Novel Carbazoles as AChE Inhibitors: Synthesis, Molecular Docking and Dynamic Simulation Studies

EKTA KHARE1,2,*, ZEESHAN FATIMA1,2, O.P. TIWARI3, JEEVAN PATRA1 and UNNATI KUSHAVAH4

1Amity Institute of Pharmacy Lucknow, Amity University Uttar Pradesh, Sector 125, Noida-201313, India
2Department of Pharmaceutical Chemistry, GCRG College of Pharmacy, Lucknow-271835, India
3Department of Pharmaceutical Chemistry, Vindhya Gurukul College of Pharmacy (Affiliated to Dr. A. P. J. Abdul Kalam Technical University, Uttar Pradesh), Lucknow-226021, India
4Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow-226031, India

*Corresponding author: E-mail: zfatima@amity.edu

INTRODUCTION

Alzheimer’s disease is a chronic and progressive neurodegenerative disorder characterized by memory loss, cognitive dysfunction and behavioural abnormalities [1]. Globally, over 50 million individuals are affected by Alzheimer’s disease, a number expected to surge to 13.8 million by 2060 [2,3]. The pathogenesis of Alzheimer’s disease is complex and multifactorial, with several contributing factors still not fully understood [4]. The most significant factor is the deficit of acetylcholine, a neurotransmitter crucial for memory and learning [5]. Several clinical acetylcholinesterase drugs approved by the US FDA such as donepezil, rivastigmine and galantamine are the main drugs for Alzheimer’s disease management [6]. The reliability of these clinical candidates weakened due to their various adverse effects such as hypotension and hepatotoxicity [7]. Despite of their adverse effects, acetylcholinesterase drug target is a valuable strategy for exploring novel chemotypes for Alzheimer’s disease management. Over a decade several studies shown that acetylcholinesterase served as a multifactorial tool with the other key targets such as butyrylcholinesterase (BuChE), monoamine oxidase B (MAO-B), amyloid-β (Aβ) and β-secretase-1 (BACE1) [8,9].

Carbazole proven as an important bioactive scaffold having wide range of biological activities [10-14]. The carbazole [15-17] and carbamates [18-21] derivatives demonstrated promising biological activities against Alzheimer’s disease by targeting multiple pathological pathways. The carbamate is the core scaffold of the FDA approved drug rivastigmine. According to the AChE crystallographic research, a deep canyon groove is found in the catalytic active site (CAS), including Ser-His-Glu, and at the entrance of the canyon, peripheral anionic site (PAS) [22,23]. For the Alzheimer’s disease management, the designed inhibitors must interact with both CAS and PAS residues [24, 25]. Inspiring from the available anti-Alzheimer’s disease clinical candidates and potent literature source, we developed a novel multifunctional pharmacophore where carbazole is fused with carbamate scaffold to explore its efficacy against multiple...
Alzheimer’s disease targets. The designed rationale hybrids don’t have any CNS drug filter violation and possess optimum pharmacokinetic profile as like anti-Alzheimer’s disease clinical drugs. Several reports suggested that the presence of substituted phenyl ring projecting towards the entrance cavity of AChE [26]. Hence, various substitutions at para position on the phenyl ring [27] is performed. This forms the crucial π-π interactions with active aromatic residues, enhance BBB permeability and potency [28]. In this study, we synthesized designed hybrids, evaluated its inhibition potency against AChE and finally corroborated its biological potency against AChE and finally corroborated its inhibition activity based on the molecular modelling using MM-GBSA and NBE energies and dynamics for the protein-ligand stability.

