

Docking Studies, Synthesis, SAR and Anti-TB Activity of Glycinamido Analogues

BONDADA N.B. VAIDEHI^{1,0}, HYMAVATHI VEERAVARAPU^{2,0} and MURALI KRISHNA KUMAR MUTHYALA^{2,*,0}

¹Department of Pharmaceutical Chemistry, Aditya College of Pharmacy, Surampalem-533437, India ²Pharmaceutical Chemistry Research Lab, AU College of Pharmaceutical Sciences, Andhra University, Visakhapatnam-530003, India

*Corresponding author: E-mail: profmmkau@gmail.com

Received: 30 October 2023;

Accepted: 7 December 2023; Published online: 28 February 2024;

AJC-21545

Mycolic acid is a crucial component of the *Mycobacterium tuberculosis* cell wall and mycolic acid methyltransferases (MAMTs) are essential for mycolic acids to mature. In the present study, an inhouse library of 330 ligands was designed taking glycinamido moiety as scaffold. Virtual screening was carried out with this library of compounds against MmaA1 as the target protein. About 55 hits were identified through docking, ADMET studies and these molecules were synthesized by the Schotten-Baumann reaction followed by a nucleophilic substitution reaction. All the compounds were subjected to *in vitro* anti-Tb screening by microplate alamar blue assay (MABA). The Mdb1, Mdb4 & Meb1 exhibited excellent activity against *M. tuberculosis* H37Rv bacilli strain with an MIC of 1.56 µg/mL. The SAR studies shows that the aryl ring attached directly to the nitrogen atom as present in 2(-N-substituted glycinamido) derivatives is essential for the compound to exhibit potent anti-TB activity.

Keywords: Glycinamido derivatives, Mycolic acids, Docking studies, Mycobacterium tuberculosis.

INTRODUCTION

The bacillus Mycobacterium tuberculosis is the primary cause of the deadly disease tuberculosis (TB). Tuberculosis patients cough out bacteria into the air, spreading the disease [1,2]. Most TB cases (pulmonary TB) involve the lungs, however, extrapulmonary TB can affect other parts of the body as well. According to the WHO TB Report 2022, 10.6 million people (95% UI: 9.9-11 million) are predicted to have contracted TB globally in 2021, an increase of 4.5% from 10.1 million (95% UI: 9.5-10.7 million) in 2020 [3], which indicates that the years of reduction have now reversed. At this time, drugresistant tuberculosis (DR-TB) continues to threaten public health. Multidrug-resistant tuberculosis (MDR-TB) is characterized by resistance to rifampicin and isoniazid [4]. In order to treat both Rifampicin-resistant tuberculosis (RR-TB) and multidrug-resistant tuberculosis (MDR-TB), second-line medicine is required. In 2021, three nations accounted for 42% of the world's MDR/RR TB cases, with India accounting for 26% [5]. New drugs with novel mechanisms are therefore urgently required to treat TB, shorten the period of MDR-TB and RR-TB treatment and effectively aid in TB control [6,7].

The cell wall of *M. tuberculosis* is composed of a peptidoglycan (PG) layer that is covalently connected to arabinogalactan (AG), which acts as an attachment site for certain mycolic acids (MA). The cell wall core is commonly known as mycolyl-arabinogalactan-peptidoglycan (mAGP) complex [8]. The primary virulence factor is the mycolic acids, which provide M. tuberculosis an inherent resistance to most antibiotics [9]. The main regulators of M. tuberculosis cell wall formation are fatty acid synthases (FAS-I, FAS-II, KasA, KasB, MabA, InhA, HadABC), mycolic acid modifying enzymes (SAM-dependent methyltransferases), fatty acid activating and condensing enzymes (FadD32, Acc, Pks13), transporters (MmpL3) and transferases. FAS-I is involved in fatty acid production in eukaryotes, whereas FAS-II is only found in M. tuberculosis cells and is a target of anti-TB medicine [10]. Because these enzymes have no homologs in the mammalian system, enzymes involved in cell wall synthesis afford a plausible molecular target for fighting tuberculosis.

Methyl transferases, modify the meromycolyl chain through cyclopropanation and methylation. *M. tuberculosis* requires these alterations to maintain its pathogenicity, virulence and persistence [11]. Methyl transferase enzymes also help in the

This is an open access journal, and articles are distributed under the terms of the Attribution 4.0 International (CC BY 4.0) License. This license lets others distribute, remix, tweak, and build upon your work, even commercially, as long as they credit the author for the original creation. You must give appropriate credit, provide a link to the license, and indicate if changes were made.

oxygenation of the meromycoloyl chain, which is necessary for *M. tuberculosis* pathogenicity [12]. As a result, mycolic acid methyl transferases (MAMTs) may be promising targets for the discovery and development of novel, selective anti-TB drugs. Recently, a structure-based drug design study carried out in our research lab led to the identification of 3-(2-morpholinoacetamido)-N-(3,4-dihydro-4-oxoquinazolin-7-yl)-benzamide and its intermediates as inhibitors of the MmaA1 protein [13]. The intermediate compounds 3-(2-chloroacetamido) benzoic acid or 3-(N-substituted glycinamido) benzoic acid have shown an MIC of 25 µg/mL against M. tuberculosis H37Rv, in contrast to the parent molecule's activity of 100 µg/mL. Following more optimization, the derivatives of 3-(Nsubstituted glycinamido)benzoic acid were designed. Lead optimization study showed that compound 3-(2-(4-phenylpiperazin-1-yl)acetamido)benzoic acid has a docking score of -9.9 and exhibited a MIC of 1.6 µg/mL against M. tuberculosis H37Rv [14]. These intriguing findings led us to further advance our lead optimization study for the structural modification of glycinamido moiety considering it as a possible lead to identify potential inhibitors for tuberculosis.

EXPERIMENTAL

All chemicals and solvents were obtained from Merck and Aldrich Chemical Company (USA) and utilized as such. The SRS-EZMelt automated melting point instrument's open capillary tube was used to measure the melting points and are uncorrected. The IR spectra of the compounds were taken by using the KBr disc method on a Bruker ALPHA-T FT-IR spectrometer, the values are expressed in cm⁻¹. The ¹H & ¹³C NMR spectra of the compounds were recorded using DMSO- d_6 on Bruker Avance 400 MHz and 100 MHz NMR spectrometers. The elemental analysis experiments were conducted using Carlo-Erba elemental analyzer.

Design of lead compounds and virtual screening: An attempt was made to prepare a library of compounds with different types of aryl units using various substituted anilines (A1-A4, A9-A11) and substituted phenols (A5-A8). The linker (B1-B3) between aryl and secondary amines was modified by increasing chain length. Hence, different secondary amines (C1-C10) were used including saturated heterocyclic moiety as depicted in Fig. 1. A total of 330 ligands were designed and subjected to virtual screening using Auto Dock.

Docking studies: In AutoDock, docking studies involves different stages, (i) preparation of coordinate files using AutoDockTools followed by (ii) precalculation of atomic affinities using AutoGrid and finally (iii) docking using AutoDock. AutoDock requires grid maps for each atom type in the ligand which are calculated using AutoGrid. Other files required are pdbqt files containing proteins and ligands as well as docking parameter file. The first step involves the preparation of ligand and receptor coordinate files, which involves addition of polar hydrogen atoms, partial charges and atom types, in AutoDock specific coordinate file format, pdbqt.

Protein preparation: The MmaA1 protein was prepared for docking using AutoDock, the polar hydrogens and Kolman charges were added and the pdbqt file was generated.

Ligand preparation: A total of 330 ligands were modeled using ChemDraw Ultra 10.0 (Cambridge software). The 2D models generated were saved in pdb format and then converted to 3D format using Chem3D ultra10.0. The 3D models were subjected to energy minimization using molecular mechanics (MM2). The minimization was executed until the root mean square gradient value reached a value smaller than 0.001 kcal/ mol. The ligands were converted from mol/mol2 to pdbqt and then submitted to docking using AutoDock 4.0 software [15].

Docking was performed on the inhouse library of designed compounds keeping ligands as flexible and receptors as semiflexible using AutoDock. Pose analysis was done for the least energy conformation of the docked molecules in the output file containing 5 best-docked poses using PyMOL software [16] and Discovery studio [17].

ADMET studies: Clinical failures in later phases of drug discovery are caused by substances with undesired characteristics and poor ADMET (absorption, distribution, metabolism, excretion and toxicity) profiles. The ADMET properties for the compounds were predicted by using Swiss ADME online server [18], pkCSM [19] and Molinspiration [20] softwares. pkCSM offers a platform for analyzing and improving pharmacokinetic and toxicological characteristics using a user-friendly and open-source online interface. A web-based program called Molinspiration (www.molinspiration.com) was used to predict the bioactivity score of synthesized compounds against common human receptors as GPCRs, ion channels, nuclear receptors, kinases and proteases.

Various physico-chemical characteristics, including molecular weight, TPSA (Topological Polar Surface Area), XLOGP3 (lipophilicity), drug-likeness and lead likeness, were predicted by SwissADME [21]. Drug and lead likeness predictions are based on TPSA, lipophilicity and the Lipinski rule of five. The other pharmacokinetic characteristics such as gastrointestinal (GI) absorption, blood-brain barrier (BBB) permeability and inhibition of certain cytochrome P450 (CYP) enzymes were also predicted by Swiss ADME. Due to pharmacokinetic related factors, CYP inhibition is one of the main causes of drug-drug interactions [22,23]. In Molinspiration, the four criteria for successful drug activity have been analyzed for all standard compounds and medications, activity on the G protein-coupled receptor (GPCR) ligand, modulation of ion channels, inhibition of kinases, proteases and other enzymes and activity on nuclear receptor ligands. The likelihood that a molecule will demonstrate significant biological activity depends on its bioactivity score. If the bioactivity score is more than 0.00, the compound is active, if the score is in between the values -0.50 to 0.00, the compounds are moderately active, if the score is less than -0.50, the compound is inactive [24].

Synthesis: Based on literature search and SciFinder search investigations, the glycinamide analogs identified through the virtual screening study were all evaluated for novelty and synthetic viability.

General procedure for the synthesis of heterocyclic amine substituted 2-(*N*-substituted glycinamido) derivatives:

Synthesis of 2-(2-chloro acetamido) derivatives (step-1): Substituted amine (1 equiv.) was taken in a round bottom flask

Fig. 1. Types of secondary amines for design of glycinamido analogues

and add 0.7 mL of *N*,*N*-diisopropylethylamine (DIPEA) and stirred at room temperature for 10-15 min. To this reaction mixture, chloroacetyl chloride (4 equiv.) was added dropwise by keeping round bottom flask under tap water as an exothermic reaction occurs [14,25]. Then heated for 10-15 min and monitored for the completion of the reaction by TLC. The reaction mixture was poured into crushed ice-cold water. An obtained white colour precipitate was recrystallized by equal volumes of glacial acetic acid and water.

Synthesis of heterocyclic amine substituted 2-(*N*-substituted glycinamido) derivatives (step-2): 2-(2-Chloroacetamido) derivative (1 equiv.) taken in a round bottom flask added to 5 mL ethyl acetate and kept for stirring at 80 °C for 10 min. Then heterocyclic amine (2 equiv.) (b1-b5) was added and heated at 80 °C for 2-3 h. The completion of the reaction was monitored by TLC. The solvent was evaporated under vacuum and the resulting residue was washed with hexane to obtain the target compound. The product was purified by recrystallization using hexane and ethyl acetate mixture (Scheme-I).

General procedure for the synthesis of heterocyclic amine substituted 2-(acetoxy) derivatives:

Synthesis of 2-chloroacetate derivatives (step-1): Substituted phenols (1 equiv.) taken in a round bottom flask were added to 0.7 mL of N,N-diisopropylethylamine (DIPEA) and stirred at room temperature for 10-15 min. To this reaction mixture, chloroacetyl chloride (4 equiv.) was added dropwise by keeping round bottom flask under tap water as an exothermic reaction occurs. Then heated for 10-15 min and monitored for the completion of the reaction by TLC [14,25]. The reaction mixture was poured into crushed ice-cold water. An obtained white colour precipitate was further recrystallized by equal volumes of glacial acetic acid and water.

Synthesis of heterocyclic amine substituted 2-(acetoxy) derivatives (step-2): 2-Chloroacetate derivative (1 equiv.) was mixed with 5 mL ethyl acetate in a round bottom flask with constant stirring at 80 °C for 10 min. Then heterocyclic amine (2 equiv.) (b1-b5) was added and heated again at 80 °C for 2-3 h. The completion of the reaction was monitored by TLC. The solvent was evaporated under a vacuum and the resulting residue was washed with hexane to obtain the target compound (Scheme-II). The product was purified by recrystallization using hexane and ethyl acetate mixture.

Anti-TB activity: The synthesized compounds (Mab1-Mgb5 and Eab1-Edb5) were tested for *in vitro* anti-TB activity against *Mycobacterium tuberculosis* H37Rv by micro-plate alamar blue assay (MABA) [26]. This method employs a thermally stable reagent, is non-toxic and exhibits a good correlation with the proportion [27] and BACTEC [28] radiometric methods.

In present work, the compounds have been coded as follows: The inhouse library of 330 compounds were assigned codes as A1B1C1 to A11B3C10. The 55 hits identified from docking and *in silico* ADMET studies had been coded as ABC-1 to ABC-55. The 55 hit molecules were further divided into two groups based on their core structure as 2-(N-substituted glycinamido) derivatives and assigned compound codes as **Mab1-Mgb5** (35 compounds), while the second group are 2-(acetoxy) derivatives coded as **Eab1-Edb5** (20 compounds). The compounds have been assigned codes for ease of identification and no other specific criteria has been used for their classification.

Scheme-II

RESULTS AND DISCUSSION

Chemistry: The synthesis of target compounds involves two steps. Step-1 involves the synthesis of intermediate, 2-(2chloroacetamides) by using Schotten Baumann's reaction, which entails subsituted amines with chloroacetyl chloride. Then, step-2 undergoes a nucleophilic substitution reaction with a corresponding heterocyclic amine to obtain the target compound. A total of 35 heterocyclic amine substituted 2-(N-substituted glycinamido) derivatives (**Mab1-Mgb5**) were synthesized. The products were obtained in good yield with a range of 60-99%. The synthesized compounds were characterized by using IR, ¹H NMR and ¹³C NMR techniques. The physico-chemical constants were given in Table-1 and the spectral data contain-ing diagnostic information is presented in Table-2.

