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INTRODUCTION

The design and structure of molecules that exhibit fluores-
cence are the most important areas in the current research field
for developing new sensor materials for various metal ions [1-3].
Pyridine 2,6-dicarboxamide based scaffolds have been pro-
gressively used in innumerable research work for specifically
targeted identification of various cations (Fe2+/3+, Cu2+, Zn2+

and Pd2+) and also drugs like warfarin [4-9]. The pincer-cavity
chemosensors have effectively used chelate based detection
techniques [3].

Transition metal complexes of N2,N6-bis(4-phenyl thiaz-
ole-2-yl)pyridine 2,6-dicarboxamide hold great potential in
application in catalysis. Magnesium ion (Mg2+) is vital in many
cellular functions, including proliferating cells, dying cells,
enzyme-driven biological events, transmission regulation,
genome strength and cell communication [10-12]. Mg2+ plays
a role in roughly 300 enzymatic processes in cells. The amount
of intracellular Mg2+ is thought to influence the metabolism
of cells [13]. Hypomagnesemia has been associated with a
number of chronic diseases including diabetes, high blood pres-
sure, bone loss, metabolic syndrome, brain injury and chemo-
therapeutic efficacy. Compared to other illnesses, hypermagne-
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semia is less widespread, but it is connected with prolonged
renal failure and can lead to heart failure in extreme cases [14,
15]. Thus, it is crucial to design an incredibly precise and respo-
nsive fluorescent sensor that can recognize Mg2+ without any
interruption from different metal ions. Since, fluorescent-based
chemosensors offer significant advantages over other types,
moreover the fluorescence analysis are sensitive, cost-effective,
easy to perform, real-time detection and adaptable [16]. Sensing
materials for detecting Mg2+ in aqueous solutions are limited,
making it necessary to develop a novel sensor with good selec-
tivity. On the other hand, Mg2+ sensors are very beneficial for
quantifiable Mg2+ differentiation in water for consumption.
Such Mg2+ sensors must be very selective to detect the analyte
over other species. Men et al. [17] developed a fluorescent
“turn-on” Mg2+ sensors that utilized an ordinary commerci-
alized 3,5-dichloro salicylaldehyde (BCSA). Similarly, Wang
et al. [18] developed a non-toxic, dual-functional chemosensor
which detects Mg2+ and Zn2+ metal ions with limits of detection
of 2.97 × 10–8 M and 3.07 × 10–7 M, respectively.

Nickel is also necessary for biological processes like oxygen
consumption, metabolic processes and biosynthesis [19-21].
Nickel is mostly used in industrial applications to manufacture
tools for chemical engineering. Nickel alloy has a variety of



industrial applications, including the fabrication of ornaments
and other appliances [22,23]. Excessive nickel buildup can
negatively impact mammalian respiratory and immunological
systems, even though the relationship between nickel and mam-
malian health remains largely unexplored. Therefore, it is highly
crucial to detect nickel ions. Over exposure to nickel can cause
pulmonary fibrosis, renal illness and cardiovascular disease
[24-26]. Numerous compounds have been synthesized to detect
selectively nickel ions [27-34].

Recently, fluorescence quenching has gained popularity
as a tool for studying various facets of ligand binding. Fluor-
escent detectors frequently show amplification for transition
metal ions like Zn2+ [35,36], Cu2+ [37,38] and Fe3+ [39,40].
However, fluorescence compounds employed with conven-
tional transition-metals fluorescent quenchers such as Ni2+ and
Mg2+ are sparse. In this work, the ligand has been designed by
the coupling of pyridine 2,6-dicarboxylic acid with 2-amino
4-phenyl thiazole containing appended thiazole ring. The
thiazole ring is comparable to pyridine in terms of aromaticity
and the field of chemistry but its electronic characteristics differ
due to its weaker σ-donor and π-acceptor. The derived ligand’s
sensing abilities were investigated in three different solvents
viz. CH3OH (protic), THF (non-protic) and H2O (HEPES buffer,
10 mM, pH = 7.2). The sensing material’s ability to detect metal
ions is facilitated by the chemical interactions that regulate
the sensor bandgap. For instance, a bathochromic (red) shift
results from decreasing the HOMO-LUMO energy gap, whereas
a hypsochromic (blue) shift results from increasing it. This
may help in the future creation of more potent fluorescent and
colorimetric chemosensors for a range of uses including the
commercial ones. The two metals ions Mg2+ and Ni2+ were found
to show good fluorescent results.

EXPERIMENTAL

Pyridine-2,6-dicarboxylic acid and 2-amino-4-phenyl
thiazole were purchased from Sigma-Aldrich, USA. The instru-
ment AB-Sciex-Q-Star-LCMS-MS spectrometer was utilized
for electrospray ionization mass analysis of the complexes. The
1H NMR and 13C NMR spectra of ligand were collected empl-
oying Bruker Advance 300 spectrometers, with TMS as internal
reference material and CDCl3 as solvent. The fluorescent spectra
were collected using an instrument FP-8250 spectrofluoro-
meter with a 1 cm quartz path. The 1 mM of fluorescent sensor
stock solution was prepared with THF solvent. The luminous

intensity of the ligand solution varies depending on its concen-
tration. The optimal ligand concentration (60 µM) was deter-
mined for saturation. The 2.5 mM of metal ion stock solution
was prepared by mixing chloride, acetate and nitrate salts in
methanol solvent. The spectra were obtained at 318 nm, with
a 5 nm excitation and emission slit. The fluorescent titration
experiments were recorded using a fluorescent sensor at 60 µM
with different concentration of Mg2+ and Ni2+ ions.

