

In silico Analysis of 1,3,4-Oxadiazoles as Potential BCL-2 Inhibitor for Cancer Treatment

GANESH SONAWANE^{*,®}, SHWETA SHARMA[®] and RITU GILHOTRA[®]

Gyan Vihar School of Pharmacy, Suresh Gyan Vihar University, Jaipur-302017, India

*Corresponding author: E-mail: gbsonawane8@gmail.com

Received: 4 February 2024;

Accepted: 18 March 2024;

AJC-21612

The possible efficacy of 1,3,4-oxadiazoles as B-cell lymphoma 2 (BCL-2) inhibitors for cancer treatment is investigated in this study using *in silico* approaches such as molecular docking, ADME and toxicity prediction. Molecular docking studies predict the binding affinities and binding modes of a series of 1,3,4-oxadiazole derivatives with the BCL-2 protein. The results revealed that the compounds with strong interactions and favourable binding modes, indicating their potential as BCL-2 inhibitors. An ADMET analysis assesses the pharmacokinetic properties and potential toxicity of the identified compounds. Parameters such as absorption, distribution, metabolism, excretion and toxicity (ADMET) were evaluated to predict the suitability of these 1,3,4-oxadiazoles as drug candidates for cancer therapy. The integration of molecular docking and ADMET analysis data led to the identification and prioritization of lead compounds with potent BCL-2 inhibitory activity and favourable pharmacokinetic profiles. This research contributes to the on-going efforts in drug discovery, emphasizing the potential of 1,3,4-oxadiazoles as a class of compounds with significant anticancer properties through BCL-2 inhibitor.

Keywords: 1,3,4-Oxadiazoles, Cancer, BCL-2, Molecular docking, ADMET analysis, ProTox-II.

INTRODUCTION

B-cell lymphoma 2 (BCL-2) is a pivotal regulator of apoptosis, a fundamental process in cellular homeostasis crucial for preventing the emergence of cancerous cells [1]. As a member of the BCL-2 protein family, BCL-2 plays a central role in modulating the permeability of the mitochondrial outer membrane, a critical step in the apoptotic pathway. The primary function of BCL-2 is to suppress apoptosis, thereby promoting cell survival. This is achieved by inhibiting the release of cytochrome c from the mitochondria into the cytoplasm, a process that, when activated, initiates a cascade of events leading to programmed cell death [2]. In cancer, the dysregulation of the apoptotic pathway, including alterations in BCL-2 expression, is frequently observed. Overexpression of BCL-2 can confer a survival advantage to cancer cells by preventing apoptosis, allowing for uncontrolled proliferation [3]. Consequently, BCL-2 has emerged as a promising therapeutic target in cancer treatment.

Strategies aimed at modulating BCL-2 activity, such as the development of small molecules like 1,3,4-oxadiazoles, offer potential avenues for innovative cancer therapies [4]. Understanding the molecular mechanisms underlying BCL-2 function and its interactions with potential inhibitors is essential

for advancing targeted cancer therapy. Research efforts, including molecular docking studies, ADME and toxicity study, contribute to elucidating the therapeutic potential of compounds targeting BCL-2 [5]. Targeting the BCL-2 protein in cancer treatment has the potential to address critical challenges associated with cancer cell survival, resistance to therapies and the need for more selective and effective treatment options [6,7]. As research progresses, BCL-2 inhibition emerges as a promising avenue for developing novel and targeted therapeutic strategies in the fight against cancer [8-12]. The research on 1,3,4-oxadiazoles as potential BCL-2 inhibitors for cancer treatment provides promising insights, combining molecular docking studies with *in silico* ADMET analysis to identify compounds with strong binding affinities and favourable druglike properties [13]. Novel approaches to drug discovery have been made possible by recent developments in computational biology, especially with regard to targeted cancer treatments. Modern techniques including molecular docking and ADMET analysis are used to find and assess potential anticancer medications [14,15]. In present study, virtually designed 1,3,4-oxadiazoles (Fig. 1) were subjected to various in silico analysis for screening and exploring their potential as BCL-2 inhibitors for anticancer activity.

Published online: 30 April 2024;

This is an open access journal, and articles are distributed under the terms of the Attribution 4.0 International (CC BY 4.0) License. This license lets others distribute, remix, tweak, and build upon your work, even commercially, as long as they credit the author for the original creation. You must give appropriate credit, provide a link to the license, and indicate if changes were made.

Fig. 1. Structure of the compounds having anticancer properties containing 1,3,4-oxadiazole moiety [(a) 2-[(4-morpholylethyloxy)-1,3,4-oxadiazol-2-thio]-3-N-methylpiperazilquinoxaline; (b) N-(3-methoxy-5-methyl-2-pyrazinyl)-2-[4-(1,3,4-oxadiazol-2-yl)phenyl]-3-pyridinesulfonamide; (c) 2-chloro-3-[5-(4-hydroxyphenyl)-1,3,4-oxadiazol-2-thio]quinoxaline)

EXPERIMENTAL

Design of 1,3,4-oxadiazole derivatives: To design possible 1,3,4-oxadiazoles in present investigation, a thorough literature review and database searches were carried out. Prioritized were compounds with established anticancer properties (Fig. 1) and those that could be easily obtained for experimental confirmation. To achieve a thorough assessment, the selection method also took into account for 1,3,4-oxadiazole derivatives [16,17]. From the designed molecules, 20 ligands were virtually designed followed by *in silico* analysis.