The IR spectrum of heterocyclic amine substituted 2-(N-substituted glycinamido) derivatives shows the key signals for

	TABLE-1 PHYSICO-CHEMICAL PROPERTIES OF THE COMPOUNDS Mab1 TO Mgb5								
Compd.	Yield (%)	m.p. (°C)	Relative molecular mass	m.f.	Compd.	Yield (%)	m.p. (°C)	Relative molecular mass	m.f.
Mab1	99.50	122.2	280.29	$C_{14}H_{17}FN_2O_3$	Mdb4	66.50	166.3	418.28	$C_{19}H_{20}N_3O_3Br$
Mab2	69.80	Semi-solid	295.31	$C_{14}H_{18}FN_3O_3$	Mdb5	62.10	Semi-solid	418.28	$C_{13}H_{15}N_2O_3Br$
Mab3	76.82	Semi-solid	371.41	$C_{20}H_{22}FN_{3}O_{3}$	Meb1	54.23	Semi-solid	218.29	$C_{13}H_{18}N_2O$
Mab4	54.40	156.8	357.38	$C_{19}H_{20}FN_{3}O_{3}$	Meb2	84.22	215.9	233.31	$C_{13}H_{19}N_3O$
Mab5	99.35	143.8	266.27	$C_{13}H_{15}FN_2O$	Meb3	95.62	182.3	309.41	$C_{19}H_{23}N_3O$
Mbb1	83.42	122.2	341.20 mg	$C_{14}H_{17}N_2O_3Br$	Meb4	65.28	161.4	295.38	$C_{18}H_{21}N_{3}O$
Mbb2	82.20	Semi-solid	356.20 mg	$C_{14}H_{18}N_3O_3Br$	Meb5	74.23	Gummy resin	204.27	$C_{12}H_{16}N_2O$
Mbb3	78.31	Semi-solid	432.32 mg	$C_{20}H_{22}N_3O_3Br$	Mfb1	78.32	Gummy resin	232.32	$C_{14}H_{20}N_2O$
Mbb4	84.62	156.8	418.29 mg	$C_{19}H_{20}N_3O_3Br$	Mfb2	85.26	Gummy resin	247.34	$C_{14}H_{21}N_{3}O$
Mbb5	66.20	Semi-solid	327.18 mg	$C_{13}H_{15}N_2O_3Br$	Mfb3	92.35	Gummy resin	323.43	$C_{20}H_{25}N_{3}O$
Mcb1	93.40	192.5	296.75	$C_{14}H_{17}N_2O_3Cl$	Mfb4	76.24	Gummy resin	309.41	$C_{19}H_{23}N_3O$
Mcb2	81.58	Gummy resin	311.76	$C_{14}H_{18}N_3O_3Cl$	Mfb5	65.21	Gummy resin	218.29	$C_{13}H_{18}N_2O$
Mcb3	86.20	187.8	387.86	$C_{20}H_{22}N_{3}O_{3}Cl$	Mgb1	91.23	Semi-solid	252.74	$C_{13}H_{17}N_2OCl$
Mcb4	78.30	194.2	373.83	$C_{19}H_{20}N_3O_3Cl$	Mgb2	75.26	Semi-solid	267.11	$C_{13}H_{18}N_3OCl$
Mcb5	63.20	Gummy resin	282.08	$C_{13}H_{15}N_2O_3Cl$	Mgb3	84.25	Semi-solid	343.85	$C_{19}H_{22}N_3OCl$
Mdb1	88.20	Semi-solid	341.20	$C_{14}H_{17}N_2O_3Br$	Mgb4	72.31	Semi-solid	329.82	$C_{18}H_{20}N_3OCl$
Mdb2	79.34	Semi-solid	355.05	$C_{14}H_{18}N_3O_3Br$	Mgb5	59.12	Semi-solid	238.71	$C_{12}H_{15}N_2OCl$
Mdb3	84.22	Semi-solid	431.08	$C_{20}H_{22}N_3O_3Br$					

	TABLE-2 SPECTRAL DATA OF THE COMPOUNDS Mab1 TO Mgb5							
Compd	IR (KBr v cm^{-1})	NMR data	Elem	ental anal	ysis (%)			
compu.				Req.	Found			
Mah1	1190 (C-F str.), 1228 (C-O str.), 1451 (C-C str.) 1520 (C-O str.)	⁴ H NMR (400 MHz, DMSO- d_6): δ 1.65 (d, 6H, J = 4.8 Hz) 2.98 (s, 4H), 4.95 (m, 2H) 7.68 (m, 4H) 10.35 (1H): ¹³ C NMR (100 MHz, DMSO-	С	59.99 6.11	59.98 6.09			
101401	1689 (C=O <i>str.</i>), 2954 (COOH)	d_{6} : δ 22.15, 22.57, 44.0, 88.54, 95.71, 155.22, 204.33, 215.80	0	17.12	17.11			
	1135 (C-E str.) 1224 (C-O str.)	¹ H NMR (400 MHz, DMSO- d_6): δ 2.51 (s, 3H) 2.74 (m, 8H) 3.16 (s,	C	56 94	56.92			
Mab2	1417 (C=C str.), 1519 (C=O str.),	2H), 7.4 (s, 1H), 7.69 (d, 1H J = 7.6 Hz), 8.69 (m, 1H), 11.87 (s, 1H);	Н	6.14	6.13			
	1689 (C=O str.), 3388 (COOH)	$^{-0}$ C NMR (100 MHz, DMSO- a_6): 0 49.85, 52.91, 60.89, 71.68, 117.63, 121.12, 165.61, 167.94, 169.02, 212.57	0	16.25	16.23			
	1189 (C-F str.), 1248 (C-O str.),	¹ H NMR (400 MHz, DMSO- d_6): δ 2.50 (s, 4H) 2.79 (s, 4H) 3.07 (s, 2H) 2.24 (a, 2H) 7.22 (m, 2H) 4.14 (d, 2H) 4. (c, 8H) 7.52 (d, 1H) 4.	С	64.68	64.67			
Mab3	1454 (C=C str.), 1515 (C=O str.),	2H), 5.24 (S, 2H) 7.52 (m, 5H), 7.41 (d, 2H $J = 0.8$ Hz) 7.55 (d, 1H $J = 5.6$ Hz) 8.63 (m, 2H) 12.18 (s, 1H) ⁻¹³ C NMR (100 MHz DMSO- d): 8	Н	5.97	5.96			
	1696 (C=O str.), 3417 (COOH)	43.28, 51.56, 61.89 127.75, 128.77, 129.50, 131.16, 137.42	0	12.92	12.91			
	1143 (C-F str.), 1248 (C-O str.),	¹ H NMR (400 MHz, DMSO- a_6): 0 2.08 (s, 4H) 3.22 (m, 6H) 6.76 (s, 1H) 6.88 (m, 2H) 6.94 (m, 2H) 7.20 (m, 1H) 7.57 (m, 1H) 7.93 (s, 1H)	С	63.85	63.83			
Mab4	1504 (C=C str.), 1596 (C=O str.),	8.73 (d, 1H J = 8.8 Hz), 9.2 (s, 1H); ¹³ C NMR (100 MHz, DMSO- d_6): δ	H	5.64	5.62			
	1676 (C=O str.), 3144 (COOH)	48.32, 53.41, 75.64, 108.7, 116.5, 119.19, 129.58, 139.98, 150.51, 166.69	0	13.43	13.41			
	1100 (C E str.) 1241 (C O str.)	¹ H NMR (400 MHz, DMSO- <i>d</i> ₆): δ 1.83 (s, 4H) 3.08 (s, 4H) 4.41 (s, 2H)	C	59 61	59 62			
Mab5	1423 (C=C str.), 1241 (C=O str.), 1423 (C=C str.), 1596 (C=O str.), 1596	7.50 (m, 1H) 7.692 (m, 1H) 9.1 (s, 1H), 12.0 (s, 1H); ¹³ C NMR (100	н	5.68	5.67			
muse	1667 (C=O <i>str.</i>), 3475 (COOH)	MHz, DMSO- <i>d</i> ₆): δ 24.20, 44.93, 61.84, 117.35, 122.31, 136.04, 147.87, 158.62, 165.54	0	18.03	18.02			
	1038 (C-Br str.), 1358 (C-O str.),	¹ H NMR (400 MHz, DMSO- <i>d</i> ₆): δ 1.5 (s, 2H), 1.6 (s, 4H), 2.9 (s, 2H),	С	49.28	49.27			
Mbb1	1447 (C=C str.), 1579 (C=O str.),	7.69 (m, 1H), 7.98 (s, 1H), 8.01 (s, 1H), 8.25 (s, 1H), 10.3 (s, 1H); ¹³ C	Н	5.02	5.01			
	1697 (C=O str.), 2950 (COOH)	NMR (100 MHz, DMSO- d_6): δ 62.4, 92.3, 121.9, 124.5, 125.4, 133	0	14.07	14.06			
	1248 (C-Br str.), 1358 (C-O str.),	¹ H NMR (400 MHz, DMSO- a_6): 0 2.33 (s, 2H) 2.34 (s, 2H), 2.70 (d, 2H,) 2.72 (d, 2H, $I = 8.8$ Hz) 2.77 (d, 2H) 3.13 (s, 2H) 7.64 (d, 1H, $I = 6.8$	С	47.20	47.19			
Mbb2	1504 (C=C str.), 1576 (C=O str.),	Hz) 8.08 (s, 1H), 8.56 (s, 1H), 8.58 (s, 1H), 12.7 (s, 1H); ${}^{13}C$ NMR (100	H	5.09	5.07			
	1667 (C=O str.), 3450 (COOH)	MHz, DMSO- <i>d</i> ₆): δ 42.58, 45.09, 49.82, 51.17, 53.02, 61.09, 114.38,	0	13.47	13.46			
		119.18, 121.74, 133.96, 135.27, 139.56, 168.53, 169.40 ¹ UNIMP (400 MHz, DMSO, d): § 2.46 (c. 2H) 2.01 (d. 2H, $l = 10$ Hz)						
	1120 (C. D. () 1257 (C. O. ()	3.35 (s, 2H), 3.41 (s, 2H), 7.29 (s, 1H) 7.44 (t, 2H, $J = 6.8 Hz), 7.81 (s, 2H)$	C	EE E7				
Mbb3	1130 (C-Br str.), 1357 (C-O str.), 1573 (C=C str.) 1609 (C=O str.)	1H), 8.08 (s, 1H) 8.5 (s, 1H), 8.54 (s, 1H), 13.49 (s, 1H); ¹³ C NMR (100	н	5.57 5.13	55.55 512			
1120000	1668 (C=O <i>str.</i>), 2819 (COOH)	MHz, DMSO- d_6): δ 50.42, 52.76, 53.41, 62.25, 62.55, 63.1, 113.92, 118.10, 121.27, 127.21, 127.22, 127.62, 128.61, 128.72, 124.02, 127.72	0	11.10	11.09			
		138.7, 139.57, 169.55, 169.81						
	1145 (C Pr str.) 1252 (C O str.)	¹ H NMR (400 MHz, DMSO- d_6): δ 2.5 (s, 2H), 2.6 (s, 2H) 3.3 (t, 10H, J	C	54 56	54 54			
Mbb4	1448 (C=C str.), 1253 (C=O str.), 1448 (C=C str.), 1500 (C=O str.), 1500	= 5.0 Hz = 5	н	4.82	4.81			
	1596 (C=O <i>str.</i>), 2917 (COOH)	d_6): δ 40.21, 40.41, 43.24, 46.11, 48.28, 113.98, 115.72, 116.5, 120.51,	0	11.48	11.46			
		129.42, 129.59, 139.19, 140.21, 149.04, 150.51						
	1025 (C-Br str.), 1582 (C=O str.),	¹ H NMR (400 MHz, DMSO- d_6): δ 1.05 (m, 4H), 3.06 (s, 2H) 3.16 (s, 1H), 7.26 (m, 2H) δ 0.7 (s, 1H), δ 53 (s, 1H); β 0.7 (s, 1H), δ 53 (s, 1H); β 0.100 MHz	С	47.72	47.71			
Mbb5	1693 (C=O str.), 1305 (C-O str.),	(110) 7.50 (m, 2H) 8.07 (s, 1H), 8.53 (s, 1H), "C NMR (100 MHz, DMSO-d.)" δ 43 4 49 06 49 43 61 92 99 14 127 73 128 77 128 9	Н	4.62	4.60			
	3323 (COOH), 1501 (C=C str.)	129.4, 137.5	0	14.67	14.66			
	1035 (C-Cl str.), 1300 (C-O str.)	⁻ H NMK (400 MHz, DMSO- a_6): o 1.428 (s, 2H) 1.556 (d, 2H, $J = 4.8$ Hz) 1.657 (d 2H $J = 4.8$ Hz) 3.008 (t 4H $J = 5.2$ Hz) 3.59 (s 1H)	C	56.66	56.65			
Mcb1	1506 (C=C str.), 1566 (C=O str.),	7.53 (dd1H, $J = 2.4$ Hz), 7.93 (d, 1H, $J = 2.8$ Hz), 8.61 (d, 1H $J = 9.2$	Н	5.77	5.75			
	1673 (C=O str.), 2990 (COOH)	Hz); ¹³ C NMR (100 MHz, DMSO- <i>d</i> ₆): δ 22.60, 24.73, 44.41, 54.41,	0	16.17	16.15			
		121.37, 126.49, 130.90, 132.31, 139.33, 168.33						
	1089 (C-Cl str.), 1296 (C-O str.),	2.782 (s, 2H) 3.618 (s, 1H), 7.45 (1H, $J = 2.8$ Hz), 7.95 (t, 1H, $J = 2.8$	С	53.93	53.92			
Mcb2	1495 (C=C str.), 1623 (C=O str.),	Hz), 8.61 (d, 1H $J = 8.8$ Hz), 13.24 (s, 1H); ¹³ C NMR (100 MHz,	Н	5.82	5.82			
	1685 (C=O str.), 3214 (COOH)	DMSO- d_6): δ 45.59, 51.48, 53.03, 61.21, 121.11, 126.23, 131.07, 130.10, 160.26	0	15.40	15.38			
		¹ H NMR (400 MHz, DMSO- d_s): δ 3.08 (s. 8H) 3.123 (s. 2H), 13.36 (s.						
	1084 (C-Cl str.), 1343 (C-O str.),	1H) 3.54 (s, 2H), 7.252 (s, 2H) 7.323 (s, 2H) 7.63 (d, 1H, J = 2.4 Hz),	С	61.93	61.91			
Mcb3	1582 (C=C str.), 1623 (C=O str.),	7.95 (d, 1H, $J = 2.4$ Hz), 8.64 (d, 1H $J = 8.8$ Hz); ¹³ C NMR (100 MHz,	Н	5.72	5.70			
	1094 (C=O <i>str.</i>), 2814 (COOH)	DMSU- a_6): 0 51.8, 54.2, 61.8, 62.9, 116.5, 124.3, 125.0, 127.2, 128.4, 129.3, 130.2, 138.6, 140.3, 168.5, 169.3	0	12.38	12.36			
		¹ H NMR (400 MHz, DMSO- <i>d</i> _{<i>i</i>}): δ 2.48 (t, 4H, <i>J</i> = 5.6 Hz), 3.32 (s, 2H)						
	1150 (C-Cl str.), 1232 (C-O str.),	3.42 (t, 4H, $J = 5.6$ Hz) 6.79 (s, 1H) 6.94 (d 2H, $J = 7.2$) 7.27 (d, 2H J	С	61.04	61.03			
Mcb4	1498 (C=C str.), 1575 (C=O str.),	= 2.4 Hz) 7.81 (m 1H) 7.93 (d, 1H, J = 2.4 Hz) 8.32 (m, 1H); ¹³ C NMR	Н	5.39	5.38			
	1050 (C=O str.), 3387 (COOH)	(100 MHz, DMSO- a_6): 0 48.1, 52.2, 01.5, 114.2, 116.5, 121.3, 125.4, 129.3, 130.8, 142.5, 149.2, 168.2, 169.3	0	12.84	12.83			

