3.8306 (± 0.2665); n = 18 (1)

Model 2:
pIC50 = -0.1062 (± 0.0284) VR2_Dzs – 0.5814 (± 0.1679)
MLFER_S + 2.705 (± 0.4994); n = 18 (2)

Model 3:
pIC50 = -0.4911 (± 0.1796) MDEN-23 – 0.704 (± 0.1893)
PubchemFP12 + 3.1755 (± 0.1631); n = 18 (3)

Model 4:
pCC50 = 0.0748 (± 0.0215) AATSC6v – 1.8665 (± 0.4944)
AATSC6s + 2.1426 (± 0.2139); n = 18 (4)

The data given in Table-2 presents the variables involved
in selected model 1, 2, 3 and 4; Table-4 presents estimated
and predicted inhibition activities (pIC50) for models 1, 2 & 3;
and Table-3 presents CC50 of model 4, whereas Figs. 5 and 6
illustrates the regression and correlation of experimental &
predictive inhibition and CC50 of NCAs (1-18).

The applicability domain (AD) of generated model was
determined with William’s plot and was established in squared
area of ± 3 standard residues and leverage threshold h* = 0.6
for all models 1, 2 and 3 (h* = 3p’/n, where p’ is parameters
number in model+1, n is compounds number). Williams plot
(Fig. 5) for models 1, 2 and 3 exhibited one outlier in model 1
and 2, but there is no outlier in model 3. Hence, the correlation
between MDs for 2D-QSAR model 3, is given in Table-3.

In present study, the 2D QSAR analysis was conducted on
NCAs and only three models i.e., models 1, 2 and 3 were selected.

(a) (b) (c)

H-bonds

Donor

Acceptor

Interactions
van der Waals

Conventional hydrogen bond

Carbon hydrogen bond

Pi-Cation

Pi-Sulfur

Pi-Pi Stacked

Pi-Alkyl

Fig. 4. (a) 2D dock image for compound 5d with 7DGB (mPro), (b) 3D dock image for compound 5d with 7DGB (mPro), (c) H bond pose
for compound 5d with 7DGB (mPro)

TABLE-2 

STATISTICAL PARAMETERS FOR DEVELOPED MODELS 1, 2, 3 AND 4 

 Threshold value Model 1 Model 2 Model 3 Model 4 

R2 > 0.6 0.8805 0.8751 0.8627 0.8913 
s < 0.3 0.8606 0.1009 0.1058 0.1427 

R2adj > 0.6 0.0988 0.8543 0.8398 0.8716 
R2-R2adj < 0.3 0.0199 0.0208 0.0229 0.0198 

CCC tr > 0.85 0.9364 0.9334 0.9263 0.9425 
F Higher than the theoretical value 44.2018 42.0420 37.6974 45.1147 

Q2loo (r2CV) > 0.5 0.8186 0.8196 0.8152 0.7927 
R2- Q2loo < 0.3 0.0619 0.0555 0.0475 0.0986 

Q2lmo > 0.5 0.7957 0.7584 0.7914 0.7702 
R2Yscr <R2 (smallest is better) 0.1418 0.1435 0.1425 0.1537 

LOO      
r2m > 0.5 0.7828 0.8121 0.7930 0.7322 
r'2m > 0.5 0.7029 0.6669 0.6777 0.7085 

k' 0.85 < k or k' < 1.15 0.9988 1.0002 0.9988 1.0031 
k 0.85 < k or k' < 1.15 1.0003 0.9989 1.0003 0.9930 

r2-r20/r2 < 0.1 0.0026 0.0001 0.0010 0.0085 
r2-r'20/r2 < 0.1 0.0251 0.0425 0.0352 0.0034 

*Values in parenthesis in equation are in 95% confidence interval values. 
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TABLE-3 
PARAMETERS FOR MODEL 1, 2, 3 AND 4 FOR THE GIVEN DESIGNED COMPOUNDS 

O O

X

 
Compd. 

ID 
Compound with substituent X VR2_Dzs 

Pubchem 
FP12 

MLFER_S 
MDEN-

23 
AATSC6v AATSC6s 

1 OH 6.689 0 2.093 0.000 8.965982 -0.82836 

2 
O

O

O

 

8.014 0 2.387 0.000 4.631205 -0.60027 

3 O

O

H
N

NH2

 

9.631 0 2.575 0.000 -8.51681 -0.78718 

4a 
O

O

H
N

N

OH  

7.422 1 3.399 0.000 -1.91256 -0.45303 

4b 

O

O

H
N

N

N

 

11.307 1 3.297 0.309 5.247799 -0.16823 

4c 
O

O

H
N

N

Cl  

7.524 1 3.234 0.000 -1.41793 -0.42702 

4d O

O

H
N

N

NO2

 