In silico screening

Drug likeness and ADMET analysis: The SwissADME server was used to assess the drug-likeness characteristics of the twenty 1,3,4-oxadiazole derivatives and pkCSM servers were used for theoretical ADMET profiling of the same [18,19].

Synthetic accessibility study: Synthetic accessibility study is a crucial aspect in the field of chemistry, particularly in drug discovery and development. Synthetic accessibility is the process of evaluating the simplicity and efficacy with which a compound can be synthesized or prepared in the laboratory. Synthetic accessibility study of the twenty derivatives of 1,3,4-oxadiazole were done using the SwissADME server [20].

Protein preparation and quality assessment: The crystal structure of BCL-2:Navitoclax (ABT-263) complex protein (Fig. 2) was selected using X-ray diffraction and retrieved from the Protein data bank (PDB ID: 4LVT, Method: X-ray diffraction, Organism: Homo sapiens, Resolution: 2.05 Å) [21-30]. The protein structure was prepared by eliminating water molecules and hetatms and modified with polar hydrogen atoms to create the proper tautomeric state [29]. The BIOVIA Discovery

Fig. 2. 3D structure of 4LVT BCL_2-Navitoclax (ABT-263) complex

Studio was used for the preparation process and the structure was energy minimized to convert as AutoDock macromolecule [21]. Then, the prepared protein structure was energy minimized to convert as AutoDock macromolecule [15]. Quality

assessment of the protein structure was conducted using SAVES and ProSAweb server [31,32].

Ligand preparation: Chemical structures of all the designed 1,3,4-oxadiazoles derivatives were drawn using ACD/ ChemSketch software 12.0 and then protonated by adding hydrogen atoms with the help of BIOVIA Discovery Studio. The designed structure of 1,3,4-oxadiazoles then subjected to energy minimization with the help of the MMFF94 force field and the steepest descent algorithm [32]. The energy minimization and optimization of the compound structures were achieved with the help of Avogadro software. The optimized chemical structures further converted to AutoDock pdbqt format using OpenBabel plugin of PyRx 0.8 [26,27] and used for *in silico* analysis.

Molecular docking: A docking study was performed using the AutoDock Vina module of PyRx 0.8 [33,34]. In Vina Wizard, the ligand and protein structures were chosen to carry out a docking study. In the Vina workspace, a maximized grid box was selected [35]. The default value for exhaustiveness was eight [29,36]. The docked confirmation of each compound with the highest negative binding affinity was saved and 2D-3D binding interactions with targeted proteins were visualized.

In silico toxicity predictions: The Protox-II online tool (<u>https://tox-new.charite.de/protox_II/</u>) was used to predict various toxicity end points for all compounds, including hepatotoxicity, cytotoxicity, immunogenicity, carcinogenicity and mutage-

nesis, demonstrating the effectiveness of computational toxicity estimations in drug design development and reducing animal experiments [37-39].

RESULTS AND DISCUSSION

Design of 1,3,4-oxadiazole derivatives: 1,3,4-Oxadiazole scaffold allows for the structural modifications at different positions, leading to a diverse array of derivatives. Substituents can be introduced to tailor the compounds for specific biological targets or to enhance pharmacokinetic properties. Design of the 1,3,4-oxadiazole derivatives were done with established anticancer properties and pharmacophoric features (Table-1).

Drug-likeness study: The safety and drug-likeness characteristics of the twenty derivatives of 1,3,4-oxadiazoles were evaluated using the SwissADME online programme. Among the designed compounds there is violation in one parameter *i.e.* molecular weight and compounds **8** and **18** violated one criterion, according to the analysis of molecule number of hydrogen bond acceptor is greater than 10. The total polar surface area (TPSA), a crucial factor in drug bioavailability, was also calculated. Therefore, drugs that are passively absorbed and have a TPSA > 140 are regarded as having a poor oral bio-availability. Table-2 predicts that each chemical exhibits excellent log Kp values for human skin permeability and these results imply the potential use of the newly designed oxadiazole derivatives as safe lead compounds.

ADMET study: The safety and drug-likeness characteristics of 1,3,4-oxadiazoles were evaluated by the ADMET analysis (Table-3). All the compounds in present study exhibit intestinal absorption ranging from 84.77% to 100%, it suggests that these compounds have a high degree of absorption in the intestinal tract. Other results suggest that all compounds have good BBB permeability, metabolism and clearance.