	1144 (C Cl atr.) 1251 (C O atr.)	¹ H NMR (400 MHz, DMSO- d_6): δ 1.83 (m, 4H J = 6.8 Hz) 2.823 (s,	C	55 22	55 22
1415	144 (C-CI <i>SII</i> .), 1251 (C-O <i>SII</i> .),	2H), 3.11 (t, 4H J = 6.8 Hz), 7.375 (d, 1H, J = 2.4 Hz), 7.89 (d, 1H, J =	C II	55.25	55.22
Mcb5	1499 (C=C str.), 1596 (C=O str.),	2.4 Hz), 8.63 (d. 1H $J = 8.8$ Hz); ¹³ C NMR (100 MHz, DMSO-d.); δ	Н	5.35	5.34
	1679 (C=O str.), 3412 (COOH)	24 21 44 97 54 30 120 94 131 01 139 26	0	16.98	16.97
		HARD (400 AND DAGO A) \$1.54 ((ID 1 (2 (DD 1 0))			
	1029 (C-Br str.), 1371 (C=C str.),	⁴ H NMR (400 MHz, DMSO- d_6): δ 1.54 (s, 6H) 1.63 (s, 2H), 1.96 (s,	С	49.28	49.26
Mdb1	1593 (C=O str.), 1688 (C=O str.)	2H), 3.11 (s, 2H) 6.73 (d, 2H $J = 6.4$ Hz) 7.57 (m 1H), 10.06 (s, 1H);	н	5.02	5.01
101001	2042 (COOH) 2450 (NH str.)	¹³ C NMR (100 MHz, DMSO- d_6): δ 22.93, 23.75, 26.33, 44.09, 54.65,	0	14.07	14.05
	2945 (COOH), 5450 (-NH SIF.)	62.67, 106.53, 114.35, 119.67, 129.58, 134.02, 136.77, 148.16, 169.40	0	14.07	14.05
		¹ H NMR (400 MHz DMSO- d_{1}): δ 1 888 (s 3H) 2 197 (t 4H) 3 176 (s			
	1090 (C-Br str.), 1560 (C=C str.)	(400 MHz, 5000 G) = 0.000 (3, 511) 2.177 (4, 411) 5.170 (3, 411) 6.77 (t. 2H. $I = 8.4 Hz) 7.59 (d. 1H. I = 1.6 Hz) 7.849 (t. 1H. I = 1.6 $	С	47.20	47.18
Mdb2	1627 (C - O str.), 1601 (C - O str.),	(1, 1, 1, 2, 1, 3, 2, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,	й	5.00	5.07
WIUD2	1027 (C=0 sir.), 1091 (C=0 sir.), 2022 (COOL) 2412 (NIL ())	1.0 Hz, $0.51 (d, HI J = 0.4 Hz)$, $9.99 (s, HI)$, C NWR (100 WHZ,	0	12 47	12.40
	2822 (COOH), 5412 (-INH SIF.)	DIVISO- a_6 : 0 43.47, 40.08, 32.00, 33.10, 33.22, 01.70, 100.44, 114.43, 110.45, 120.20, 122.54, 140.25, 160.12	0	13.47	15.40
		119.45, 130.30, 133.54, 149.35, 169.12			
		¹ H NMR (400 MHz, DMSO- d_6): δ 1.893 (s, 2H) 2.945 (d, 6H J = 4.4			
	1143 (C-Br str.), 1369 (C=C str.),	Hz) 3.178 (s, 1H) 3.515 (t, 1H J = 4 Hz), 7.351 (m, 5H) 7.624 (t, 2H J	С	55.57	55.56
Mdb3	1520 (C=O str.), 1626 (C=O str.),	= 1.6 Hz), 7.868 (d, 1H, $J = 1.6$ Hz), 8.09 (s, 1H), 8.30 (s, 1H), 9.01 (s,	Н	5.13	5.11
	2827 (COOH), 3443 (-NH str.)	1H): ¹³ C NMR (100 MHz, DMSO- d_s): δ 51.12, 53.16, 61.75, 62.45,	0	11.10	11.08
		106 44, 114 45, 129 35, 134 22, 137 12, 138 53, 149 38, 169 09	Ũ	11110	11100
	1000 (C Pr - ++-) 1271 (C C ()	H ININK (400 MHZ, DIVISO- d_6): 0 1.99 (s, 4H) 3.01 (t, 4H J = 5.2 Hz)	C	5150	54 55
	1090 (С-BF str.), 13/1 (С=С str.),	3.89 (t, 2H J = 5.2 Hz), 6.82 (m, 4H) 6.95 (m, 4H) 7.21 (m, 1H) 7.240	C	34.30	54.55
Mdb4	1595 (C=O str.), 1629 (C=O str.),	(d, 1H), 7.63 (dd, 1H, $J = 1.6$ Hz)), 7.871 (d, 1H $J = 2$ Hz); ¹³ C NMR	Н	4.82	4.81
	3176 (COOH), 3444 (-NH str.)	(100 MHz, DMSO- d_6): δ 44.67, 48.09, 60.22, 106.37, 114.49, 116.10,	0	11.48	11.47
		119.70, 129.44, 130.42, 134.32, 151.43, 167.14, 170.81			
	1000 (C D	¹ H NMR (400 MHz, DMSO-d.): δ 1 802 (m. 4H) 3 05 (s. 4H) 3 25 (s.	~	17.72	47 50
	1023 (C-Br str.), 13/3 (C=C str.),	2H) 6.71 (d. 1H J = 8.4 Hz) 7.57 (d. 1H J = 7.6 Hz) 7.83 (s. 1H) 8.05 (s.	C	47.72	47.70
Mdb5	1595 (C=O str.), 1627 (C=O str.),	1H): 13 C NMR (100 MHz DMSO d): $\$$ 24.11 44.71 54.20 50.20	Н	4.62	4.61
	2985 (COOH), 3449 (-NH str.)	106 60 114 20 120 52 120 0 122 40 122 06 147 61	0	14.67	14.65
		100.00, 114.30, 129.35, 130.0, 155.49, 155.90, 147.01			
		⁴ H NMR (400 MHz, DMSO- <i>d</i> ₆): δ 1.89 (s, 2H), 2.2 (s, 4H) 2.36 (s, 2H),			
	1309 (C-N str) 1549 (C-C str)	2.68 (s, 2H) 3.01 (s, 2H) 7.04 (s, 1H), 7.29 (t, 2H, J = 7.6 Hz), 7.62 (s,	С	71.53	71.51
Meb1	1657 (C-0 str.), 1349 (C-0 str.), 1657 (C-0 str.), 2286 (NH str.)	2H), 9.8 (s, 1H); ¹³ C NMR (100 MHz, DMSO- <i>d</i> ₆): δ 21.85, 43.15,	Н	8.31	8.29
	1037 (C=0 sir.), 3380 (-NH sir.)	44.78, 45.79, 54.13, 58.85, 61.51, 120.23, 123.97, 129.34, 138.94,	0	7.33	7.31
		168.85, 172.98			
		¹ U NMP (400 MU ₇ DMSO d) \otimes 1.0 (c. 2U) 2.22 (c. 8U) 2.02 (c. 2U)			
	1221 (C N str.) 1540 (C-C str.)	11 NINK (400 INITZ, DIVISO- a_6). 0 1.9 (8, 511), 2.55 (8, 611) 5.05 (8, 211), 7.07 (a. 111) 7.20 (b. 211, J. 2014), 7.61 (b. 211, J. 7.6 Hz) 0.7 (a. 111).	С	71.53	71.52
Meb2	1221 (C-N str.), 1349 (C=C str.), 1741 (C-N str.), 1741	1.07 (s, 1H) 1.30 (t, 2H, $J = 8$ HZ), 7.01 (t, 2H $J = 7.0$ HZ) 9.7 (s, 1H);	Н	8.31	8.30
	1/41 (C=O str.), 3341 (-NH str.)	¹³ C NMR (100 MHz, DMSO- d_6): δ 43.29, 45.11, 45.80, 51.70, 52.04,	0	7.33	7.32
		54.3, 61.66, 119.95, 124.0, 129.41, 129.17, 138.90, 168.68	-		=
		¹ H NMR (400 MHz, DMSO- d_6): δ 2.59 (s, 4H), 3.06 (s, 2H) 3.55 (s,			
	1212 (C N +) 1549 (C C +)	2H), 4.24 (s, 2H) 7.06 (t, 1H $J = 7.2$ Hz), 7.33 (m, 3H), 7.42 (s, 2H),	С	73.76	73.75
Meb3	1515 (C-N <i>str.</i>), 1548 (C=C <i>str.</i>),	7.61 (s, 2H), 9.06 (s, 1H), 9.9 (s, 1H); 13 C NMR (100 MHz, DMSO- d_6):	Н	7.49	7.48
	16/1 (C=O str.), 3348 (-NH str.)	δ 51.8, 53.061.1, 61.9, 121.6, 127.2, 128.4, 128.8, 128.9, 138.5, 138.6	0	5.17	5.16
		168 5	U	5.17	0.10
	1001 (C N () 1507 (C C)	H NMR (400 MHz, DMSO- d_6): δ 2.63 (s, 4H), 3.07 (s, 4H) 4.1 (s, 2H),	С	73.19	73.18
Meb4	1221 (C-N str.), 158/ (C=C str.),	7.06 (t, 1H J = 7.2 Hz) 7.32 (m, 4H) 7.42 (s 2H) 7.6 (s, 2H), 9.2 (s, 1H),	Н	7.17	7.16
	1/39 (C=O str.), 3385 (-NH str.)	10.0 (s, 1H); ¹³ C NMR (100 MHz, DMSO- d_6): δ 49.27, 50.77, 61.76,	0	5.42	5 41
		119.99, 124.02, 128.79, 129.13, 129.60, 131.59, 138.98	Ŭ	5.12	5.11
		¹ H NMR (400 MHz, DMSO- <i>d</i> ₆): δ 1.84 (m, 2H), 1.96 (m, 4H) 2.2 (s.	C	70.56	70 55
	1312 (C-N str.), 1553 (C=C str.).	2H), 3.07 (t, 2H $J = 7.2$ Hz) 7.09 (m, 1H) 7.32 (m, 2H) 7.62 (m, 2H).	C	70.30	70.55
Meb5	1741 (C=O str.). 3447 (-NH str.)	11.0 (s, 1H); ¹³ C NMR (100 MHz, DMSO- <i>d</i> .): δ 23.28, 24.20, 54.56	Н	7.90	7.89
		62.94, 11986, 120.24, 129.35, 162.94	0	7.83	7.81
		UNMD (400 MILE DMCO 4), \$152 (OD 1 (6 ((D) 2.25 (
	1005 (C N -) 1519 (C - C -)	H INNIK (400 MHZ, DIVISO- d_6): 0 1.53 (m, 2H), 1.66 (m, 6H) 2.25 (s,	С	72.38	72.37
Mfb1	1225 (C-N str.), 1518 (C=C str.),	3H), 2.98 (t, 4H J = 5.6 Hz) 7.11 (d, 1H J = 8 Hz) 7.49 (m, 1H) 8.74 (s,	Н	8.68	8.67
	1741 (C=O str.), 3399 (-NH str.)	2H); ¹³ C NMR (100 MHz, DMSO- d_6): δ 21.3, 24.6, 25.2, 53.4, 61.4,	0	6.89	6.88
		121.5, 129.2, 135.5, 136.8, 168.5	0	0.07	0.00
		¹ H NMR (400 MHz, DMSO- d_6): δ 2.28 (s, 3H), 2.38 (m, 9H) 3.32 (s,	C	67.00	67.07
100	1375 (C-N str.), 1404 (C=C str.).	2H), 7.11 (d, 2H J = 8 Hz) 7.52 (d, 2H J = 7.2 Hz) 8.74 (s, 2H): ${}^{13}C$	C	07.98	07.97
Mfb2	1668 (C=0 str.) 3358 (-NH str.)	NMR (100 MHz DMSO- d): δ 21.9 43.27 45.89 51.85 61.1 121.5	Н	8.56	8.55
	1000 (C=0 su.), 5550 (-141 su.)	$20.2 \ 134.5 \ 136.8 \ 168.5$	0	6.47	6.45
		⁴ H NMR (400 MHz, DMSO- d_6): δ 2.21 (s, 3H), 2.36 (t, 4H, J = 5.6 Hz)	C	-	-
	1302 (C-N str.) 1495 (C=C str.)	2.48 (t, $4H J = 5.6 Hz$), 3.22 (s, $3H$) 3.68 (s, $3H$) 7.21 (m, $5H$) 7.33 (t,	С	74.27	74.25
Mfb3	1565 (C = 0 str) = 2028 (NH str)	2H, $J = 7.2$ Hz) 7.56 (d, 2H $J = 8$ Hz); ¹³ C NMR (100 MHz, DMSO-	Н	7.79	7.78
	1505 (C-0 sil.), 5020 (-100 sil.)	d_6): δ 21.3, 51.8, 53.0, 61.1, 61.9, 121.5, 127.2, 128.4, 128.8, 129.2,	0	4.95	4.93
		135.5, 136.8, 138.6, 168.5			
		¹ H NMR (400 MHz DMSO ₂ d.): δ 2.50 (s. 3H) 3.17 (m. 8H) 3.33 (s.			
	1312 (C-N str.) 1553 (C-C str.)	2H) 6.87 (t 1H $I = 8$ Hz) 6.99 (d 3H $I = 8$ Hz) 7.25 (dd 5H $I = 7.2$	С	73.76	73.74
Mfb4	1741 (C = 0 str.) 2447 (NH str.)	H_{7} , H_{7} , H_{7} = 0 H_{2} (0.97 (0.5113 = 0 H_{2}) 7.25 (00.5113 = 7.2 H_{7}), H_{7} (100 MH_{7} DMSO d), S 21.2 42.26 46.21 61.1 61.0	Η	7.49	7.47
	1741 (C=0 sil.), 5447 (-NH sil.)	112), CININ (100 MIL, DIVISO- a_6), 0 21.3, 43.20, 40.21, 01.1, 01.9, 116.45, 120.35, 120.57, 150.64	0	5.17	5.16
		110.4.7. 120.7.7. 127.77. 1.30.04			