Synthesis of ligand: A reaction mixture containing
pyridine-2,6-dicarboxylic acid (0.668 g, 0.0039 mol) and 2-
amino-4 phenyl thiazole (1.40 g, 0.0079 mol) dissolved in 15
mL of pyridine was refluxed for 30 min at 120 ºC while stirring.
Triphenyl phosphite (2.604 g, 0.00839 mol) was added drop-
wise to the resultant mixture and agitated at 100 ºC for another
6 h. Then, the solution was permitted to cool to ambient tempe-
rature before being immersed in ice water resulting in the form-
ation of pale-yellow precipitate. The final product was purified,
washed with water and air-dried (Scheme-I). Yield: 1.45 g (90%);
m.p.: 265 ºC. Anal. calcd. (found) % for C25H17N5O2S2: C, 62.10
(61.95); H, 3.54 (3.50); N, 14.48 (14.43); O, 6.62 (6.60); S,
13.26 (13.20). MS (ESI+ CH3CN) m/z: 483.08; Found: 484.91
M+. FT-IR (ATR, cm–1): 3356 (N-H), 1684 (C=O). 1H NMR
(400 MHz, CDCl3): 8.46 (q, J = 3.8 Hz, 1H), 8.16 (q, J = 7.92
Hz, 1H), 7.38 (d, J = 3.6 Hz, 1H), 7.62 (d, J = 4.58 Hz, 1H),
7.39 (t, J = 3.57 Hz, 1H), 6.99 (d, J = 1.84, 1H), 6.85 (d, J = 3.5
Hz, 1H), 13.12 (broad, NH); 13C NMR (126 MHz, CDCl3):
168.73, 165.42, 162.49, 157.86, 150.42, 150.11, 147.67, 146.72,
141.08, 135.48, 134.76, 129.32, 128.47, 127.68, 127.06, 126.42,
126.07, 119.34, 115.78, 109.66, 102.02.

Synthesis of metal complex: [{L}Cu(CH3COO)]. A 10 mL
of above synthesized ligand (0.241 g, 0.0005 mmol) dissolved
in THF solution was added to a solution of [Cu(CH3COO)2]
(0.090 g, 0.0005 mmol) prepared in 10 mL methanol with
constant stirring. The consequent solution was subsequently
agitated for 2 h. The resulting mixture was filtered and then
the filtrate was left to evaporate. A greenish-blue crystalline solid
was appeared after 10 h (Scheme-II). The coloured product was
washed thoroughly from diethyl ether and dried under vacuum.
Yield: 0.23 g (85%) m.p.: 270 ºC, FT-IR (ATR, cm–1): 1607
(C=O). MS (ESI+ methanol, m/z): 558.52.

Preparation of solutions: In methanol, the stock solutions
(2.5 mM) of Cu2+, Ni2+, Ag+, Co3+, Cd2+, Pb2+, Mn2+, Pd2+, Zn2+,
Mg2+, Hg2+ and Fe3+ were prepared while that of ligand (1 mM)
was prepared in THF solvent. The UV-visible and fluorescent
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spectra were obtained at room temperature in a methanol/H2O
solution (pH 7.4, HEPES buffer, 0.2 mM). The fluorescence
spectra were acquired using a 318 nm excitation wavelength
(slit width: 5 nm/5 nm).

RESULTS AND DISCUSSION
1H NMR studies: The 1H NMR spectrum indicated a

broad singlet for NH at δ 13.12 ppm (Fig. 1a). Furthermore,
the predicted coupling between protons is also observable. In
13C NMR spectra, the C=O carbon signal was detected at δ

162.49 ppm. In the pyridine-ringed carbon peaks have been
identified at 141.08 ppm (1C), 127.68 ppm (2C) and 150.42
ppm (3C). On the other side, the thiazole carbon peaks were
detected at 165.08 ppm (5C), 135.48 ppm (6C), 157.86 ppm
(7C) and (10C) at 115.78 ppm (Fig. 1b).