Synthetic accessibility study: The synthetic accessibility score ranges from 1 (easy to synthesize) to 10 (hard to synthesize). Synthetic accessibility score of all twenty derivatives

(Table-2) were ranges from 3.58 to 4.67, fall within a moderate to high level of synthetic accessibility. Generally, scores in this range imply that the molecules are expected to be reasonably accessible for synthesis and the procedures involved may not be overly complex. This is a favourable indication as it suggests that the compounds are likely to be viable for practical synthesis. **Assessment of protein structure quality**

Ramachandran plot: The quality matrix of the protein (4LVT) was assessed using various online analytical tools. The Ramachandran plot is a crucial tool for analyzing the protein

secondary structure, predicting that a high-quality protein should have over 90% amino acid residues in its most favourable regions [40-43]. As per result (Fig. 3a), 95.5% of the residues are in the most favoured regions.

ERRAT study: The ERRAT score measures non-bonded interactions between atoms and plots the error function against

a sliding window. It indicates the confidence in rejecting regions exceeding the error value. The overall quality factor is expressed as the percentage of proteins below the 95% rejection limit [39]. According to the results (Fig. 3b), ERRAT score was found to be 96.17% which is higher than 95% showed that the protein structure is having good high quality resolution structure.

		LIPIN	ISKI's RU	JLE OF FI	IVE AND	TA DRUG-LI	ABLE-2 KENESS	PREDICTION	N OF 1,3,4-OX	ADIAZO	LES	
Const	Lipinski's rule of five					TDCA		Lipinski's	Lipinski	Veber	Veber	Synthetic
Compa.	MW	mLogP	nHBA	nHBD	MR	IPSA	nKot	Rule	#violations	Rule	#violations	accessibility
1	588.08	3.22	8	1	164.99	134.81	9	1	Yes	0	Yes	4.33
2	581.69	3.14	8	1	169.91	134.81	9	1	Yes	0	Yes	4.61
3	633.08	2.44	10	1	173.81	180.63	10	2	No	1	No	4.50
4	633.08	2.44	10	1	173.81	180.63	10	2	No	1	No	4.44
5	588.08	3.22	8	1	164.99	134.81	9	1	Yes	0	Yes	4.35
6	581.69	3.14	8	1	169.91	134.81	9	1	Yes	0	Yes	4.60
7	583.66	2.45	9	1	166.47	144.04	10	2	No	1	No	4.51
8	643.63	1.25	12	1	177.62	226.45	11	2	No	2	No	4.67
9	571.63	3.12	9	1	159.94	134.81	9	1	Yes	0	Yes	4.35
10	588.08	3.22	8	1	164.99	134.81	9	1	Yes	0	Yes	4.34
11	524.38	3.57	7	1	133.74	128.33	8	1	Yes	0	Yes	3.58
12	517.99	3.5	7	1	138.66	128.33	8	1	Yes	0	Yes	3.83
13	569.38	3.29	9	1	142.56	174.15	9	2	No	1	No	3.77
14	569.38	3.29	9	1	142.56	174.15	9	2	No	1	No	3.68
15	524.38	3.57	7	1	133.74	128.33	8	1	Yes	0	Yes	3.60
16	517.99	3.5	7	1	138.66	128.33	8	1	Yes	0	Yes	3.82
17	519.96	2.79	8	1	135.22	137.56	9	1	Yes	0	Yes	3.74
18	579.93	2.06	11	1	146.37	219.97	10	2	No	1	No	3.93
19	507.92	3.47	8	1	128.69	128.33	8	1	Yes	0	Yes	3.58
20	524.38	3.57	7	1	133.74	128.33	8	1	Yes	0	Yes	3.58

 TABLE-3

 PREDICTED in silico ADMET PROPERTIES FOR 1,3,4-OXADIAZOLES

	Absorption	Absorption Distribution				Metabolism							Toxicity
	Intestinal	VDS	BBB permeability	CNS permeability	Substrate Inhibitors							T-4-1	AMEC
Compd.	absorption	(human)						CYP				clearance	toxicity
	(human)	(Indinani)			2D6	3A4	1A2	2C19	2C9	2D6	3A4	cicarance	
	Numeric	Numeric	Numaria	Numaria								Numeric	Cotogoriaal
	(%	(log L	(log BB)	(log PS)	Categorical (Yes/No)							(log mL	(Yes/No)
	absorbed)	kg ⁻¹)	(log BB)	(log 15)							min ⁻¹ kg ⁻¹)	(103/100)	
1	92	0.123	-1.298	-3.288	No	Yes	No	Yes	Yes	No	Yes	0.264	No
2	91.81	0.181	-1.119	-3.243	No	Yes	No	No	Yes	No	Yes	0.24	No
3	89	-0.374	-1.674	-3.387	No	Yes	No	Yes	Yes	No	Yes	-0.068	No
4	88.96	-0.316	-1.705	-3.41	No	Yes	No	Yes	Yes	No	Yes	-0.113	No
5	92	0.123	-1.298	-3.288	No	Yes	No	Yes	Yes	No	Yes	0.286	No
6	91.8	0.153	-1.099	-3.252	No	Yes	No	No	Yes	No	Yes	0.239	No
7	90.42	0.099	-1.737	-3.646	No	Yes	No	No	Yes	No	Yes	0.402	No
8	84.77	-0.861	-1.942	-3.585	No	Yes	No	Yes	Yes	No	Yes	-0.266	No
9	88.98	0.025	-1.33	-3.407	No	Yes	No	No	Yes	No	Yes	0.288	No
10	92.04	0.123	-1.288	-3.288	No	Yes	No	Yes	Yes	No	Yes	0.198	No
11	100	0.381	-1.27	-3.049	No	Yes	No	Yes	Yes	No	Yes	-0.287	No
12	100	0.444	-1.089	-3.014	No	Yes	No	Yes	Yes	No	Yes	-25	No
13	98.61	0.02	-1.656	-3.217	No	Yes	No	Yes	Yes	No	Yes	-0.139	No
14	98.61	0.057	-1.653	-3.217	No	Yes	No	Yes	Yes	No	Yes	-0.141	No
15	100	0.381	-1.27	-3.049	No	Yes	No	Yes	Yes	No	Yes	-0.019	No
16	100	0.416	-1.071	-3012	No	Yes	No	Yes	Yes	No	Yes	-0.254	No
17	97.61	-0.093	-1.608	-3.429	No	Yes	No	Yes	Yes	No	Yes	-0.128	No
18	94.25	-0.413	-1.899	-3.47	No	Yes	No	Yes	Yes	No	Yes	0.038	No
19	98.89	0.256	-1.303	-3.234	No	Yes	No	Yes	Yes	No	Yes	-0.307	No
20	100	0.381	-1.27	-3.049	No	Yes	No	Yes	Yes	No	Yes	-0.226	No