Mfb5	1252 (C-N str.), 1552 (C=C str.), 1689 (C=O str.), 3346 (-NH str.)	¹ H NMR (400 MHz, DMSO- <i>d</i> ₆): δ 1.69 (m, 4H) 2.26 (s, 3H), 2.51 (t, 4H, <i>J</i> = 7.2 Hz), 3.1 (s, 2H), 7.21 (d, 2H <i>J</i> = 8 Hz) 7.52 (dd, 2H <i>J</i> = 7.2 Hz); ¹³ C NMR (100 MHz, DMSO- <i>d</i> ₆): δ 21.3, 22.9, 57.2, 61.1, 121.5, 129.2, 135.5, 136.8, 168.5	C H O	71.53 8.31 7.33	71.51 8.30 7.31
Mgb1	1028 (C-Cl str.), 1248 (C-N str.), 1457 (C=C str.), 1699 (C=O str.), 3388 (-NH str.)	¹ H NMR (400 MHz, DMSO- <i>d</i> ₆): δ 1.54 (s, 2H) 1.88 (s, 4H), 2.95 (t, 4H, $J = 5.2$ Hz) 4.3 (s, 2H), 7.31 (d, 2H $J = 8.4$ Hz), 7.63 (d, 2H, $J = 8.4$); ¹³ C NMR (100 MHz, DMSO- <i>d</i> ₆): δ 23.05, 23.88, 25.71, 44.05, 54.36, 62.69, 121.53, 128.98, 133.3, 137.90, 169.33	C H O	58.31 6.78 5.98	58.29 6.76 5.97
Mgb2	1012 (C-Cl str.), 1242 (C-N str.), 1518 (C=C str.), 1686 (C=O str.), 3269 (-NH str.)	¹ H NMR (400 MHz, DMSO- d_6): δ 1.89 (s, 3H) 2.20 (s, 4H), 3.50 (s 2H), 7.35 (dd, 2H J = 7.2 Hz) 7.68 (d, 2H J = 4.8 Hz); ¹³ C NMR (100 MHz, DMSO- d_6): δ 45.5, 51.81, 54.56, 61.85, 121.51, 127.43, 129.26, 138.01, 168.92, 172.82	C H O	61.78 6.78 6.33	61.76 6.76 6.32
Mgb3	1049 (C-Cl str.), 1244 (C-N str.), 1538 (C=C str.), 1682 (C=O str.), 3408 (-NH str.)	¹ H NMR (400 MHz, DMSO- <i>d</i> ₆): δ 2.87 (s, 4H) 3.04 (s, 4H), 3.1 (s, 2H) 3.98 (s, 2H) 7.31 (m, 5H) 7.491 (s, 2H), 7.714 (d, 2H, $J = 8.8$ Hz); ¹³ C NMR (100 MHz, DMSO- <i>d</i> ₆): δ 49.34, 51.45, 60.41, 61.94, 116.50, 121.57, 127.50, 127.70, 128.76, 128.98, 129.43, 130.87, 137.57, 138.02, 168.34	C H O	66.37 6.45 4.65	66.35 6.44 4.63
Mgb4	1028 (C-Cl str.), 1248 (C-N str.), 1457 (C=C str.), 1699 (C=O str.), 3388 (-NH str.)	¹ H NMR (400 MHz, DMSO- d_6): δ 1.88 (s, 2H) 2.87 (t, 2H, J = 4.8 Hz), 3.06 (t, 2H, J = 4.4 Hz), 6.78 (t, 2H J = 7.2 Hz) 6.92 (d, 3H J = 8 Hz), 7.20 (m, 4H); ¹³ C NMR (100 MHz, DMSO- d_6): δ 49.1, 51.5, 61.1, 114.3, 120.4, 129.6, 129.9, 133.3, 136.6, 149.6, 168.5	C H O	65.55 6.11 4.85	65.53 6.09 4.84
Mgb5	1145 (C-Cl str.), 1250 (C-N str.), 1594 (C=C str.), 1691 (C=O str.), 3487 (-NH str.)	¹ H NMR (400 MHz, DMSO- d_6): δ 1.82 (dd, 4H, $J = 18$ Hz) 2.8 (s, 4H), 3.07 (s 2H) 3.1 (s, 2H), 7.31 (d, 2H $J = 4.2$ Hz) 7.61 (dd, 2H $J = 4.2$ Hz); ¹³ C NMR (100 MHz, DMSO- d_6): δ 24.50, 58.39, 66.22, 121.55, 127.75, 128.57, 128.9, 129.14, 137.69, 167.73	C H O	60.38 6.33 6.70	60.38 6.32 6.69

1232 (C-N str.), 1498 (C=C str.), 1575 (C=O str.), 1636 (C=O str.), 2950 (COOH), 3387 (-NH). The ¹H NMR spectrum of compounds **Mab1-Mgb5** showed signals for a singlet around δ 3.0-3.36 ppm due to the -CH₂ peak of acyl and a singlet at δ 10.0 ppm due to -NH and aromatic protons at δ 6.4.-8.6 ppm. ¹³C NMR spectrum of compounds **Mab1-Mgb5** showed characteristic signals δ 62.1, 116.5 and 168.36 ppm confirming the formation of the target compounds.

A total of 20 heterocyclic amine substituted 2-acetoxy derivatives (**Eab1-Edb5**) were synthesized. The products were obtained in good yield with a range of 60-90% (Table-3). The synthesized compounds were identified by using IR, ¹H and ¹³C NMR spectral data. In IR spectra of heterocyclic amine substituted 2-chloroacetates show the key signals for 1055 (C-O *str.*), 1493 (C=C *str.*), 1595 (C=O *str.*), 1664 (C=O *str.*), 2974 (COOH) (Table-4). The ¹H NMR spectra of compounds **Eab1-Edb5** showed characteristic signals for singlet around δ 3.16-3.46 due to the -CH₂ peak of acyl and aromatic protons at δ 6.86-7.8 ppm. ¹³C NMR spectra of the synthesized compounds **Eab1-Edb5**

showed a characteristic signal δ 51.8, 115.7 and 151.12 ppm confirming the formation of target compounds (Table-4).

Docking studies: MmaA1 is an essential methyl transferase enzyme involved in the maturation of mycolic acids [29]. The active pocket amino acids involved in the recognition of S-Adenosyl methionine residues are ASP 19, TRP 30, TYR 32, GLY71, TRP 74, GLY 76, ALA 77 and PHE 135 which were predicted from CASTp [30], SiteMap [31] and protein-ligand docking using PatchDock [32] with S-adenosyl-N-decyl-aminoethyl (SADAE). SADAE is a highly effective bisubstrate inhibitor of the mycolic acid methyl transferases of *M. tuberculosis* [33]. The 330 compounds from the in-house library of compounds were subjected to virtual screening using AutoDock and 55 hits were obtained. The obtained docking scores ranged from -10.5 to -5.8. The docking outcomes were visually assessed and prioritized based on the dock score, the docking results of the top 10 compounds are given in Table-5.

The docking data suggest that most of the ligands bind to protein active site residues *via* TRP 74, TRP 30, TRP 32, GLY

	TABLE-3								
		PHISIC	U-CHEMICA	L PROPERTIES	JF THE COL	MPOUNDS	Ead1 10 Edd5		
Compd	Yield	mn (°C)	Relative	m f	Compd	Yield	mn (°C)	Relative	m f
Compu.	(%)	m.p. (C)	mass		Compu.	(%)	m.p. (C)	mass	
Eab1	81.66	Semi-solid	263.29	$C_{14}H_{17}NO_4$	Ecb1	61.23	Gummy resin	263.29	$C_{14}H_{17}NO_4$
Eab2	80	Semi-solid	278.30	$C_{14}H_{18}N_2O_4$	Ecb2	78.23	Gummy resin	278.30	$C_{14}H_{18}N_2O_4$
Eab3	78.78	Semi-solid	354.40	$C_{20}H_{22}N_2O_4$	Ecb3	89.60	Gummy resin	354.40	$C_{20}H_{22}N_2O_4$
Eab4	90.62	Semi-solid	340.37	$C_{19}H_{20}N_2O_4$	Ecb4	94.2	Gummy resin	340.37	$C_{19}H_{20}N_2O_4$
Eab5	59.13	Semi-solid	249.26	$C_{13}H_{15}NO_4$	Ecb5	75.12	Gummy resin	249.26	$C_{13}H_{15}NO_4$
Ebb1	72.51	Semi-solid	297.73	$C_{14}H_{16}NO_4Cl$	Edb1	69.23	Gummy resin	219.28	$C_{13}H_{17}NO_2$
Ebb2	78.12	Gummy resin	312.75	$C_{14}H_{17}N_2O_4Cl$	Edb2	68.24	Semi-solid	234.29	$C_{13}H_{18}N_2O_2$
Ebb3	82.3	Semi-solid	388.84	$C_{20}H_{21}N_2O_4Cl$	Edb3	85.47	Gummy resin	310.39	$C_{19}H_{22}N_2$
Ebb4	86.34	88.9	374.82	$C_{19}H_{19}N_2O_4Cl$	Edb4	74.23	151.9	296.36	$C_{18}H_{20}N_2O_2$
Ebb5	62.32	Semi-solid	283.71	C ₁₃ H ₁₄ NO ₄ Cl	Edb5	62.35	Gummy resin	205.25	$C_{12}H_{15}NO_2$