EXPERIMENTAL

All chemicals, including starting materials, reagents and solvents, were purchased from commercial suppliers such as Sigma-Aldrich and Merck, USA. Column chromatography using Merck silica gel (70-230 mesh) was used for the purification of intermediates and final products. FTIR spectra were recorded on a Shimadzu 8400 spectrophotometer using KBr discs. Mass spectra were recorded using a water OPLC-TQDMS on a positive-mode ESI-MS spectrophotometer and 1H NMR discs. Mass spectra were recorded using a water OPLC-TQDMS on a positive-mode ESI-MS spectrophotometer and 1H NMR discs. Mass spectra were recorded using a water OPLC-TQDMS on a positive-mode ESI-MS spectrophotometer and 1H NMR discs. Mass spectra were recorded using a water OPLC-TQDMS on a positive-mode ESI-MS spectrophotometer and 1H NMR discs. Mass spectra were recorded using a water OPLC-TQDMS on a positive-mode ESI-MS spectrophotometer and 1H NMR discs. Mass spectra were recorded using a water OPLC-TQDMS on a positive-mode ESI-MS spectrophotometer and 1H NMR discs. Mass spectra were recorded using a water OPLC-TQDMS on a positive-mode ESI-MS spectrophotometer and 1H NMR discs. Mass spectra were recorded using a water OPLC-TQDMS on a positive-mode ESI-MS spectrophotometer and 1H NMR discs. Mass spectra were recorded using a water OPLC-TQDMS on a positive-mode ESI-MS spectrophotometer and 1H NMR discs. Mass spectra were recorded using a water OPLC-TQDMS on a positive-mode ESI-MS spectrophotometer and 1H NMR discs. Mass spectra were recorded using a water OPLC-TQDMS on a positive-mode ESI-MS spectrophotometer and 1H NMR discs.

Synthesis of N-substituted carbazoles: In the first step, intermediate 6-hydroxy-pyridocarbazol-4-one (3) was carried out according to the reported method [29]. The procedure includes condensation of carbazole with malonic acid in presence of phosphoryl chloride. The reaction was carried out at 120 °C for 4-5 h and the product obtained was further utilized to synthesize the titled compounds.

In second step, the synthesized intermediate 6-hydroxy-pyridocarbazol-4-one (3) was condensed with isocyanate derivatives in the presence of dry THF and NaH (0.24 g) in molar quantities at 10 °C and then the reaction mixture was stirred for 4-5 h. Ethyl acetate and hexane was used to develop the TLC which was visualized under iodine to monitor the progress of the reaction. The product so obtained was filtered, washed and recrystallized with absolute ethanol (Scheme-I). The melting point of the compounds were recorded and all the compounds were characterized by IR, 1H NMR and high resolution MASS spectrometry.

Scheme-I: Synthetic strategy for titled compounds 4a-h; Reagents & conditions: (a) POCl3 at 70-80 °C, (b) Substituted isocyanates, NaH, dry THF at 10 °C

6-Hydroxy-4H-pyridocarbazol-4-one (3): Creamy white colour; yield: 65%; m.p. 310-312 °C; 1H NMR (500 MHz, DMSO, δ ppm): 12.1 (s, 1H) OH, 7.5-8.5 (m, 7H) CH aromatic, 6.0 (s, 1H) CH.

4-Oxo-4H-pyridocarbazol-6-yl-4-nitrophenylcarbamate (4a): Reddish colour; yield: 55%; m.p. 314-316 °C; Anal. Calcd. (found) % for C22H14N2O6: C, 66.17 (66.15); H, 3.28 (3.29); N, 10.52 (10.50); O, 20.03 (20.05). IR (KBr, νmax, cm⁻¹): 3235 (NH), 1739 (C=O ester str.), 1550 (C-NO2), 1303 (C-O ester str.), 847 (para-position); 1H NMR (500 MHz, DMSO, δ ppm): 9.2 (s, 1H) NH, 7.4-8.6 (m, 11H) CH aromatic, 6.0 (s, 1H) CH; ESI-MS calcd. for C22H13N3O5: m/z (M-H, 100) = 398.

4-Oxo-4H-pyridocarbazol-6-yl-p-chloro carbamate (4b): White coloured powder, yield: 65%; m.p. 318-320 °C; Anal. calcd. (found) % for C22H13ClN2O5: C, 67.96 (67.97); H, 3.37 (3.34); Cl, 12.17 (12.18); N, 7.52 (7.53); O, 12.35 (12.36). IR (KBr, νmax, cm⁻¹): 3294 (NH), 1772 (C=O ester str.), 1236 (C-O ester str.), 823 (para position), 1374 (C-Cl); 1H NMR (500 MHz, DMSO, δ ppm): 9.2 (s, 1H) NH, 7.4-8.6 (m, 11H) CH aromatic, 6.0 (s, 1H) CH; ESI-MS calcd. for C22H13ClN2O5: m/z (M-H, 100) = 387.