Fig. 3. (a) Ramachandran plot, (b) ERRAT chart, (c) VERIFY3D chart and (d) ProSA chart

Verify3D analysis: The Verify3D score assesses the compatibility of an atomic model (3D) with its amino acid sequence (1D), ensuring at least 80% of amino acid residues score above 0.1 [31,44]. As per the resulted Verify3D score (Fig. 3c) 90.65% of the amino acid residues scored ≥ 0.1 .

ProSA-web study: ProSA-web is a program used in the protein structure validation to identify errors in experimental and theoretical protein models. It calculates an overall quality score for a specific input structure, which indicates model quality. The z-score, displayed in a plot, helps check if the input structure's score is within the range of native proteins. As per the results, Z-score is found to be -7.49.

Plot of residue scores: The plot of residue scores displays the quality of the local model by plotting energies in relation to amino acid sequence position i. Positive values indicate incorrect or problematic elements in the input structure. Since single residue energies fluctuate a lot, they are not ideal for evaluating models [45]. To smooth the chart, the average energy of each 40-residue fragment is calculated and assigned to the 'central' residue at position i+19. In the background, there is a second line that has a window size of only 10 residues. All of the results validated the 3D structure's exceptional quality and dependability, making it a great choice for more *in silico* studies.

Molecular docking study: To get further insight into the efficacy of the developed compounds, the interactions between the oxadiazole derivatives and the protein crystal structure were examined. The BCL-2 protein (PDB ID: 4LVT) was our choice to interact with the target compounds [46]. The predicted docking score (kcal/mol) was used as the ranking criterion. Target compounds 1 to 20 and their docking interaction results with the target protein are listed in Table-4 & Fig. 4. Docking scores for compounds 1 to 20 ranged from -9.9 to -11.2 kcal/ mol. With docking scores of -11.2 and -10.9, respectively, the two most powerful compounds in this series are 2 and 5. The results showed that compound 2 had a π -alkyl interaction with ALA97, MET112, VAL153, PHE109, ALA146, VAL145 and ASN140 protein residues by a hydrogen bond. It also exhibit π - π interactions with PHE101 and TYR105. Compound 5 made two CH bonds with the protein residues ARG104 and ASP108. Additionally, it created two π - π interactions with PHE101 and TYR105, as well as π -alkyl links with MET112, VAL145, ALA97, ALA146, ARG143 and LEU134. The ability of the target molecule to engage with significant amino acids in the