	SPE	TABLE-4 CTRAL DATA OF THE COMPOUNDS Eab1 TO EDb5			
	h		Elem	ental anal	ysis (%)
Compd.	IR (KBr, v_{max} , cm ⁻¹)	NMR data		Req.	Found
	1218 (C-O str.) 1458 (C=C str.)	¹ H NMR (400 MHz, DMSO- d_6): δ 1.55 (s, 6H) 2.98 (t, 2H, $J = 4.8$ Hz)	С	63.87	63.86
Eab1	1588 (C=O str.), 1653 (C=O str.),	3.165 (s, 2H), 5.0 (s, 2H), 8.7-6.79 (m, 4H) 5.0 (s, 2H) 10.38 (s, 1H); ¹³ C	H	6.51	6.49
	2945 (COOH)	NMR (100 MHz, DMSO- a_6): o 24.3, 25.57, 56.22, 61.99, 113.69, 117.34, 119.94, 130.72, 135.27 136.34, 162.16, 168.36	0	24.31	24.30
	1251 (C-O str.), 1460 (C=C str.),	¹ H NMR (400 MHz, DMSO- d_6): δ 2.07 (s, 2H) 2.51 (s, 2H), 2.75 (s, 4H)	С	60.42	60.40
Eab2	1588 (C=O <i>str</i> .), 1666 (C=O <i>str</i> .), 3425 (COOH)	5.10 (s, 2H), 0.8 (iii, 2H), 7.34 (i, 2H, 7.8 (dd, 1H, $J = 7.2$ Hz) 10.34 (s, 1H); ¹³ C NMR (100 MHz, DMSO- d_6): δ 42.85, 49.47, 52.47, 62.52 113.53, 116.99, 118.56, 120.0, 134.45, 136.32, 160.24, 168.20.	H O	23	6.50 22.98
	1254 (C.O. +) 1459 (C. C. +)	¹ H NMR (400 MHz, DMSO- d_6): δ 2.568 (s, 4H) 2.71 (s, 3H) 3.085 (s,	C	67 70	67 77
Eab3	1234 (C=0 str.), 1438 (C=0 str.), 1588 (C=0 str.) 1627 (C=0 str.)	2H) 3.17 (s, 1H, CH ₂) 7.72-6.68 (m, 9H); ¹³ C NMR (100 MHz, DMSO-	н	6.26	6.25
1.00	2828 (COOH)	d_6): δ 49.46, 51.32, 52.92, 61.94, 116.46, 117.39, 119.44, 127.80, 128.90, 129.46, 130.29, 130.60, 132.78, 137.21, 137.48, 162.49, 172.80	0	18.06	18.04
F 14	1055 (C-O str.), 1493 (C=C str.),	¹ H NMR (400 MHz, DMSO- <i>d</i> ₆): δ 3.22 (s, 8H), 3.36 (s, 2H), 7.73-6.7	C	67.05	67.02
Eab4	1595 (C=O str.), 1664 (C=O str.),	(m, 9H); ¹⁵ C NMR (100 MHz, DMSO- d_6): δ 43.09, 46.0, 116.51, 116.72, 117.72, 120.47, 120.47, 130.57, 150.52	H	5.92	5.90
	2974 (COOII)	¹ II NMP (400 MHz DMSO d): δ 1 80 (m 4H) 3 270 (t 2H $I = 6.8$	0	10.00	10.79
	1298 (C-O str.), 1482 (C=C str.),	Hz) 3.411 (t, 2H, $J = 6.8$ Hz), 4.253 (s, 2H) 6.9 (m, 4H); ¹³ C NMR (100	C	62.64	62.22
Eab5	1610 (C=O str.), 1648 (C=O str.), 2977 (COOH)	MHz, DMSO- <i>d</i> ₆): δ 24.08, 26.05, 45.32, 46.45, 113.41, 117.95, 120.01,	H	6.07 25.67	6.06 25.65
		131.96, 136.12, 150.01, 161.54, 172.37 ¹ H NMR (400 MHz, DMSO- d_{5}); δ 1.54 (m, 6H) 3.0 (t, 4H, J = 5.6 Hz),	0	23.07	25.05
Fbb1	1021 (C-Cl str.), 1035 (C-O str.), 1478 (C-C str.), 1579 (C-O str.)	4.1 (s, 1H) 6.7 (s, 1H) 7.203 (dd, 1H, J = 2.8HZ), 7.6 (d, 1H, J = 2.8	с и	5 42	5 40
LUUI	1633 (C=O <i>str.</i>), 3393 (COOH)	Hz); ¹³ C NMR (100 MHz, DMSO- <i>d</i> ₆): δ 22.09, 23.88, 44.05, 54.36, 121.53, 128.98, 137.90, 169.33	0	21.49	21.48
		¹ H NMR (400 MHz, DMSO- d_6): δ 1.63 (d, 3H J = 5.2 Hz), 1.89 (m,	G	50 7 7	50.54
Fhb?	1098 (C-Cl str.), 1285 (C-O str.), 1472 (C-C str.), 1579 (C-O str.),	4H), 2.2 (s, 2H), 2.45 (t, 2H) 2.63 (s, 2H), 6.1 (s, 1H), 6.59 (dd, 1H, $J = 2.8 \text{ Hz}$), 7.0 (d, 1H, $L = 2.8 \text{ Hz}$), ¹³ C NMB (100 MHz, DMSO d), 8	С	53.77	53.76
E002	1632 (C=O str.), 3413 (COOH)	2.8 Hz , 7.0 (d, 1H, $J = 2.8 \text{ Hz}$), C NMR (100 MHz, DMSO- a_6), 0 45.56, 51.81, 52.49, 54.56, 61.85, 121.51, 127.43, 128.98, 129.26,	0	20.46	20.45
		138.01, 168.92, 172.82			
	1021 (C-Cl str.), 1032 (C-O str.).	H NMR (400 MHz, DMSO- a_6): 0 1.87 (s, 2H), 2.44 (s, 6H), 2.89 (s, 3H), 3.43 (s, 3H), 6.65 (s, 1H), 7.15 (d, 1H, $J = 2.8$ Hz), 7.27 (m, 5H).	С	61.78	61.77
Ebb3	1450 (C=C str.), 1638 (C=O str.),	7.6 (s, 1H); ¹³ C NMR (100 MHz, DMSO- d_6): δ 43.21, 50.90, 60.41,	Ĥ	5.44	5.43
	1744 (C=O <i>str.</i>), 3357 (COOH)	61.94, 116.50, 121.57, 127.50, 127.70, 128.76, 129.43, 130.87, 137.57, 138.02, 168.34	0	16.46	16.45
		¹ H NMR (400 MHz, DMSO- d_6): δ 1.9 (s, 2H), 2.57 (s, 2H), 3.1 (s, 4H),	G	60.00	<0.0 7
Fbb/	1150 (C-Cl str.), 1232 (C-O str.), 1408 (C-C str.) 1575 (C-O str.)	3.14 (s, 3H), 6.63 (s, 1H) 6.85 (m, 3H) 6.95 (d, 1H, $J = 0.8$ Hz), 7.16 (s, 1H), 7.2 (m, 1H), 7.61 (s, 1H), ¹³ C NMP (100 MHz, DMSO, d), § 40.5	C U	60.88 5.11	60.87 5.10
E004	1498 (C=C str.), 1373 (C=O str.), 1636 (C=O str.), 3387 (COOH)	1H), 7.2 (m, 1H) 7.01 (s, 1H); "C NMR (100 MHz, DMSO- a_6): 0.49.5, 51.9 55.4 114.3 149.6 121.35 122.3 125.5 129.6 130.7 131.2	п 0	17.07	17.06
		135.2, 148.9, 149.8, 168.0, 172.5	Ũ	17107	1,100
	1144 (C-Cl str.) 1241 (C-O str.)	¹ H NMR (400 MHz, DMSO- <i>d</i> ₆): δ 1.81 (s, 4H), 3.08 (s, 4H), 3.69 (s,	C	55.04	55.03
Ebb5	1475 (C=C str.), 1573 (C=O str.),	2H), 6.62 (s, 1H) 7.11 (d, 1H, $J = 2.8$ Hz), 7.57 (d, 1H 2.8 Hz); ¹³ C	Н	4.97	4.96
	1630 (C=O str.), 3437 (COOH)	NMR (100 MHz, DMSO- a_6): 23.57, 24.30, 44.99, 54.18, 58.39, 121.55, 127.75, 128.57, 129.14, 137.69, 167.73, 174.29	0	22.56	22.55
	1295 (C-O str.), 1460 (C=C str.),	⁴ H NMR (400 MHz, DMSO- d_6): δ 1.52 (s, 4H), 1.78 (s, 1H) 2.93 (s, 4H), 3.1 (c, 2H), 6.7 (d, 1H, $L = 3.2$ Hz) 6.82 (d, 1H, $L = 1.6$ Hz), 7.21	С	63.87	63.86
Ecb1	1568 (C=O str.), 1593 (C=O str.),	(m 2H): ${}^{13}C$ NMR (100 MHz DMSO- <i>d</i> .): δ 24 5 25 7 44 29 48	Н	6.51	6.49
	3427 (COOH)	.43, 113.75, 116.65, 117.05, 117.33, 128.74, 130.01, 157.76, 169.38	0	24.31	24.30
	1295 (C-O str.), 1403 (C=C str.),	⁴ H NMR (400 MHz, DMSO- d_6): δ 1.85 (s, 3H), 2.18 (s, 4H) 2.34 (s, 4H) 2.32 (c, 2H) 6.7 (d, 1H, L = 7.2 Hz) 6.82 (d, 1H, L = 1.6 Hz) 7.21	С	60.42	60.41
Ecb2	1504 (C=O str.), 1623 (C=O str.),	4H), 5.52 (8, 2H) 6.7 (d, 1H $J = 7.2$ Hz) 6.85 (d, 1H, $J = 1.6$ Hz), 7.51 (s, 2H): ¹³ C NMR (100 MHz DMSO- <i>d</i>): δ 43.86 46.02 53.28 55.04	Н	6.52	6.51
	2814 (COOH)	(3, 217), C 1444 (100 MHz, 24450 (100, 107, 100, 100, 100, 100, 100, 100,	0	23	22.99
	1296 (C-O str.), 1451 (C=C str.),	H INVIK (400 MHZ, DIVISU- d_6): 0 2.35 (s, 4H), 2.55 (s, 2H) 3.05 (s, 2H) 3.48 (m, 4H) 6.74 (s, 1H) 6.84 (s, 1H) 7.3 (m, 7H) ⁻¹³ C NMR (100)	С	67.78	67.77
Ecb3	1622 (C=O <i>str.</i>), 1734 (C=O <i>str.</i>),	MHz, DMSO- d_6): δ 52.82, 53.4, 60.99, 62.45, 127.4, 127.67, 128.63.	Н	6.26	6.25
	2020 (COOR)	129.79, 130.53, 137.55, 138.38, 158.20, 167.8, 169.38	0	24.31	24.29
	1235 (C-O str.), 1499 (C=C str.),	2.97 (s. 2H), 3.14 (s. 2H) 6.7 (s. H) 6.96 (m. 5H), 7.17 (m. 2H), 7.34 (s.	С	67.05	67.03
Ecb4	1597 (C=O str.), 1627 (C=O str.),	1H); ¹³ C NMR (100 MHz, DMSO- d_6): δ 44.67, 48.77, 49.16, 116.34,	H	5.92	5.90
	2/14 (COOII)	119.84, 129.45, 137.44, 151.49, 157.36, 157.80, 169.53	0	18.60	18.78
	1273 (C-O str.). 1449 (C=C str.)	¹ H NMR (400 MHz, DMSO- d_6): δ 1.81 (s, 4H), 3.07 (s, 4H), 3.38 (s,	С	62.64	62.24
Ecb5	1586 (C=O <i>str.</i>), 1609 (C=O <i>str.</i>),	2H) 6.82 (dd, 3H $J = 8.4$ Hz) 7.18 (t, 1H, =7.6 Hz); ¹³ C NMR (100 MHz DMSO d); $8.24.30, 24.55, 45.90, 45.05, 58.24, 114.24, 114.44$	Н	6.07	6.06
	2946 (COOH)	117.83, 120.35, 128.77, 140.01, 157.26, 168.85	0	25.67	25.66

Edb1	1249 (C-O str.), 1476 (C=C str.), 1660 (C=O str.)	¹ H NMR (400 MHz, DMSO- d_6): δ 1.67 (m, 6H), 2.95 (t, 4H <i>J</i> = 5.6 Hz) 3.55 (s, 2H), 6.77 (m, 2H) 6.96 (m, 5H), 7.16 (m, 2H), 9.0 (s, 1H); ¹³ C NMR (100 MHz, DMSO- d_6): δ 23.14, 24.31, 53.05, 57.22, 59.15, 115.71, 119.19, 129.78, 157.83, 163.67	C H O	71.21 7.81 14.59	71.20 7.79 14.57
Edb2	1252 (C-O str.), 1472 (C=C str.), 1664 (C=O str.)	¹ H NMR (400 MHz, DMSO- d_6): δ 2.23 (s, 3H), 2.42 (s, 8H) 3.06 (s, 2H), 5.97 (s, 1H) 8.01 (s, 2H), 8.08 (s, 1H), 8.18 (s, 1H); ¹³ C NMR (100 MHz, DMSO- d_6): δ 45.5, 53.3, 53.8, 58.01, 59.20, 60.87, 162.56, 167.95, 171.17	C H O	66.64 7.74 13.66	66.63 7.73 13.65
Edb3	1237 (C-O str.), 1473 (C=C str.), 1631 (C=O str.)	¹ H NMR (400 MHz, DMSO- d_6): δ 1.2 (s, 2H), 2.42 (s, 8H), 4.85 (s, 2H) 4.94 (s, 2H) 6.86 (s, 5H), 6.9 (s, 4H), 9.41 (s, 1H); ¹³ C NMR (100 MHz, DMSO- d_6): δ 49.36, 50.74, 52.42, 77.11, 115.71, 128.9, 129.0, 129.49, 129.80, 130.38	C H O	73.52 7.14 10.31	73.51 7.13 10.30
Edb4	1231 (C-O str.), 1498 (C=C str.), 1666 (C=O str.)	¹ H NMR (400 MHz, DMSO- <i>d</i> ₆): δ 3.2 (s, 2H) 3.54 (s, 2H), 3.68 (s, 1H), 4.4 (s, 2H) 6.86 (s, 2H), 7.01 (s, 1H), 7.29 (s, 6H), 9.29 (s, 1H); ¹³ C NMR (100 MHz, DMSO- <i>d</i> ₆): δ 43.04, 44.63, 48.82, 4 8.56, 52.31, 115.70, 116.32, 116.51, 120.45, 129.52, 129.62, 151.12	C H O	72.95 6.80 10.80	72.93 6.79 10.78
Edb5	1235 (C-O str.), 1470 (C=C str.), 1640 (C=O str.)	¹ H NMR (400 MHz, DMSO- <i>d</i> ₆): δ 2.1 (s, 4H), 2.42 (s, 4H) 3.46 (s, 2H), 7.3 (s, 3H) 7.5 (m, 2H); ¹³ C NMR (100 MHz, DMSO- <i>d</i> ₆): δ 23.3, 54.2, 56.6, 121.6, 125.6, 129.83, 151.2, 168.0	C H O	70.22 7.37 15.59	70.21 7.36 15.58

LIGANDS SHOWING DO	CK SCORE WITH INTER	TABLE-5 RMOLECULAR INTERACTIONS AND BO	ND DISTANCES
IUPAC name and compound No.	Docking score	Intermolecular interactions	Bond distance (Å)
2-(2-(4-Benzylpiperazin-1- yl)acetamido)-5-fluorobenzoic acid (Mab3)	-10.6	Hydrogen bonds TRP74:H-M1:O TRP74:H-M1:O GLY75:H-M1:O M1:H-GLY71:O M1:H-PHE135:O Pi-Pi interactions VAL31:M1 M1:LEU94 Halogen interaction LYS51:H-M1:F	3.32 3.06 3.01 3.39 3.37 3.67 5.43 2.29
2-(2-(4-Benzylpiperazin-1-yl) acetamido)-5-chloro benzoic acid (Mcb3)	-10.2	Hydrogen Bonds M2:H-TRP30:O TRP74:H-M2:O pi-pi interactions PHE22-M2 TYR32-M2 HIS98-M2 ALA137-M2 Halogen interaction TRP74:H-M2:Cl	3.75 3.97 4.25 5.78 5.35 3.86 3.48
2-(2-(4-Benzylpiperazin-1- yl)acetamido)-5-bromobenzoic acid (Mbb3)	-9,9	Hydrogen Bonds M3:H-TRP30:O M3:H-GLU136:O THR33:H-M3:O GLY73:H-M3:O ALA137:H-M3:O pi-pi interactions VAL131-M3 ASP139-M3 Halogen interaction ALA77:H-M3:Br	2.57 2.09 3.80 3.58 3.32 3.99 4.45 3.26
5-Fluoro-2-(2-(4-phenylpiperazin-1- yl)acetamido) benzoic acid (Mab4)	-9.2	Hydrogen Bond GLY73:H-M4:O HIS98:H-M4:O M4:H-GLY71:O pi-pi Interactions TYR32-M4 M4-ALA137 Halogen interaction ASP139-M4:F	3.65 3.24 3.21 4.48 4.98 3.05