4-Oxo-4H-pyridocarbazol-6-yl-p-fluoro-carbamate (4c): Yellowish white, yield: 50%; m.p. 300-302 °C; Anal. calcd. (found) % for C22H13F3N2O5: C, 70.96 (70.95); H, 3.52(3.50); F, 5.10 (5.13); N, 7.21(9.13); O, 12.39 (12.38). IR (KBr, νmax, cm⁻¹): 3294 (NH), 1632 (C=O ester str.), 1347 (C-F str.), 1209 (C-O ester str.), 831 (para position); 1H NMR (500 MHz, DMSO, δ ppm): 9.2 (s, 1H) NH, 6.8-8.6 (m, 11H) CH aromatic, 6.0 (s, 1H) CH; ESI-MS calcd. for C22H13FN2O5: m/z (M-H, 100) = 371.

4-Oxo-4H-pyridocarbazol-6-yl-p-methyl carbamate (4d): White coloured powder, yield: 56%; m.p. 320-322 °C; Anal. calcd. (found) % for C22H14N2O5: C, 74.99 (74.95); H, 4.38 (4.41); N, 7.60 (7.58); O, 13.03 (13.06). IR (KBr, νmax, cm⁻¹): 3314 (NH), 2758 (C-CH3), 1702 (C=O ester str.), 1702 (C-O ester str.), 830 (para position); 1H NMR (500 MHz, DMSO, δ ppm): 8.9 (s, 1H) NH, 7.4-8.5 (m, 11H) CH aromatic, 6.0 (s, 1H) CH, 2.2 (s, 3H) methyl; ESI-MS calcd. for C22H15N2O5: m/z (M-H, 100) = 367.

4-Oxo-4H-pyridocarbazol-6-yl-4-methoxy carbanate (4e): Reddish white colour, yield: 55%; m.p. 318-320 °C; Anal. calcd. (found) % for C22H14O2N2O5: C, 71.87 (71.84); H, 4.20 (4.22); N, 7.29 (7.27); O, 16.65 (16.68). IR (KBr, νmax, cm⁻¹):
was accessed to estimate individual ADME characteristics of the synthesized compounds. The compounds were sketched on the server provided space and were converted to Simplified Molecular Input Line Entry System string (SMILES) thereafter the result was obtained in tabular format. The drug-like properties, pharmacokinetic and physico-chemical properties of the compounds were studied. Besides this Brain Or IntestinaL Estimated permeation method (BOILED EGG) was used to predict the permeation of designed molecule [31,32].

Biological evaluation: In vitro AChE inhibitory activity was conducted as per the standard procedure of Ellman’s method with minor modifications [33]. A 40 mL of the test solution in various concentrations was taken with 50 mL of 50 mM Tris-HCl buffer (pH 8.0) and 50 mL of 0.02 U/mL AChE. Initially, the solution was pre-incubated for 30 min at 4 ºC. The reaction mixture was then supplemented with 30 mL of 10 mM DTNB (5,5’-dithiobis-2-nitrobenzoic acid) and 30 mL of 12 mM ATChI (acetylthiocholine iodide). During a 10 min interval at 25 ºC, AChE activity was detected using an Elisa reader. By comparing the enzyme’s activity with and without the inhibitor, the percentage of inhibition was determined comparing the enzyme activity with and without inhibitor. Rivastigmine was used as positive control and the experimental values were taken in triplicates.