	DO	CKING INTERACTION RESULTS OF 1,3,4-OXADIAZOLES WITH TARGET PROTEIN	N
Compd.	Binding affinity (kcal/mol)	Interacting residues	Type of interactions
1	-10.5	GLY142, GLU111, ASP108 TYR105, PHE101 MET112, ALA97, PHE195, LEU198, TYR199, VAL145, ARG143, ALA146	CH Bond Pi-Pi T-Shaped Alkyl, Pi-Alkyl
2	-11.2	ASN140 PHE101, TYR105 ARG143, MET112, VAL153, PHE109, ALA146, VAL145, ALA97	H Bond Pi-Pi T-Shaped Alkyl, Pi-Alkyl
3	-10.2	ASP108 LEU134 MET112 PHE101 ALA97, TYR199, ALA146, ARG143, MET112	CH Bond Pi-Sigma Pi-Pi T-Shaped Alkyl, Pi-Alkyl
4	-10.1	ASP108, GLU111 MET112 TYR105, PHE101 ARG143, LEU198, ALA146, LEU134, MET112	CH Bond Pi-Sigma Pi-Pi T-Shaped Alkyl, Pi-Alkyl
5	-10.9	ARG104, ASP108 MET112 TYR105, PHE101 ALA146, VAL145, ALA97, ARG143, LEU134, MET112	CH Bond Pi-Sigma Pi-Pi T-Shaped Alkyl, Pi-Alkyl
6	-10.8	ASP108, GLU111 PHE101, TYR105 LEU134, ARG143, ALA97, PHE195, LEU198, TYR199, VAL145, ALA146, MET112	CH Bond Pi-Pi T-Shaped Alkyl, Pi-Alkyl
7	-9.9	ASP108, GLU111, TYR199 MET112 PHE101, TYR105 LEU134, MET112, TYR199, ARG143, ALA146	CH Bond Pi-Sigma Pi-Pi T-Shaped Alkyl, Pi-Alkyl
8	-10.4	ASP108 MET112 PHE101, TYR105 ARG143, LEU134, MET112, ALA146	CH Bond Pi-Sigma Pi-Pi T-Shaped Alkyl, Pi-Alkyl
9	-10.6	ASP108 ALA97 LEU134, MET112 ASP100 ALA97, VAL145, ARG143, ALA146, MET112	CH Bond Halogen (Fluorine) Pi-Sigma Amide-Pi Stacked Alkyl, Pi-Alkyl

TADLE 4

		ASP108	CH Bond
10	10.0	MET112	Pi-Sigma
10	-10.8	PHE101, TYR105	Pi-Pi T-Shaped
		LEU134, ALA146, ALA97, PHE195, TYR199, ARG143, VAL145, MET112	Alkyl, Pi-Alkyl
		ALA97	Halogen (Cl, Br, I)
11	10.4	TYR105	Pi-Sulfur
11	-10.4	PHE101, TYR105	Pi-Pi T-Shaped
		ALA97, ALA146, PHE109, VAL153, MET112, LEU1980	Alkyl, Pi-Alkyl
12	10.4	MET112	Pi-Sigma
12	-10.4	LEU134, ARG143, ALA97, VAL145, ALA146, MET112	Alkyl, Pi-Alkyl
12	10	LEU134, MET112	Pi-Sigma
15	-10	ARG143, ALA97, TYR199, ALA146, MET112	Alkyl, Pi-Alkyl
		TYR199	CH Bond
		ASP108	Pi-Anion
14	-10.5	MET112	Pi-Sigma
		PHE101, TYR105	Pi-Pi T-Shaped
		ARG143, ALA146, MET112	Alkyl, Pi-Alkyl
		TYR105	Pi-Sulfur
15	-10.7	PHE101, GLY142	Pi-Pi T-Shaped
15	-10.7	TYR105	Amide-Pi Stacked
		ALA97, VAL145, ARG143, MET112, ALA146, LEU198	Pi-Alkyl
16	-10.8	TYR105, PHE101	Pi-Pi T-Shaped
10	10.0	ARG143, LEU134, MET112, ALA146, PHE195, ALA97, LEU198	Alkyl, Pi-Alkyl
		GLY142	CH Bond
		TYR105, PHE101	Pi-Sulfur
17	-9.9	TYR105, PHE101	Pi-Pi Stacked
		TYR105, PHE101	Pi-Pi T-Shaped
		VAL145, LEU198, PHE109, VAL153, MET112, ALA146	Alkyl, Pi-Alkyl
		PHE109, PHE150, GLY142	CH Bond
		ALA97	Halogen (Cl, Br, I)
18	-10.1	TYR105, PHE101	Pi-Sulfur
		TYR105, PHE101	Pi-Pi Stacked
		PHE195, PHE101	Pi-Pi T-Shaped
		ALA97, LEU198, ARG143, MET112, ALA146	Alkyl, Pi-Alkyl
		PHE150	CH Bond
		TYR105	Pi-Sulfur
19	-10.7	PHE101, TYR105	Pi-Pi T-Shaped
		GLY142	Amide-Pi Stacked
		ALA146, ARG143, PHE101, VAL145, ALA97, LEU198, MET112	Alkyl, Pi-Alkyl
		MET112	Pi-Sigma
20	-10.4	PHE101, TYR105	Pi-Pi T-Shaped
		ALA146, MET112, ALA97, VAL145, TYR199, PHE195, ARG143	Alkyl, Pi-Alkyl

Fig. 4. 2D and 3D binding interaction between compounds 1-20 and targeted protein

target protein binding region supports its strong action, as shown by its high docking score and pattern [47]. The results of the molecular docking investigations agreed compounds **2** and **5** shown a notable cytotoxic.