		Hydrogen Bond	
		SER134:H-M5:O	2.83
		M5:H-VAL70:O	2.18
		M5·H-PHE135·O	2.50
		GLU136:H M5:O	2.50
2(4/4) Dependence in 1		M5.11 CL V71.0	5.56
2-(4-(4-Benzylpiperazin-1-	0.0	M5:H-GLY/I:O	3.41
yl)butanamido)-5-bromobenzoic acid	-9.2	pi-pi Interactions	
(Mbb2)		VAL31-M5	3.89
		VAL70-M5	3.81
		M5-ALA77	4.82
		Halogen interaction	
		TRP122_M5·Br	4 11
		DUE140 M5.D	4.20
		FIIL149-WD.DI	4.39
		Hydrogen Bonds	
		HIS98:H-M6:O	3.53
		M6:H-SER134:O	3.68
		ni-ni Interactions	
2-(2-(4-Phenylpiperazin-1-		I VS1/3:H M6	3 44
vl)acatamida) 5 bromobanzaia acid	0.1	AL A 127.11 MG	1 48
yi)acetainido)-5-bioiniobenzoic acid	-9.1	ALAIS/:H-MO	4.40
(111004)		PHE149-M6	5.85
		TRP122-M6	4.85
		TYR146-M6	4.62
		Halogen interaction	
		ALA137-M6:Br	4.48
		Urduogon Donda	
		Hydrogen Donds	o 17
		TRP/4:H-M/:O	3.47
		M/:H-GLY/1:O	3.18
2-(2-(4-Benzylpiperazin-1-		M7:H-PHE135:O	3.48
yl)acetamido)-5-chlorobenzoic acid	-9.1	pi-pi Interactions	
(Mcb3)		PHE135:H-M7	3.55
()		ALA77·H-M7	3.86
		VAL 31 M7	3.00
		VAL31-W17 M7 VAL52	5.71
		IVI/-VAL52	4.11
		Hydrogen Bonds	
		TRP74:H-M8:O	3.34
		M8:H-GLY71:O	3.51
5-Fluoro-2-(2-(4-methylpiperazin-1-		M8·H-PHE135·O	3.52
yl)acetamido) benzoic acid	-8.7	ni-ni Interactions	5.52
(Mab2)			2.60
		VAL51-IVI8	3.09
		halogen interaction	
		Lys51:C-M8:F	3.27
		Hydrogen Bonds	
		M9:H-TRP30:O	2 38
5-Fluoro-2-(3-(imidazolidin-1-		M9·H-CV\$72·O	2.50
yl)propanamido) benzoic acid	-8.7	M0.11 TUD02.0	2.44
(Mhh1)		M9. H -1 H K95. U	2.77
		pi-pi interactions	
		VAL31-M9	3.58
		Hydrogen Bonds	
		TRP74:H-M10:O	3 37
		M10·H-GL V71·O	2 / 1
		M10.11-0L1/1.0	2.52
5-Bromo-2-(3-(piperidin-1-		MIU:H-PHE135:U	3.52
vl)propanamido) benzoic acid	-8.6	pi-pi Interactions	
(Mih2)	0.0	VAL31-M10	3.22
(mins)		halogen interaction	
		Lys51:C-M10:F	3.27
		Alkyl Interactions	
		ALA137-M10	3.86
			5.00

71, PHE 135, LYS 51, ALA 137, ALA77, HIS 98. Three key interactions play a vital role in binding of the ligands with the protein. They are hydrogen bonding, pi-pi interactions and halogen bonding. The amino acids like TRP 74, TRP 30, TRP 32, GLY 71, PHE 135, LYS 51, ALA137 are majorly involved in the hydrogen bonding, TRP 122, TRP 32, TRP 137, VAL 31, ALA 77, ALA137, PHE 135 are involved in pi-pi interactions, whereas LYS 51, TRP 122, PHE 149, ASP139 are involved in the halogen bonding with receptor.

The ligand A1B1C5 is the highest scoring ligand with a binding affinity of -10.6 kcal and involved in hydrogen bond interactions with residues TRP 74, GLY 71, GLY 75, PHE 135, pi-pi interactions with VAL 31, LEU 94 and halogen bond with LYS 51 of MmaA1 protein which is shown in Fig. 2.

In ligand-receptor interaction, the carboxylic acid group in the benzoic acid moiety of 2-(N-substituted glycinamido benzoic acid) plays a pivotal role. Especially, when the C=O group is involved in H-bond interactions with the residues TRP

Fig. 2. 3D and 2D view of binding interactions of 2-(2-(4-benzylpiperazin-1-yl) acetamido)-5-fluorobenzoic acid (Mab3) with MmaA1 protein

74, TYR 32, GLU 136 and pi-pi interactions with VAL 31 of the MmaA1 protein. The halogen atoms on the benzoic acid also interacts with various amino acid residues of the protein like F bond with LYS 51, Br bond with VAL 31, ALA 137, TRP 122 and Cl bond with PHE 22, TYR 32, VAL 52.

In designed compounds, the compounds possessing aryl group (A1-A11), linker (B1) and secondary amine (C3, C4, C5, C7, C8) exhibited good drug-receptor interactions among the 330 compounds and exhibited good docking scores. The docking analysis indicated them as suitable pharmacophores for lead identification and further processing. Representative docking poses for top-scored compounds from 1-4 are given in Figs. 2-5 and top-scored compounds 5-10 are given in Figs. 6-11.

ADME studies: The lead likeness criteria are molecular weight < 500, TPSA 20 Å² < to < 130 Å², XLOGP < 5, number of hydrogen bond donors < 5, number of hydrogen bond acceptors < 10 based on the Lipinski's rule of five. These results showed that all the ligands have drug-like properties and ABC-

Fig. 3. 3D and 2D view of binding interactions of 2-(2-(4-phenylpiperazin-1-yl) acetamido)-5-chlorobenzoic acid (**Mcb3**) with MmaA1 protein

Fig. 4. 3D and 2D view of binding interactions of 2-(2-(4-phenylpiperazin-1-yl) acetamido)-5-bromobenzoic acid (Mbb3) with MmaA1 protein

Fig. 5. 3D and 2D view of binding interactions of 5-fluoro-2-(2-(4-phenylpiperazin-1-yl) acetamido) benzoic acid (Mab4) with MmaA1 protein

Fig. 6. 3D and 2D view of binding interactions of 2-(4-(4-benzylpiperazin-1-yl) butanamido)-5-bromobenzoic acid (**Mbb2**) with MmaA1 protein

Fig. 7. 3D and 2D view of binding interactions of 2-(2-(4-benzylpiperazin-1-yl) acetamido)-5-bromobenzoic acid (Mbb4) with MmaA1 protein

Fig. 8. 3D and 2D view of binding interactions of 2-(2-(4-benzylpiperazin-1-yl) acetamido)-5-chlorobenzoic acid (Mcb3) with MmaA1 protein

Fig. 9. 3D and 2D view of binding interactions of 5-fluoro-2-(2-(4-methylpiperazin-1-yl)Acetamido) benzoic acid (Mab2) with MmaA1 protein

Fig. 10. 3D and 2D view of binding interactions of 5-fluoro-2-(3-(imidazolidin-1-yl)propanamido) benzoic acid (Mhh1) with MmaA1 protein

Fig. 11. 3D and 2D view of binding interactions of 5-bromo-2-(3-(piperidin-1-yl)propanamido) benzoic acid (Mih3) with MmaA1 protein

1, 2, 5, 6, 10, 11, 12, 15, 16, 20, 21, 22, 24, 27, 30, 31, 32, 34, 35, 38, 39, 43, 44, 49, 51, 52, 53, 54 have lead like properties according to SWISS ADMET study. Compounds ABC-3, 4, 8, 9, 13, 14, 18, 19, 28, 38, 39, 41, 43, 44, 46, 50, 51, 53, have no CYP inhibition. All the ligands have high GI absorption and the ligands ABC-2, 7, 12,17, 22, 23, 25, 27, 32, 33, 37, 42, 47, 48 have no (blood brain barrier) BBB permeation. The bioactivity score in Molinspiration data showed that the ligands exhibit biological action because of interaction with GPCR, nuclear receptor, ion channel modulator and other protease and enzyme inhibitors. The ligands ABC-3, 4, 13, 14, 22, 23, 24,

26, 27, 28, 29, 30, 33, 34, 38, 39, 43 have high probability for GPCR, ABC-26, 27, 30 exhibited ion modulation property, ABC-21-35 showed high probability for nuclear receptor, whereas ABC-23, 38 has protease inhibition property and ABC-21-23, 25-28, 30-33, 35 has enzyme inhibition property. The predicted ADMET results of various physico-chemical and pharmacokinetic parameters of the compounds ABC-1 to ABC-55 are given in Tables 6-11. The compounds identified from the virtual screening study have good ADME qualities that are within an acceptable range, indicating that they have drug-like properties.

564 Vaidehi et al.

TABLE-6 SWISS ADME PREDICTED RESULTS SHOWING VARIOUS PHARMACOKINETIC						
	5 (155 112	DESCRIPTORS OF T	THE MOLECULES	ABC-1 TO ABC-55	eonin (Erre	
Compd.	H-bond donor	H-bond acceptor	TPSA (Å ²)	XLOGP3	Drug likeness	Lead likeness
ABC-1	2	5	69.64	-0.04	Yes	Yes
ABC-2	2	6	72.88	-1.12	Yes	Yes
ABC-3	2	5	72.88	0.66	Yes	No
ABC-4	2	5	72.88	0.66	Yes	No
ABC-5	2	5	69.64	-0.45	Yes	Yes
ABC-6	2	4	69.64	0.74	Yes	Yes
ABC-7	2	5	72.88	-0.53	Yes	No
ABC-8	2	5	72.88	0.96	Yes	No
ABC-9	2	4	72.88	1.25	Yes	No
ABC-10	2	4	69.64	0.14	Yes	Yes
ABC-11	2	4	69.64	0.82	Yes	Yes
ABC-12	2	5	72.88	-0.60	Yes	Yes
ABC-13	2	5	72.88	0.90	Yes	No
ABC-14	2	4	72.88	1.19	Yes	No
ABC-15	2	4	69.64	0.46	Yes	Yes
ABC-16	2	4	69.64	0.19	Yes	Yes
ABC-17	2	5	72.88	-1.08	Yes	No
ABC-18	2	5	72.88	0.41	Yes	No
ABC-19	2	4	72.88	0.70	Yes	No
ABC-20	2	4	69.64	-0.17	Yes	Yes
ABC-21	1	5	66.84	-0.17	Yes	Yes
ABC-22	1	6	70.08	-1.20	Yes	Yes
ABC-23	1	6	70.08	0.29	Yes	No
ABC-24	1	5	70.08	0.58	Yes	Yes
ABC-25	1	5	66.84	-0.52	Yes	No
ABC-26	0	2	20.31	0.64	Yes	No
ABC-27	1	6	70.08	-0.57	Yes	Yes
ABC-28	1	6	70.08	0.92	Yes	No
ABC-29	1	5	70.08	1.21	Yes	No
ABC-30	1	5	66.84	0.10	Yes	Yes
ABC-31	1	5	66.84	0.12	Yes	Yes
ABC-32	1	6	70.08	-0.91	Yes	Yes
ABC-33	1	6	70.08	0.29	Yes	No
ABC-34	1	5	70.08	0.58	Yes	Yes
ABC-35	1	5	70.08	0.58	Yes	Yes
ABC-36	0	3	29.54	2.59	Yes	No
ABC-37	0	4	32.78	1.55	Yes	No
ABC-38	0	4	32.78	3.05	Yes	Yes
ABC-39	0	3	32.78	3.33	Yes	Yes
ABC-40	0	3	29.54	2.23	Yes	No
ABC-41	1	2	32.34	2.71	Yes	No
ABC-42	1	3	35.58	1.68	Yes	No
ABC-43	1	3	35.58	2.47	Yes	Yes
ABC-44	1	2	35.58	2.76	Yes	Yes
ABC-45	1	2	32.34	2.35	Yes	No
ABC-46	1	2	32.34	2.96	Yes	No
ABC-47	1	3	35.58	1.93	Yes	No
ABC-48	1	3	35.58	1.93	Yes	No
ABC-49	1	2	35.58	3.12	Yes	Yes
ABC-50	1	2	32.34	2.60	Yes	No
ABC-51	1	2	32.34	3.34	Yes	Yes
ABC-52	1	3	35.58	2.31	Yes	Yes
ABC-53	1	3	35.58	3.10	Yes	Yes
ABC-54	1	2	35.58	3.39	Yes	Yes
ABC-55	1	2	32.34	2.98	Yes	No