RESULTS AND DISCUSSION

Structure activity relationship (SAR) studies: It has been found that halogenes are more effective than electron withdrawing groups in the phenyl ring, which is significant for pharmacological activity. Best in the inhibition was achieved by compound 4c, which could be because of the flourine’s strong electronegativity and smallest size, which shows IC50 value of 14.14 µM. similarly, chlorine present at the para position, was found to be 17.52 µMIC50 value. Changing the position of chlorine from para to meta-leads to decrease in the activity i.e. compound 4h. Disubstituted chlorine compound 4f having -Cl at ortho and para position further lead to a decrease in the IC50 value which was 26.40 µM. However, electron withdrawing substituent nitro, present at the para and meta position showed low inhibitory activity having IC50 value of 31.88 and 34.68 µM, respectively. The electron-withdrawing substituents in compounds 4d and 4e at the para position also showed low inhibitory activity having IC50 value of 31.30 and 28.05 µM, respectively. All the compounds were found to be relatively less potent as AChE inhibitors (Table-1) when compared to standard drug rivastigmine. Among the electron-donating substituents viz. methoxy and methyl group activity were almost alike but it was less than the electron-withdrawing substituents [34].

Molecular modelling interactions: The xtra precision docking revealed similar geometry for all designed analogues inside the active binding pocket. This can be correlated based on the interacting residues (Table-2). Among the designed series, 4c showed the highest binding affinity, which is confirmed with its inhibition activity against AChE (Table-1). Non-bonded energies (NBEs) are the cumulative energy between van der Waals, electrostatic and coulombic energies. The interacting
residues of 4c exhibited identical residues (Fig. 1) as the control group (rivastigmine). Compound 4c formed aromatic hydrogen bonding, \(\pi-\pi\) stacking and hydrophobic contacts. The 4-fluoro phenyl group showed aromatic interactions with Phe331 and Tyr334, while the pyrido-carbazole scaffold participated in \(\pi-\pi\) stacking with Trp84, Phe330 and Tyr121. However, the carbonyl group of the pyridocarbazole scaffold exhibited unfavourable interactions with the His440 residue, possibly due to the torsion hindrance between Gly441 and His440. The per residue energy decomposition showed good residual binding affinities for D72 (-55.57), W84 (-56.21), Y121 (-48.89), F330 (-29.45), F331 (-32.91), Y334 (-45.32) and H440 (-31.40).

The molecular dynamics simulations further validated the structural binding phenomena of the best-docked conformer. The AChE-4c complex showed consistent binding behaviour (Fig. 2) and maintained the interaction strength throughout the simulation. Specifically, hydrophobic interactions formed with Trp84, Tyr121, Phe290, Phe330, Phe331 and Tyr334 and hydrogen bonding occurred with Glu199 and His440 (Figs. 3 and 4). These interactions resulted in strong binding strength during the simulation course (Fig. 5).

ADME profile: The results support the drug-likeness properties of 4c, with no violation to Lipinski filter. Also, the radar plot (Fig. 6a) supports the same. The boiled egg model (Fig. 6b) suggests that the molecule is able to penetrate the blood brain barrier as it lies in the yolk region of the model, which is an essential requisite for the molecule to treat neurological disorders.

Conclusion

The study involved the synthesis of eight new carbazole-carbamate hybrid analogs with the aim of exploring their potential as inhibitors of acetylcholinesterase (AChE) for the treatment of Alzheimer’s disease. The synthesized compounds showed better activity and among them, the IC50 value of compound 4c was found to be 14.14 \(\mu M\). The compounds also showed better binding energy which was comparable to that of rivastigmine.

Molecular dynamics simulations further substantiated the struc-

TABLE-1

<table>
<thead>
<tr>
<th>Compd. No.</th>
<th>R</th>
<th>AChE IC50 (µM)</th>
<th>Gscore (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4a</td>
<td>4-Nitro</td>
<td>31.88 ± 0.41</td>
<td>-7.076</td>
</tr>
<tr>
<td>4b</td>
<td>4-Chloro</td>
<td>17.52 ± 0.29</td>
<td>-6.494</td>
</tr>
<tr>
<td>4c</td>
<td>4-Fluoro</td>
<td>14.14 ± 0.35</td>
<td>-7.327</td>
</tr>
<tr>
<td>4d</td>
<td>4-Methyl</td>
<td>31.30 ± 0.34</td>
<td>-5.995</td>
</tr>
<tr>
<td>4e</td>
<td>4-Methoxy</td>
<td>28.05 ± 0.40</td>
<td>-6.955</td>
</tr>
<tr>
<td>4f</td>
<td>2,4-Dichloro</td>
<td>26.40 ± 0.55</td>
<td>-8.197</td>
</tr>
<tr>
<td>4g</td>
<td>3-Nitro</td>
<td>34.68 ± 0.33</td>
<td>-6.837</td>
</tr>
<tr>
<td>4h</td>
<td>3-Chloro</td>
<td>24.15 ± 0.35</td>
<td>-7.232</td>
</tr>
<tr>
<td>Rivastigmine</td>
<td>–</td>
<td>11.82 ± 0.35</td>
<td>-7.374</td>
</tr>
</tbody>
</table>