8.167 1 3.291 0.447 -0.09458 -0.6072 

4e 
O

O

H
N

N

NO2 

10.168 1 3.291 0.309 -0.7543 -0.48049 

5a O

O

H
N N OH

S
O

 

13.983 1 3.82 1.000 -5.4261 -0.529 

5b O

O

H
N N N

S
O

 

13.044 1 3.718 0.756 0.298923 -0.22747 

5c O

O

H
N N Cl

S
O

 

13.020 1 3.655 1.000 -4.05476 -0.40137 

5d 
O

O

H
N N

S
O

O2N

 

11.579 1 3.712 0.894 -6.31298 -0.58547 

 

-6.31298
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5e O

O

H
N N NO2

S
O  

12.346 1 3.712 0.756 -4.37243 -0.52588 

6a 
O

O

NN

OH
 

7.916 1 3.566 0.000 -6.27177 -0.26502 

6b 
O

O

NN

N

 

8.192 1 3.464 0.309 3.659747 -0.17268 

6c 
O

O

NN

Cl
 

7.754 1 3.401 0.000 -4.99272 -0.45286 

6d 
O

O

NN

NO2  

8.049 1 3.458 0.309 -5.10706 -0.50784 

6e 
O

O

NN

F
 

7.930 1 3.319 0.000 -5.3152 -0.21173 

 
TABLE-4 

CALCULATED AND PREDICTED INHIBITION ACTIVITIES (pIC50) BY MODELS 1, 2 & 3 AND CC50 BY MODEL 4 

Model 1 Model 2 Model 3 Model 4 
Compd. pIC50 

Cal LOO Cal LOO Cal LOO 
pCC50 Cal LOO 

2 3.139 3.3339 – 3.2112 – 3.1755 – 3.266 3.6095 3.7773 
3 3.194 3.2355 3.2785 3.2415 3.2894 3.1755 3.1570 3.428 2.9745 2.9806 
4a 3.157 3.1155 3.0725 3.1790 3.1942 3.1755 3.1940 2.964 2.8450 – 
4b 3.932 3.8684 3.8563 3.8928 3.8847 3.8795 3.8685 3.004 2.8492 2.8273 
4c 3.572 3.5799 3.5809 3.4207 3.4010 3.7279 3.7419 2.893 2.8335 2.8319 
4d 3.939 3.8608 3.8467 3.7860 3.7623 3.8795 3.8670 2.853 3.2688 3.2547 
4e 3.708 3.8131 3.8271 3.7508 3.7557 3.6599 3.6558 3.322 2.9829 – 
5a 3.570 3.6645 3.6725 3.5382 3.5357 3.7279 3.7420 3.080 2.7239 2.7038 
5b 3.499 3.3812 3.3315 3.4405 3.4147 3.3884 3.3420 2.882 2.5895 2.5550 
5c 3.449 3.4510 3.4515 3.4810 3.4896 3.5083 3.5190 2.774 2.5883 2.5715 
5d 3.311 3.4528 3.4893 3.4469 3.4818 3.3884 3.4209 2.756 2.7629 2.7598 
5e 3.541 3.5597 – 3.6331 – 3.4402 – 2.781 2.7969 2.8024 
6a 3.562 3.5028 3.4919 3.5516 3.5496 3.5083 3.4985 2.745 2.1679 2.2791 
6b 3.914 3.8317 3.8194 3.9374 3.9428 3.8795 3.8723 1.865 2.7387 2.7586 
6c 3.936 3.8112 3.7948 3.8487 3.8354 3.7279 3.7094 2.684 2.6142 – 
6d 3.821 3.8437 3.8474 3.8586 3.8650 3.8795 3.8918 2.736 2.7083 2.7114 
6e 3.670 3.8218 3.8431 3.8604 3.8913 3.7279 3.7331 2.681 2.1400 2.1465 

 
Models 1, 2 and 3 included VR2.Dzs, MLFR_S, MDEN-2,
PubChemFP12, AATSC6v and AATSC6s as the MDs. The
descriptor VR2.Dzs is defined as 2D type normalized Randic-
type eigenvector-based index from Barysz matrix/weighted
by I-state [25]; the descriptor MLFR_S is defined as molecular
linear free energy relation descriptor to quantify dipolarity/
polarizability; the descriptor MDEN-2 is defined molecular
distance edge between all secondary and tertiary nitrogen’s