In silico toxicity predictions: The prediction of organ toxicity (hepatotoxicity) as well as various toxicity end points like cytotoxicity, immunogenicity, carcinogenicity, mutagenesis

were computed for all compounds (Table-5). Every compound displayed an active hepatotoxicity profile, with the exception of compounds **2** and **6**. Compounds **11**, **12**, **15**, **16**, **17**, **19** and **20** exhibited no activity for the immunotoxicity, mutagenicity, cytotoxicity and carcinogenicity, hence these compounds could further be explored for the animal studies. Most of the evaluated compounds showed toxicity class 4, therefore one can say that

COMPUTATIONAL TOXICOLOGICAL EVALUATION FOR OXADIAZOLES										
	Predicted	Predicted	Organ toxicity	Predicted end points of toxicity						
Compd.	toxicity class	LD ₅₀ (mg/kg)	(Hepatotoxicity)	Active for	Inactive for					
1	4	675	Active	Mutagenicity	Immunotoxicity, cytotoxicity and carcinogenicity					
2	4	1600	Inactive	Mutagenicity	Immunotoxicity, cytotoxicity and carcinogenicity					
3	4	700	Active	Mutagenicity and carcinogenicity	Immunotoxicity and cytotoxicity					
4	4	675	Active	Mutagenicity and carcinogenicity	Immunotoxicity and cytotoxicity					
5	4	675	Active	Mutagenicity and carcinogenicity	Immunotoxicity and cytotoxicity					
6	4	675	Inactive	Mutagenicity	Immunotoxicity, cytotoxicity and carcinogenicity					
7	4	675	Active	Carcinogenicity	Immunotoxicity, mutagenicity and cytotoxicity					
8	4	1600	Active	Mutagenicity and carcinogenicity	Immunotoxicity and cytotoxicity					
9	4	675	Active	Mutagenicity	Immunotoxicity, cytotoxicity and carcinogenicity					
10	4	675	Active	Mutagenicity	Immunotoxicity, cytotoxicity and carcinogenicity					
11	5	3000	Active	-	Immunotoxicity, mutagenicity, cytotoxicity and carcinogenicity					
12	5	3000	Active	-	Immunotoxicity, mutagenicity, cytotoxicity and carcinogenicity					
13	4	1000	Active	Mutagenicity and carcinogenicity	Immunotoxicity and cytotoxicity					
14	4	1000	Active	Mutagenicity and carcinogenicity	Immunotoxicity and cytotoxicity					
15	5	3000	Active	-	Immunotoxicity, mutagenicity, cytotoxicity and carcinogenicity					
16	4	1000	Active	-	Immunotoxicity, mutagenicity, cytotoxicity and carcinogenicity					
17	4	1000	Active	-	Immunotoxicity, mutagenicity, cytotoxicity and carcinogenicity					
18	4	500	Active	Mutagenicity and carcinogenicity	Immunotoxicity and cytotoxicity					
19	4	380	Active	-	Immunotoxicity, mutagenicity, cytotoxicity and					
					carcinogenicity					
20	4	380	Active	-	Immunotoxicity, mutagenicity, cytotoxicity and carcinogenicity					

TABLE-5
COMPUTATIONAL TOXICOLOGICAL EVALUATION FOR OXADIAZOLES

they were potentially druggable. All compounds exhibited LD_{50} above 500 mg kg⁻¹ which corresponds with toxicity class 4 except compound **11**, **12** and **13**. Among the toxicity classes, class I, II (fetal), whereas class III considered as toxic. However, class IV and class V may be considered as harmful but class VI belongs to non-toxic chemicals.

Conclusion

The study provides valuable insights into the prospective use of these compounds in targeted cancer therapy. The combination of computational techniques offers a comprehensive understanding of the interaction between 1,3,4-oxadiazoles and the BCL-2 protein, along with an assessment of their pharmacokinetic and toxicological properties. The findings from this study also pave the way for further experimental validation and optimization of lead compounds for the development of targeted and effective therapies for cancer treatment.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interests regarding the publication of this article.

REFERENCES

- 1. J.M. Adams and S. Cory, *Oncogene*, **26**, 1324 (2007); https://doi.org/10.1038/sj.onc.1210220
- R.J. Youle and A. Strasser, Nat. Rev. Mol. Cell Biol., 9, 47 (2008); https://doi.org/10.1038/nrm2308
- 3. D. Hanahan and R.A. Weinberg, *Cell*, **144**, 646 (2011); <u>https://doi.org/10.1016/j.cell.2011.02.013</u>
- R. Hamdy, S.A. Elseginy, N.I. Ziedan, M. El-Sadek, E. Lashin, A.T. Jones and A.D. Westwell, *Int. J. Mol. Sci.*, 21, 8980 (2020); <u>https://doi.org/10.3390/ijms21238980</u>
- A.R. Delbridge and A. Strasser, *Cell Death Differ.*, 22, 1071 (2015); <u>https://doi.org/10.1038/cdd.2015.50</u>
- S. Cory and J.M. Adams, *Nat. Rev. Cancer*, 2, 647 (2002); <u>https://doi.org/10.1038/nrc883</u>
- F. Marra, A. Gastaldelli, G. Svegliati Baroni, G. Tell and C. Tiribelli, *Trends Mol. Med.*, 14, 72 (2008);