Electronic and mass spectra: The spectrum of absorption
of the ligand H2L indicates λmax at 318 (Fig. 2a). The λmax attri-
buted π-π* transition in the ligand molecule. Complex 1 exhibits
a bathochromic shift and λmax at 320 (Fig. 2b). The approximate
mass of the ligand is m/z = 484.91 (Fig. 3).
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Fig. 1. (a) 1H NMR and (b) 13C NMR spectra of ligand, pyridine-2,6-dicarboxamide
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Fig. 2. UV-visible absorption spectra of ligand (a) and its complex (b)
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IR spectra: In the IR spectra of ligand, the NH and CO
stretching peaks associated with the amide linkages were obse-
rved at 3356 and 1684 cm-1, respectively (Fig. 4). The metal
complex was formed by combining the deprotonated ligands
with an equivalent of the appropriate copper salt in the THF
medium. In the FT-IR spectrum of complex, a broad peak at
3438 cm-1 is attributed to the ν(N-H) of the protonated hetero-
cyclic ring. The disappearance of the NH str. band indicated
that the amide group is deprotonated in contrast with the free
ligand. These changes indicate the involvement of the anionic
N-amide bonding in the coordination. The metal complex also
exhibited a C=O stretching frequency at 1607 cm-1, indicating
a red shift of the band by 80-50 cm-1 compared to the ligand,
which suggests that the amidic moieties in the complex are
deprotonated.

Fluorescent spectral studies: The fluorescence sensing
ability of the ligand towards various cations viz. Cu2+, Ni2+,
Ag+, Co3+, Cd2+, Pb2+, Mn2+, Pd2+, Zn2+, Mg2+, Hg2+ and Fe3+

ions were investigated. The concentration of the ligand is deter-

90

80

70

60

50

40

30

20

T
ra

ns
m

itt
an

ce
 (

%
)

4000 3500 3000 2500 2000 1500 1000 500 4000 3500 3000 2500 2000 1500 1000 500

Wavenumber (cm )
–1

3437 cm–1

1684 cm–1

C=O

3356 cm–1

N–H

(a) (b)

90

80

70

60

50

40

30

20

T
ra

ns
m

itt
an

ce
 (

%
)

Wavenumber (cm )
–1

3438

1607

1332

Fig. 4. FTIR spectra of ligand (a) and its complex (b)

mined by raising it from 20 µm to 60 µm, where it exhibits the
highest fluorescence intensity. The ligand concentration required
for the maximal intensity was 60 µm. The ligand’s intensity
varies with different metal ions and salt solutions. When various
metal ions started to be added into the ligand solution, only
Mg2+ and Ni2+ ions showed a significant shift in the intensity
of fluorescence in compared to the ligand and other metal ions
(Fig. 5).
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Fig. 5. Emission spectra of ligand in HEPES buffer and interaction with
metal

The efficacy of ligand quenching can be examined using
the Stern-Volmer plot. Using the Stern-Volmer plot, the binding
constants were 2.04 × 103 M–1 and 2.97 × 103 M–1 respectively
for Mg2+ and Ni2+. The data shows that ligand has a detection
limit of 2.1502 × 10–8 mol/L for Mg2+ and 4.8007 × 10–8 mol/
L for Ni2+. The ligand’s fluorescence intensity was examined
by gradually increasing Mg2+ and Ni2+ resulting in the quanti-
tative quenching (Fig. 6).

Detection of Mg2+ and Ni2+: Several metal ions were intro-
duced into the ligand solution to examine its fluorescence sen-
sing capacity. Fluorescent emissions from Mg2+ and Ni2+ ions
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at different concentrations are detected by the fluorescent sensor,
while the intensity of emissions from other metal ions is almost
identical to that of the ligand. Since the Mg2+ ions have a diffe-
rent binding affinity than other metal ions, they are utilized in
the subsequent experiments.

Estimation of binding parameters: The spectral UV-
visible titrations were used to calculate binding factors for
Mg2+ and Ni2+ ions in three different solvents (CH3OH, THF
and HEPES buffers). Using eqn. 1, the binding constants (Kb)
were determined using the Benesi-Hildebrand plot [4], whereas
the limit of detection was determined using eqn. 2 [41].

2
0 b 0 min 0 min

1 1 1

(I I ) {K (I I )[M ]} (I I )+= +
− − − (1)

where I0 and I are the absorption intensities of H2L in both the
absence and the presence of Mg2+ or Ni2+ ions.

3
Detection limit

k

σ= (2)

where σ is the average deviation of ten blank replicated absor-
bance observations and k is the slope for absorbance versus
the M2+ ion concentration plot.

The Job’s plot uses a 1:1 stoichiometry and a continual
fluctuation of mole fractions of Mg2+ and Ni2+ ions. The Benesi-
Hildebrand plot confirmed the 1:1 stoichiometry of ligand and
metal ions. Furthermore, the binding constants was found to
be 2.04 × 103 M–1 and 2.97 × 103 M–1 for Mg2+ and Ni2+ ions,
respectively.

Conclusion

A new fluorescent chemosensor (N2,N6-bis(4-phenyl
thiazol-2-yl)pyridine-2,6-dicarboxamide) was developed and
characterized through physicochemical and spectroscopic
techniques. The efficacy of the fluorescent chemosensor to detect
Mg2+ and Ni2+ ions among other metal ions for example, Mg2+,
Ag+, Fe2+, Na+, K+, Cu2+, Ni2+, Hg2+, Pb2+, Mn2+, Pd2+, Cd2+ and
Mn3+ was successfully investigated. The fluorescent chemo-
sensor for Mg2+ and Ni2+ ions has selectivity and detection limits
at 2.1502 × 10–8 mol/L and 4.8007 × 10–8 mol/L, respectively.
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