[26]; PubChemFP12 fingerprint descriptor related to the
number of carbon atoms is discriminative for P-gp properties
[27]; the descriptor of AATSC6v is defined as average centred
Broto-Moreau autocorrelation -lag 6/weighted by van der Waals
[28]; whereas the descriptor AATSC6s is defined as the
Average centred Broto-Moreau autocorrelation–lag6/weighted
by I-state [29]. All models 1, 2 and 3 exhibited decent model
fitting and fulfil OECD standard, however, for pIC50 among
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Fig. 5. Regression plots for models 1, 2, 3 and 4
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Fig. 6. Williams plot for models 1, 2, 3 and 4

models 1, 2 and 3, the QSAR model 3 was chosen as the best
model based on the loo and lmo as the parameters. Also, for
PCC50 model 4 was found to be as best fit, so selected for QSAR
of NCAs for CC50. Hence, model 3 could explain and predict
86.27% of inhibition variance. Model 3 showed good internal
predictivity with Q2 = 0.8152. Low r2 reveals that decent result
of model is not based on change correlation or training set
structural dependency. Whereas model 4 could predict 89.13%
of the variance of CC50 of NCAs. Model 4 showed good internal
predictivity with Q2 = 0.7957. Low r2 reveals that decent result
of model is not based on change correlation or training set
structural dependency. The molecular descriptors (MDs)
number significance of models was assured based on minimum
difference (< 0.3) between R2 and R2 adj that was 0.0199 for
model 3 and 0.0198 for model 4. Similarly, model’s stability
was assured based on minimum difference (< 0.3) between
R2 and Q2 loo, 0.0475 in model 3 and 0.0986 in model 4.
Model 3 (for pIC50) and model 4 (for pCC50) were significant
and predictive. William’s plots of model 3 showed no outlier

and model 4 showed 1 outlier indicating the applicability domain
(AD) of the two models. Model 3 suggests positive input of
VR2.Dzs, MLFR_S, MDEN-2 and PubChemFP12 indicate
that the inhibition is correlated directly to VR2.Dzs, MLFR_S,
MDEN-2 and PubChemFP12. This means the inhibition activity
of NCA is directly related to the normalized Randic-type eigen
vector-based index, molecular linear free energy, molecular
distance edge between secondary and tertiary nitrogen and
fingerprint MDs [12].

The QSAR results of compounds 2-3, 4a-e, 5a-e and 6a-e
when compared with compound 1, revealed that substitution
of imino and oxadiazole group with strong electron donating
group such as -N(CH3)2 & -OH at para-position of benzene
ring in compounds 4a, 6a & 6b; and strong electron with-
drawing group like -Cl at the para position of benzene ring in
compound 6b offers high inhibition activity, whereas model 4
revealed that the positive contribution of AATSC6v and
AATSC6s is correlated with CC50 of NCAs. This means that
CC50 of NCAs is related to the average centred Broto-Moreau

Vol. 36, No. 7 (2024) In silico Analysis of Antiviral Potential of New Coumarin Analogues against Coronavirus  1617



autocorrelation - lag 6/weighted by van der Waals and Average
centred Broto-Moreau autocorrelation–lag6/weighted by I-state
[19]. Also, the cytotoxicity study data of NCAs supports that
the oxadiazole group with a strong electron donating group
such as the -OH group at the para position of benzene ring in
compound 6a, exhibited the maximum CC50 or safety against
normal healthy cells [30]. The QSAR study supports that comp-
ound 6a possesses the lowest IC50 and maximum CC50 when
related to VR2.Dzs, MLFR_S, MDEN-2, PubChemFP12,
AATSC6v and AATSC6s MDs. The QSAR studies were carried
out for novel coumarin derivatives with their anti-coronavirus
activity to generate few useful QSAR models. Stability, validity,
robustness and application of ideal QSAR models have been
established and found comparable with OECD criteria for QSAR.
All the series of NCAs (2-3, 4a-e, 5a-e and 6a-e) offered good
QSAR with coronavirus inhibition activity and cytotoxicity
(CC50).

Conclusion

The severity of coronavirus and the re-emergence of viruses
have prompted the development of novel therapeutic strategies.
The present study conducted molecular docking analysis (MDA)
and and quantitative structure-activity relationship (QSAR)
analysis on novel coumarin analogues (NCAs) against corona-
viruses, revealing promising insights into their mechanisms
of action and QSAR. The MDA particularly on compound 5e,
demonstrated potential binding interactions with the SARS-
CoV-2 spike protein N-terminal domain, suggesting a probable
mechanism of action. However, the experimental validation
is crucial to confirm these findings. Additionally, the QSAR
studies identified several molecular descriptors (VR2.Dzs,
MLFR_S, MDEN-2, PubChemFP12, AATSC6v and AATSC6s)
as significant contributors to coronavirus inhibition activity
and cytotoxicity (CC50). Robust QSAR models were developed,
meeting OECD criteria, indicating their stability, validity and
applicability. All series of NCAs exhibited favourable QSAR
profiles, indicating their potential as antiviral agents against
coronaviruses. The protocol and pattern of present study results
were also supported by other studies. Overall, the findings
demonstrated the potential of NCAs as antiviral candidates,
warranting further preclinical and clinical investigations. While
MDA provides initial insights, validation through in vitro and
in vivo experiments is imperative. Nonetheless, these results
provide a solid foundation for the development of novel thera-
peutics to combat coronavirus infections.
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