TABLE-2

<table>
<thead>
<tr>
<th>Compd. No.</th>
<th>(\Delta G)</th>
<th>(\Delta G_{vdW})</th>
<th>(\Delta G_{lip})</th>
<th>(\Delta G_{Gibbs})</th>
<th>Interacting residues</th>
</tr>
</thead>
<tbody>
<tr>
<td>4b</td>
<td>-36.87</td>
<td>-11.43</td>
<td>-26.53</td>
<td>-55.26</td>
<td>Y334, F330, W84, D72, F331</td>
</tr>
<tr>
<td>4c</td>
<td>-44.06</td>
<td>-21.41</td>
<td>-28.00</td>
<td>-53.44</td>
<td>D72, W84, Y121, F330, F331, Y334, H440</td>
</tr>
<tr>
<td>4e</td>
<td>-38.83</td>
<td>-11.58</td>
<td>-23.96</td>
<td>-44.41</td>
<td>W84, Y121, W279, F330, F331</td>
</tr>
<tr>
<td>4f</td>
<td>-40.63</td>
<td>-11.50</td>
<td>-29.24</td>
<td>-52.46</td>
<td>E199, F330, Y334, F331, D72, W84</td>
</tr>
<tr>
<td>4g</td>
<td>-41.73</td>
<td>-8.04</td>
<td>-30.05</td>
<td>-56.50</td>
<td>Y70, Y121, I287, F330, F331</td>
</tr>
<tr>
<td>4h</td>
<td>-34.88</td>
<td>-8.30</td>
<td>-21.87</td>
<td>-45.90</td>
<td>D72, W84, Y121, F330, F331, Y334</td>
</tr>
<tr>
<td>Rivastigmine</td>
<td>-47.54</td>
<td>-31.51</td>
<td>-28.69</td>
<td>-54.41</td>
<td>D72, W84, Y121, F330, F331, Y334</td>
</tr>
</tbody>
</table>

Fig. 1. Molecular interactions of 4c: hydrophobic, aromatic hydrogen bonding, \(\pi-\pi\) stacking interactions are represented by grey, magenta, yellow and green dashed lines respectively
Fig. 2. (a) RMSD and (b) RMSF of AChE-4c

Fig. 3. (a) Ligand 4c RMSF and (b) Interactions formed during the simulation represented in interaction fractions

Fig. 4. Heat map showing number of interactions formed during the simulation course

Fig. 5. Interaction strength formed during the simulation course

Fig. 6. ADME prediction (a) Radar plot and (b) Boiled egg model
tural binding phenomena of compound 4c and also the ADME parameters of this molecule were also found to be in an acceptable range. It can thus be concluded that further optimization of the molecule can lead to the generation of more potent anti-Alzheimer’s compounds.

ACKNOWLEDGEMENTS

The authors are thankful to Amity Institute of Pharmacy Lucknow for providing the necessary research facilities for the completion of this work.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interests regarding the publication of this article.

REFERENCES

3. Alzheimer’s Disease Facts and Figures, Alzheimers Dement., 20, 3708 (2024); https://doi.org/10.1002/alz.13809
5. Z.R. Chen, J.B. Huang, S.L. Yang and F.F. Hong, Molecules, 27, 1816 (2022); https://doi.org/10.3390/molecules27061816
13. A Caruso, A. Barbarossa, A. Carocci, G. Salzano, M.S. Sircioppi and C. Saturnino, Appl. Sci., 11, 6192 (2021); https://doi.org/10.3390/app1116192