https://doi.org/10.1016/j.molmed.2007.12.003

- T. Oltersdorf, S.W. Elmore, A.R. Shoemaker, R.C. Armstrong, D.J. Augeri, B.A. Belli, M. Bruncko, T.L. Deckwerth, J. Dinges, P.J. Hajduk, M.K. Joseph, S. Kitada, S.J. Korsmeyer, A.R. Kunzer, A. Letai, C. Li, M.J. Mitten, D.G. Nettesheim, S.C. Ng, P.M. Nimmer, J.M. O'Connor, A. Oleksijew, A.M. Petros, J.C. Reed, S.K. Tahir, C.B. Thompson, K.J. Tomaselli, W. Shen, B. Wang, M.D. Wendt, H. Zhang, S.W. Fesik and S.H. Rosenberg, *Nature*, 435, 677 (2005); <u>https://doi.org/10.1038/nature03579</u>
- M. Vogler, Cell Death Differ, 19, 67 (2012); https://doi.org/10.1038/cdd.2011.158
- J.C. Reed, Cell Death Differ., 13, 1378 (2006); https://doi.org/10.1038/sj.cdd.4401975
- A. Das, M. Sarangi, K. Jangid, V. Kumar, A. Kumar, P.P. Singh, K. Kaur, V. Kumar, S. Chakraborty and V. Jaitak, *J. Biomol. Struct. Dyn.*, (2024); <u>https://doi.org/10.1080/07391102.2023.2256876</u>
- T.A. Yousef, A.G. Alhamzani, M.M. Abou-Krisha, G. Kanthimathi, M.S. Raghu, K.Y. Kumar, M.K. Prashanth and B.H. Jeon, *Heliyon*, 9, e13460 (2023);

https://doi.org/10.1016/j.heliyon.2023.e13460

- K. Patil, M. Nemade, A. Bedse, P. Bedse, R. Ranjan, H. Tare and M. Bedse, *Int. J. Drug Deliv. Technol.*, **13**, 966 (2023); <u>https://doi.org/10.25258/ijddt.13.3.31</u>
- S. Nayak, S.L. Gaonkar, E.A. Musad and A.M.A.L. Dawsar, J. Saudi Chem. Soc., 25, 101284 (2021); https://doi.org/10.1016/j.jscs.2021.101284

- Y. Ono, M. Ninomiya, D. Kaneko, A.D. Sonawane, T. Udagawa, K. Tanaka, A. Nishina and M. Koketsu, *Bioorg. Chem.*, **104**, 104245 (2020); <u>https://doi.org/10.1016/j.bioorg.2020.104245</u>
- A. Tiwari, N.G. Kutty, N. Kumar, A. Chaudhary, P.V. Raj, R. Shenoy, and C. Mallikarjuna Rao, *Cytotechnology*, 68, 2553 (2016); <u>https://doi.org/10.1007/s10616-016-9979-9</u>
- 17. A. Daina, O. Michielin and V. Zoete, J. Chem. Inf. Model., 54, 3284 (2014);
- https://doi.org/10.1021/ci500467k 18. G. Skoraczyñski, M. Kitlas, B. Miasojedow and A. Gambin, J. Cheminform., **15**, 6 (2023);
 - https://doi.org/10.1186/s13321-023-00678-z
- Y. Ono, M. Ninomiya, D. Kaneko, A.D. Sonawane, T. Udagawa, K. Tanaka, A. Nishina and M. Koketsu, *Bioorg. Chem.*, **104**, 104245 (2020); <u>https://doi.org/10.1016/j.bioorg.2020.104245</u>
- M. Soleiman-Beigi, R. Aryan, M. Yousofizadeh and S. Khosravi, J. Chem., 2013, 476358 (2013); https://doi.org/10.1155/2013/476358
- 21. A.K. Nagariya, A.K. Meena, S. Kumar, R. Singh, A.K. Yadav and U.S. Niranjan, *J. Pharm. Res.*, **3**, 451 (2010).
- S. Rochlani, M. Bhatia, S. Rathod, P. Choudhari and R. Dhavale, *Nat. Prod. Res.*, 38, 891 (2023);
- https://doi.org/10.1080/14786419.2023.2202398 23. A. Drefahl, *J. Cheminform.*, **3**, 1 (2011);
- https://doi.org/10.1186/1758-2946-3-1 24. S. Dallakyan and A.J. Olson, *Methods Mol. Biol.*, **1263**, 243 (2015);
- https://doi.org/10.1007/978-1-4939-2269-7_19 25. A. Daina, O. Michielin and V. Zoete, *Sci. Rep.*, **7**, 42717 (2017);
- https://doi.org/10.1038/srep42717 26. D.E.V. Pires, T.L. Blundell and D.B. Ascher, *J. Med. Chem.*, **58**, 4066
- D.E. V. Pires, I.L. Blundell and D.B. Ascher, J. Med. Chem., 58, 4000 (2015); https://doi.org/10.1021/acs.jmedchem.5b00104
- S. Rathod, K. Shinde, J. Porlekar, P. Choudhari, R. Dhavale, D. Mahuli, Y. Tamboli, M. Bhatia, K.P. Haval, A.G. Al-Sehemi and M. Pannipara, *ACS Omega*, 8, 391 (2023); https://doi.org/10.1021/acsomega.2c04837
- A.J. Souers, J.D. Leverson, E.R. Boghaert, S.L. Ackler, N.D. Catron, J. Chen, B.D. Dayton, H. Ding, S.H. Enschede, W.J. Fairbrother, D.C.S. Huang, S.G. Hymowitz, S. Jin, S.L. Khaw, P.J. Kovar, L.T. Lam, J. Lee, H.L. Maecker, K.C. Marsh, K.D. Mason, M.J. Mitten, P.M. Nimmer, A. Oleksijew, C.H. Park, C.-M. Park, D.C. Phillips, A.W. Roberts, D. Sampath, J.F. Seymour, M.L. Smith, G.M. Sullivan, S.K. Tahir, C. Tse, M.D. Wendt, Y. Xiao, J.C. Xue, H. Zhang, R.A Humerickhouse, S.H. Rosenberg and S.W. Elmore, *Nat. Med.*, **19**, 202 (2013); https://doi.org/10.1038/nm.3048
- M. Wiederstein and M.J. Sippl, *Nucleic Acids Res.*, 35(Web Server), W407 (2007);
- https://doi.org/10.1093/nar/gkm290 30. M.J. Sippl, *Proteins*, **17**, 355 (1993);
- https://doi.org/10.1002/prot.340170404
- 31. R. Lüthy, J.U. Bowie and D. Eisenberg, *Nature*, **356**, 83 (1992); https://doi.org/10.1038/356083a0
- A. Singh, R. Kaushik, A. Mishra, A. Shanker and B. Jayaram, *Biochim. Biophys. Acta, Proteins Proteom.*, **1864**, 11 (2016); https://doi.org/10.1016/j.bbapap.2015.10.004
- R. Gaikwad, S. Rathod and A. Shinde, *Asian J. Pharm. Res.*, **12**, 267 (2022);