TABLE-7 SWISS ADME PREDICTED RESULTS SHOWING VARIOUS PHARMACOKINETIC DESCRIPTORS OF THE MOLECULES ABC-1 to ABC-55

Commit	CLaboration	DDD			Inhibitor		
Compd.	GI absorption	BBB permeant –	CYP1A2	CYP2C19	CYP2C9	CYP2D6	CYP3A4
ABC-1	High	Y	Ν	Ν	Ν	Ν	Ν
ABC-2	High	Ν	Ν	Ν	Ν	Ν	Ν
ABC-3	High	Y	Ν	Ν	Ν	Y	Ν
ABC-4	High	Y	Ν	Ν	Ν	Y	Ν
ABC-5	High	Y	Ν	Ν	Ν	Ν	Ν
ABC-6	High	Y	Ν	Ν	Ν	Ν	Ν
ABC-7	High	Ν	Ν	Ν	Ν	Ν	Ν
ABC-8	High	Y	Ν	Ν	Ν	Y	Ν
ABC-9	High	Y	Ν	Ν	Ν	Y	Ν
ABC-10	High	Y	Ν	Ν	Ν	Ν	Ν
ABC-11	High	Y	Ν	Ν	Ν	Ν	Ν
ABC-12	High	Ν	Ν	Ν	Ν	Ν	Ν
ABC-13	High	Y	Ν	Ν	Ν	Y	Ν
ABC-14	High	Y	Ν	Ν	Ν	Y	Ν
ABC-15	High	Y	Ν	Ν	Ν	Ν	Ν
ABC-16	High	Y	Ν	Ν	Ν	Ν	Ν
ABC-17	High	Ν	Ν	Ν	Ν	Ν	Ν
ABC-18	High	Y	Ν	Ν	Ν	Y	Ν
ABC-19	High	Y	Ν	Ν	Ν	Y	Ν
ABC-20	High	Y	Ν	Ν	Ν	Ν	Ν
ABC-21	High	Y	Ν	Ν	Ν	Ν	Ν
ABC-22	High	Ν	Ν	Ν	Ν	Ν	Ν
ABC-23	High	Ν	Ν	Ν	Ν	Ν	Ν
ABC-24	High	Y	Ν	Ν	Ν	Ν	Ν
ABC-25	High	Ν	Ν	Ν	Ν	Ν	Ν
ABC-26	High	Y	Ν	Ν	Ν	Ν	Ν
ABC-27	High	Ν	Ν	Ν	Ν	Ν	Ν
ABC-28	High	Y	N	Y	N	Y	N
ABC-29	High	Y	N	N	N	N	N
ABC-30	High	Ŷ	N	N	N	N	N
ABC-31	High	Y	N	N	N	N	N
ABC-32	High	IN N	IN N	IN N	IN N	IN N	IN N
ABC-33	High	N V	IN N	IN N	IN N	IN N	IN N
ABC-34	High	I V	IN N	IN N	IN N	IN N	IN N
ABC-35	High	I V	N	N	N	N	N
ABC-30	High	I N	N	N	N	N	N
ABC-37	High	V	N	v	N	V	N
ABC-30	High	Y I	N	Y	N	Y	N
ABC-40	High	Y	N	N	N	N	N
ABC-40	High	Y	N	N	N	Y	N
ABC-42	High	N	N	N	N	N	N
ABC-42	High	Y	N	N	N	Y	N
ABC-44	High	Ŷ	N	N	N	Y	N
ABC-45	High	Ŷ	N	N	N	N	N
ABC-46	High	Ŷ	N	N	N	Y	N
ABC-47	High	N	N	N	N	N	N
ABC-48	High	N	N	N	N	N	N
ABC-49	High	Y	Y	Y	N	Y	N
ABC-50	High	Ŷ	N	N	N	Ŷ	N
ABC-51	High	Y	Y	Y	N	Y	N
ABC-52	High	Y	N	N	N	N	N
ABC-53	High	Y	Y	Y	Ν	Y	Y
ABC-54	High	Y	Y	Y	Ν	Y	Y
ABC-55	High	Y	Y	Ν	Ν	Y	Ν

	566	Vaidehi	et d	al.
--	-----	---------	------	-----

pkCSM PREDICTED RESULTS SHOWING VARIOUS PHARMACOKINETIC DESCRIPTORS OF THE MOLECULES ABC-1 TO ABC-55											
Compd.	H-bond donor	H-bond acceptor	TPSA (Å ²)	LOGP	Drug likeness	Compd.	H-bond donor	H-bond acceptor	TPSA (Å ²)	LOGP	Drug likeness
ABC-1	2	3	115.93	1.90	Yes	ABC-29	1	5	156.09	2.76	Yes
ABC-2	2	4	121.69	0.70	Yes	ABC-30	1	4	115.27	2.03	Yes
ABC-3	2	4	156.75	2.28	Yes	ABC-31	1	4	111.33	1.77	Yes
ABC-4	2	4	150.39	2.28	Yes	ABC-32	1	5	117.09	0.53	Yes
ABC-5	2	3	109.57	1.55	Yes	ABC-33	1	5	152.15	2.10	Yes
ABC-6	2	3	125.64	2.57	Yes	ABC-34	1	5	145.78	2.11	Yes
ABC-7	2	4	131.39	1.33	Yes	ABC-35	1	4	104.97	1.38	Yes
ABC-8	2	4	166.45	2.17	Yes	ABC-36	0	3	96.01	2.07	Yes
ABC-9	2	4	160.09	2.90	Yes	ABC-37	0	4	101.77	0.83	Yes
ABC-10	2	3	119.27	2.18	Yes	ABC-38	0	4	136.83	2.40	Yes
ABC-11	2	3	122.69	2.46	Yes	ABC-39	0	4	130.46	2.41	Yes
ABC-12	2	4	127.83	1.22	Yes	ABC-40	0	3	89.65	1.68	Yes
ABC-13	2	4	162.89	2.79	Yes	ABC-41	1	2	96.45	2.11	Yes
ABC-14	2	4	156.52	2.79	Yes	ABC-42	1	3	102.21	0.87	Yes
ABC-15	2	3	115.71	2.07	Yes	ABC-43	1	3	137.26	2.44	Yes
ABC-16	2	4	125.64	2.57	Yes	ABC-44	1	3	130.93	2.44	Yes
ABC-17	2	4	131.39	1.33	Yes	ABC-45	1	2	90.08	1.72	Yes
ABC-18	2	4	166.45	2.90	Yes	ABC-46	1	2	102.81	2.41	Yes
ABC-19	2	4	160.09	2.90	Yes	ABC-47	1	3	108.57	1.18	Yes
ABC-20	2	3	119.27	2.18	Yes	ABC-48	1	3	143.63	2.75	Yes
ABC-21	1	4	111.36	1.77	Yes	ABC-49	1	3	137.26	2.75	Yes
ABC-22	1	5	117.09	0.53	Yes	ABC-50	1	2	96.45	2.02	Yes
ABC-23	1	5	152.15	2.10	Yes	ABC-51	1	2	106.75	2.76	Yes
ABC-24	1	5	145.78	2.11	Yes	ABC-52	1	3	112.51	1.52	Yes
ABC-25	1	4	104.97	1.38	Yes	ABC-53	1	3	147.52	3.09	Yes
ABC-26	1	4	121.63	2.42	Yes	ABC-54	1	3	141.20	3.10	Yes
ABC-27	1	5	127.39	1.191	Yes	ABC-55	1	2	100.39	2.37	Yes
ABC-28	1	5	162.45	2.76	Yes						

TABLE-8

In vitro antitubercular activity: All the synthesized compounds (Mab1-Mgb5) and (Eab1-Edb5) were screened for anti-TB activity by MABA assay against *M. tuberculosis* H37Rv and the results are given in Tables 12 & 13.

Compounds **Mab4**, **Mbb3**, **Mbb4**, **Mcb3**, **Mdb3**, **Mdb5**, **Edb1**, **Mfb1**, **Mfb3** and **Mgb2** showed good anti-TB activity with an MIC of 12.5 μg/mL. Compounds **Mdb1**, **Mdb4** and **Meb1** exhibited excellent anti-TB activity by MABA against *M. tuberculosis* H37Rv bacilli strain with an MIC of 1.56 μg/mL.

SAR of glycinamido analogues: From the in silico and in vitro results, it is very clear that the aryl ring attached directly to nitrogen atom as present in 2(-N-substituted glycinamido) derivatives (Mab1-Mgb5) is essential for the compounds to exhibit potent anti-TB activity than 2-chloro acetates (Eab1-Edb5). Substitution of hydrogen on the aromatic ring with halogens improves the activity. The order of potency of halogens is Br > F = Cl. The activity of compounds Mdb1 and Mdb2-Mdb5 compounds shows the importance of the position of halogen and electron-withdrawing group on the aromatic ring. It clearly explains that ortho-substitution of bromine improves anti-TB activity. The anti-TB activity of the compound varies with the type of heterocyclic amine. Change in the amine altered the activity in the order, piperidine > phenylpiperazine = benzyl piperazine > methyl piperazine > pyrrolidine. Compounds Meb1, Edb1, Mdb1 (piperidine), Mdb4, Mab4, Mcb4 (phenyl piperazine), **Mbb3** (benzyl piperazine), **Mgb2** (methyl piperazine) and **Mdb5** (pyrrolidine) showed the highest potency.

Conclusion

In present study, a unique class of glycinamido analogues were designed, synthesized, computationally characterized and screened for anti-Tb activity. A library of 330 ligands was created and subsequently submitted to Auto Dock using flexible ligands and semi-flexible receptors. By using in silico virtual screening and ADMET studies, 55 hit molecules were identified. The molecular docking study revealed that the MmaA1 protein residues TRP 74, TRP 30, TRP 32, GLY 71, PHE 135, LYS 51, ALA 137, ALA77, HIS 98, VAL 31, PHE149, ASP 139 have significant hydrogen bonding interactions, pi-pi interactions, halogen interactions with the ligands, yielding good docking scores ranging from -10.5 to -8.0. According to Lipinski's rule of 5 in ADME testing, all the compounds were compliant. The in silico ADMET data indicates that ligands ABC-21 to ABC-35 attained good bioactivity score according to Molinspiration. The 55 hit molecules (Mab1-Mgb5 and Eab1-Edb5) were successfully synthesized in two steps. Among the synthesized compounds, 10 glycinamide analogs showed good anti-TB activity by MABA against M. tuberculosis H37Rv bacilli strain with an MIC of 12.5 µg/mL. Compounds Mdb1, Mdb4, Meb1 and Edb1 exhibited excellent anti-TB activity by MABA against M. tuberculosis H37Rv bacilli strain with a MIC of

TABLE-9 pkCSM PREDICTED RESULTS SHOWING VARIOUS PHARMACOKINETIC DESCRIPTORS OF THE MOLECULES ABC-1 TO ABC-55							
P							
Compd.	GI absorption	BBB permeant –	CYP1A2	CYP2C19	CYP2C9	CYP2D6	CYP3A4
ABC-1	97.16	-1.08	N	N	N	N	N
ABC-2	69.12	-1.144	Ν	Ν	Ν	Ν	Ν
ABC-3	97.64	-1.144	Ν	Ν	Ν	Ν	Ν
ABC-4	97.14	-0.96	Ν	Ν	Ν	Ν	Ν
ABC-5	97.55	-1.057	Ν	Ν	Ν	Ν	Ν
ABC-6	96.19	-1.062	Ν	Ν	Ν	Ν	Ν
ABC-7	98.66	-1.126	Ν	Ν	Ν	Ν	Ν
ABC-8	98.68	-1.124	Ν	Ν	Ν	Ν	Ν
ABC-9	96.17	-0.945	Ν	Ν	Ν	Ν	Ν
ABC-10	96.58	-1.039	Ν	Ν	Ν	Ν	Ν
ABC-11	96.26	-1.041	Ν	Ν	Ν	Ν	Ν
ABC-12	69.02	-1.105	Ν	Ν	Ν	Ν	Ν
ABC-13	96.74	-1.103	Ν	Ν	Ν	Ν	Ν
ABC-14	96.24	-0.925	Ν	Ν	Ν	Ν	Ν
ABC-15	96.65	-1.019	Ν	Ν	Ν	Ν	Ν
ABC-16	95.69	-1.068	Ν	Ν	Ν	Ν	Ν
ABC-17	98.16	-1.132	Ν	Ν	Ν	Ν	Ν
ABC-18	96.17	-1.13	Ν	Ν	Ν	Ν	Ν
ABC-19	95.67	-0.951	Ν	Ν	Ν	Ν	Ν
ABC-20	96.08	-1.045	Ν	Ν	Ν	Ν	Ν
ABC-21	97.52	-0.12	Ν	Ν	Ν	Ν	Ν
ABC-22	70.74	-0.89	Ν	Ν	Ν	Ν	Ν
ABC-23	96.5	-0.89	Ν	Ν	Ν	Ν	Ν
ABC-24	97.5	-0.14	Ν	Ν	Ν	Ν	Ν
ABC-25	97.91	-0.17	Ν	Ν	Ν	Ν	Ν
ABC-26	95.5	-0.14	Ν	Ν	Ν	Ν	Ν
ABC-27	74.47	-1.075	N	N	N	N	N
ABC-28	94.48	-1.074	N	N	N	N	N
ABC-29	95.48	-0.313	N	N	N	N	N
ABC-30	95.89	-0.16	N	N	N	N	N
ABC-31	98.03	0.001	IN N	N	IN N	IN N	IN N
ADC-32	/3.91	-0.881	IN N	IN N	IN N	IN N	IN N
ABC-33	97	-0.879	N	N	N	N	N
ABC-34	98.01	-0.199	N	N	N	N	N
ABC-35	96.42	0.221	N	N	N	N	N
ABC-30	80.74	0.043	N	N	N	N	N
ABC-38	93.26	0.41	N	N	N	N	N
ABC-39	94.26	0.429	Y	N	N	Y	N
ABC-40	94.67	0.235	N	N	N	N	N
ABC-41	92.59	0.336	N	N	N	N	N
ABC-42	71.67	0.011	Ν	Ν	Ν	Ν	Ν
ABC-43	93.25	0.386	Ν	Ν	Ν	Y	Ν
ABC-44	92.75	0.415	Y	Ν	Ν	Y	Ν
ABC-45	92.98	0.323	Ν	Ν	Ν	Ν	Ν
ABC-46	84.34	-0.029	Ν	Ν	Ν	Ν	Ν
ABC-47	92.96	0.304	Ν	Ν	Ν	Ν	Ν
ABC-48	93.44	0.355	Ν	Ν	Ν	Ν	Ν
ABC-49	92.94	0.352	Ν	Ν	Ν	Ν	Ν
ABC-50	93.35	0.291	Ν	Ν	Ν	Ν	Ν
ABC-51	91.5	0.291	Ν	Ν	Ν	Ν	Ν
ABC-52	93.97	-0.054	Ν	Ν	Ν	Ν	Ν
ABC-53	91.98	0.342	Ν	Ν	Ν	Ν	Ν
ABC-54	91.48	0.339	Y	Y	Ν	Y	Ν
ABC-55	91.89	0.278	Ν	Ν	Ν	Ν	Ν