https://doi.org/10.52711/2231-5691.2022.00043

- S. Rathod, P. Chavan, D. Mahuli, S. Rochlani, S. Shinde, S. Pawar, P. Choudhari, R. Dhavale, P. Mudalkar and F. Tamboli, *J. Mol. Model.*, 29, 113 (2023); https://doi.org/10.1007/s00894-023-05521-8
- V.K. Bagal, S.S. Rathod, M.M. Mulla, S.C. Pawar, P.B. Choudhari, V.T. Pawar and D.V. Mahuli, *Nat. Prod. Res.*, 37, 4053 (2023); https://doi.org/10.1080/14786419.2023.2165076
- S. Forli, R. Huey, M.E. Pique, M.F. Sanner, D.S. Goodsell and A.J. Olson, *Nat. Protoc.*, **11**, 905 (2016); <u>https://doi.org/10.1038/nprot.2016.051</u>
- P. Banerjee, O.A. Eckert, A.K. Schrey and R. Preissner, *Nucleic Acids Res.*, 46(W1), W257 (2018); https://doi.org/10.1093/nar/gky318

- P. Banerjee, F.O. Dehnbostel and R. Preissner, Front. Chem., 6, 362 (2018); https://doi.org/10.3389/fchem.2018.00362
- M.N. Drwal, P. Banerjee, M. Dunkel, M.R. Wettig and R. Preissner, *Nucleic Acids Res.*, 42(Web Server), W53 (2014); <u>https://doi.org/10.1093/nar/gku401</u>
- R.A. Laskowski, M.W. MacArthur, D.S. Moss and J.M. Thornton, J. *Appl. Cryst.*, 26, 283 (1993); <u>https://doi.org/10.1107/S0021889892009944</u>
- R.A. Laskowski, J.A.C. Rullmann, M.W. MacArthur, R. Kaptein and J.M. Thornton, J. Biomol. NMR, 8, 477 (1996); https://doi.org/10.1007/BF00228148
- 42. R.A. Laskowski, M.W. MacArthur and J.M. Thornton, in eds.: M.G. Rossmann and E. Arnold, PROCHECK: Validation of Protein Structure Coordinates, In: International Tables of Crystallography, Volume F. Crystallography of Biological Macromolecules, Dordrecht, Kluwer Academic Publishers, The Netherlands, pp. 722-725 (2001).
- A.L. Morris, M.W. MacArthur, E.G. Hutchinson and J.M. Thornton, *Proteins*, 12, 345 (1992); <u>https://doi.org/10.1002/prot.340120407</u>
- 44. J.U. Bowie, R. Lüthy and D. Eisenberg, *Science*, **253**, 164 (1991); https://doi.org/10.1126/science.1853201
- M. Wiederstein and M.J. Sippl, *Nucleic Acids Res.*, **35(Suppl. 2)**, W407 (2007); https://doi.org/10.1093/nar/gkm290
- 46. D.B. Kitchen, H. Decornez, J.R. Furr and J. Bajorath, *Nat. Rev. Drug Discov.*, **3**, 935 (2004);
- https://doi.org/10.1038/nrd1549
- R. Wang and S. Wang, J. Chem. Inf. Comput. Sci., 41, 1422 (2001); <u>https://doi.org/10.1021/ci010025x</u>