568 Vaidehi et al.

			TABLE-10			
	MOLIN	SPIRATION PREDICT	ED RESULTS SHO	WING VARIOUS I TILES ABC-1 TO A	PHYSICO- ABC-55	
Compd	H-bond donor	H-bond acceptor	$\frac{\text{TPSA}(\text{Å}^2)}{\text{TPSA}(\text{Å}^2)}$	LOGP	Molecular weight	Drug likeness
ABC-1	2	5	69.64	2.60	280.29	Yes
ABC-2	2	6	72.87	1.59	295.31	Yes
ABC-3	2	6	72.87	2.99	371.41	Yes
ABC-4	2	6	72.87	3.29	357.38	Yes
ABC-5	2	5	69.64	2.10	266.27	Yes
ABC-6	2	5	69.64	3.25	341.20	Yes
ABC-7	2	6	72.87	2.23	356.22	Yes
ABC-8	2	6	72.87	3.63	432.32	Yes
ABC-9	2	6	72.87	3.93	418.29	Yes
ABC-10	2	5	69.64	2.75	327.18	Yes
ABC-11	2	5	69.64	3.12	296.75	Yes
ABC-12	2	6	72.87	2.10	311.77	Yes
ABC-13	2	6	72.87	3.50	387.87	Yes
ABC-14	2	6	72.87	3.80	373.84	Yes
ABC-15	2	5	69.64	2.61	282.73	Yes
ABC-16	2	5	69.64	3.07	341.20	Yes
ABC-17	2	6	72.87	2.05	356.22	Yes
ABC-18	2	6	72.87	3.45	432.32	Yes
ABC-19	2	6	72.87	3.75	418.29	Yes
ABC-20	2	5	69.64	2.56	327.18	Yes
ABC-21	1	5	66.84	2.16	263.29	Yes
ABC-22	1	6	70.08	1.15	278.31	Yes
ABC-23	1	6	70.08	2.54	354.41	Yes
ABC-24	1	6	70.08	2.84	340.38	Yes
ABC-25	l	5	66.84	1.66	249.27	Yes
ABC-26	l	5	66.84	2.82	297.74	Yes
ABC-27	1	6	70.08	1.80	312.75	Yes
ABC-28	1	6	70.08	3.20	388.85	Yes
ABC-29	1	5	70.08	5.50 2.21	374.82 282.71	Yes
ABC 31	1	5	66.84	2.31	263.71	Ves
ABC-31	1	6	70.08	1.09	205.29	Ves
ABC-32 ABC-33	1	6	70.08	2 49	354.41	Yes
ABC-34	1	6	70.08	2.79	340.38	Yes
ABC-35	1	5	66.84	1.60	249.27	Yes
ABC-36	0	3	29.54	2.22	219.28	Yes
ABC-37	0	4	32.78	1.20	234.30	Yes
ABC-38	0	4	32.78	2.60	310.40	Yes
ABC-39	0	4	32.78	2.90	296.37	Yes
ABC-40	0	3	29.54	1.71	205.26	Yes
ABC-41	1	3	32.34	2.42	218.30	Yes
ABC-42	1	4	35.37	1.41	233.31	Yes
ABC-43	1	4	35.37	2.80	309.41	Yes
ABC-44	1	4	35.57	3.10	295.39	Yes
ABC-45	1	3	32.34	1.92	204.27	Yes
ABC-46	1	3	32.34	2.87	232.33	Yes
ABC-47	1	4	35.57	1.85	247.34	Yes
ABC-48	1	4	35.57	3.25	247.32	Yes
ABC-49	1	4	35.57	3.55	309.41	Yes
ABC-50	1	3	32.34	2.37	218.30	Yes
ABC-51	1	3	32.34	3.14	252.75	Yes
ABC-52	1	4	35.57	2.08	267.76	Yes
ABC-53	1	4	35.57	3.48	343.86	Yes
ABC-54	1	4	35.57	3.78	329.83	Yes
ABC-55	1	3	32.34	2.59	238.72	Yes

MOLINSPIRATION PREDICTED RESULTS SHOWING BIOACTIVITY SCORE OF THE COMPOUNDS ABC-1 TO ABC-55						
Compd.	GPCR ligand	Ion channel modulator	Kinase inhibitor	Nuclear receptor ligand	Protease inhibitor	Enzyme inhibitor
ABC-1	-0.05	-0.16	-0.23	-0.11	-0.17	-0.09
ABC-2	-0.01	-0.13	-0.10	-0.13	-0.17	-0.11
ABC-3	<mark>0.02</mark>	-0.15	-0.08	-0.08	-0.05	-0.09
ABC-4	<mark>0.02</mark>	-0.15	-0.09	-0.07	-0.09	-0.14
ABC-5	-0.09	-0.16	-0.24	-0.11	-0.16	-0.09
ABC-6	-0.21	-0.26	-0.37	-0.32	-0.34	-0.18
ABC-7	-0.16	-0.23	-0.23	-0.33	-0.33	-0.19
ABC-8	-0.09	-0.22	-0.19	-0.24	-0.17	-0.16
ABC-9	-0.10	-0.22	-0.20	-0.23	-0.22	-0.21
ABC-10	-0.26	-0.26	-0.38	-0.33	-0.34	-0.20
ABC-11	-0.06	-0.14	-0.31	-0.18	-0.22	-0.12
ABC-12	-0.03	-0.12	-0.17	-0.20	-0.21	-0.13
ABC-13	<mark>0.01</mark>	-0.14	-0.15	-0.14	-0.08	-0.11
ABC-14	<mark>0.01</mark>	-0.14	-0.15	-0.13	-0.13	-0.16
ABC-15	-0.10	-0.15	-0.32	-0.19	-0.21	-0.13
ABC-16	-0.19	-0.32	-0.40	-0.43	-0.30	-0.16
ABC-17	-0.15	-0.28	-0.26	-0.44	-0.29	-0.17
ABC-18	-0.08	-0.26	-0.21	-0.33	-0.14	-0.14
ABC-19	-0.09	-0.27	-0.23	-0.32	-0.19	-0.19
ABC-20	-0.24	-0.33	-0.42	-0.46	-0.30	-0.17
ABC-21	-0.01	-0.01	-0.38	<mark>0.03</mark>	-0.09	<mark>0.09</mark>
ABC-22	<mark>0.03</mark>	0.01	-0.23	O	-0.08	<mark>0.07</mark>
ABC-23	<mark>0.08</mark>	-0.04	-0.15	<mark>0.06</mark>	<mark>0.06</mark>	<mark>0.05</mark>
ABC-24	<mark>0.08</mark>	-0.05	-0.16	<mark>0.07</mark>	-0.01	-0.01
ABC-25	-0.05	-0.01	-0.41	<mark>0.02</mark>	-0.07	<mark>0.07</mark>
ABC-26	<mark>0.03</mark>	<mark>0</mark>	-0.35	<mark>0.04</mark>	-0.10	<mark>0.06</mark>
ABC-27	<mark>0.07</mark>	0.02	-0.21	<mark>0.01</mark>	-0.09	0.03
ABC-28	0.08	-0.03	-0.18	0.03	0.01	0.02
ABC-29	0.07	-0.04	-0.18	0.03	-0.05	-0.04
ABC-30	0	<mark>0.01</mark>	-0.37	0.05	-0.08	0.05
ABC-31	-0.06	-0.05	-0.42	0.07	-0.12	0.07
ABC-32	-0.02	-0.03	-0.27	<mark>0.04</mark>	-0.11	0.05
ABC-33	<mark>0.04</mark>	-0.07	-0.18	0.09	0.04	0.04
ABC-34	0.04	-0.08	-0.19	0.10	-0.03	-0.03
ABC-35	-0.11	-0.05	-0.45	<mark>0.07</mark>	-0.10	0.05
ABC-36	-0.28	-0.06	-0.60	-0.38	-0.36	-0.11
ABC-37	-0.20	-0.02	-0.40	-0.38	-0.33	-0.09
ABC-38	<mark>0.03</mark>	-0.06	-0.15	-0.07	0	-0.02
ABC-39	0	-0.07	-0.16	-0.10	-0.11	-0.09
ABC-40	-0.36	-0.09	-0.66	-0.42	-0.36	-0.15
ABC-41	-0.33	-0.24	-0.48	-0.70	-0.44	-0.29
ABC-42	-0.25	-0.18	-0.28	-0.68	-0.40	-0.26
ABC-43	0	-0.18	-0.06	-0.30	-0.06	-0.14
ABC-44	-0.02	-0.18	-0.08	-0.31	-0.14	-0.20
ABC-45	-0.41	-0.28	-0.52	-0.76	-0.44	-0.34
ABC-46	-0.32	-0.32	-0.46	-0.63	-0.44	-0.32
ABC-47	-0.24	-0.26	-0.27	-0.61	-0.40	-0.30
ABC-48	-0.21	-0.21	-0.12	-0.61	-0.26	-0.23
ABC-49	-0.05	-0.26	-0.12	-0.31	-0.17	-0.26
ABC-50	-0.40	-0.35	-0.50	-0.68	-0.45	-0.38
ABC-51	-0.26	-0.22	-0.41	-0.62	-0.41	-0.28
ABC-52	-0.19	-0.17	-0.23	-0.60	-0.38	-0.26
ABC-53	0	-0.18	-0.08	-0.30	-0.08	-0.18
ABC-54	-0.01	-0.18	-0.08	-0.31	-0.16	-0.23
ABC-55	-0.33	-0.24	-0.45	-0.67	-0.42	-0.33

Note: The active compounds are highlighted in green color.

TABLE-12							
Compd.	MIC against MtbH37Rv (MABA assay) (µg/mL)	Compd.	MIC against MtbH37Rv (MABA assay) (µg/mL)				
Mab1	25.0	Mdb4	1.56				
Mab2	25.0	Mdb5	12.5				
Mab3	25.0	Meb1	1.56				
Mab4	12.5	Meb2	25.0				
Mab5	25.0	Meb3	25.0				
Mbb1	25.0	Meb4	25.0				
Mbb2	25.0	Meb5	25.0				
Mbb3	12.5	Mfb1	12.5				
Mbb4	12.5	Mfb2	25.0				
Mbb5	25.0	Mfb3	12.5				
Mcb1	25.0	Mfb4	25.0				
Mcb2	25.0	Mfb5	25.0				
Mcb3	12.5	Mgb1	25.0				
Mcb4	25.0	Mgb2	12.5				
Mcb5	25.0	Mgb3	25.0				
Mdb1	1.56	Mgb4	25.0				
Mdb2	25.0	Mgb5	25.0				
Mdb3	12.5	Rifampicin	3.125				

 TABLE-13

 ANTI-TB ACTIVITY OF THE COMPOUNDS Eab1 TO Edb5

Compd.	MIC against M. tbH37Rv (MABA assay) (µg/mL)	Compd.	MIC against M. tbH37Rv (MABA assay) (µg/mL)
Eab1	25	Ecb1	25.0
Eab2	25	Ecb2	25.0
Eab3	25	Ecb3	25.0
Eab4	25	Ecb4	25.0
Eab5	25	Ecb5	25.0
Ebb1	25	Edb1	12.5
Ebb2	0	Edb2	25.0
Ebb3	25	Edb3	25.0
Ebb4	25	Edb4	25.0
Ebb5	25	Edb5	25.0
		Rifampicin	3.125

 $1.56 \mu g/mL$ when compared with standard Rifampicin. The obtained SAR clarifies the essential structural elements that improve the potency and drug-like characteristics of the glycinamido analogues.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interests regarding the publication of this article.

REFERENCES

- <u>https://www.nhs.uk/conditions/tuberculosis-tb/#:~:text=Tuberculosis%</u> 20(TB)%20is%20caused%20by.a%20long%20period%20of%20time
- 2. T.B. Facts, <u>https://www.cdc.gov/tb/worldtbday/history.html</u>
- 3. World Health Organization (WHO), Global Tuberculosis Report (2022); https://www.who.int/publications/i/item/9789240061729
- P. Miotto, Y. Zhang, D.M. Cirillo and W.C. Yam, *Respirology*, 23, 1098 (2018);
- https://doi.org/10.1111/resp.13393
- TB India Report (2022); <u>http://www.tbcindia.gov.in</u> (2022). Accessed on 25.03.2022.
- S. Tiberi, M. Muñoz-Torrico, R. Duarte, M. Dalcolmo, L. D'Ambrosio and G.-B. Migliori, *Pulmonology*, 24, 86 (2018); <u>https://doi.org/10.1016/j.rppnen.2017.10.009</u>

- Asian J. Chem.
- 7. C. Perrin, K. Athersuch, G. Elder, M. Martin and A. Alsalhani, BMJ Glob. Health, 7, e007490 (2022); https://doi.org/10.1136/bmjgh-2021-007490 P.J. Brennan, Tuberculosis, 83, 91 (2003); 8. https://doi.org/10.1016/s1472-9792(02)00089-6 9 O. Zimhony, J.S. Cox, J.T. Welch, C. Vilchèze and W.R. Jacobs Jr, Nat. Med., 6, 1043 (2000); https://doi.org/10.1038/79558 10. M.S. Glickman, J.S. Cox and W.R. Jacobs Jr., Mol. Cell, 5, 717 (2000); https://doi.org/10.1016/S1097-2765(00)80250-6 11. M.A. Forrellad, L.I. Klepp, A. Gioffré, J. Sabio y García, H.R. Morbidoni, M.P. Santangelo, A.A. Cataldi and F. Bigi, Virulence, 4, 3 (2013); https://doi.org/10.4161/viru.22329 12. K. Takayama, C. Wang and G.S. Besra, Clin. Microbiol. Rev., 18, 81 (2005); https://doi.org/10.1128/CMR.18.1.81-101.2005 13. H. Veeravarapu, V. Malkhed, K.K. Mustyala, R. Vadija, R. Malikanti, U. Vuruputuri and M.K.K. Muthyala, Mol. Divers., 25, 351 (2021); https://doi.org/10.1007/s11030-020-10107-0 14. H. Veeravarapu, M. Tirumalasetty, S.P. Kurati, U. Wunnava and M.K.K. Muthyala, Bioorg. Med. Chem. Lett., 30, 127603 (2020); https://doi.org/10.1016/j.bmcl.2020.127603 G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. 15. Goodsell and A.J. Olson, J. Comput. Chem., 30, 2785 (2009); https://doi.org/10.1002/jcc.21256
 - 16. L. Schrodinger, The PyMOL Molecular Graphics System, Version 1.3r1 (2010).
 - BIOVIA, Dassault Systemes, Discovery Studio Visualizer, v21.1.0.20298; Dassault Systemes: Sandiego, CA, USA (2021).
 - A. Daina, O. Michielin and V. Zoete, *Sci. Rep.*, 7, 42717 (2017); https://doi.org/10.1038/srep42717
 - D.E.V. Pires, T.L. Blundell and D.B. Ascher, J. Med. Chem., 58, 4066 (2015);

https://doi.org/10.1021/acs.jmedchem.5b00104 20. Molinspiration Cheminformatics Free Web Services, Available online: https://www.molinspiration.com (accessed on 12 March 2023).

- 21. J.L. Dahlin, J. Inglese and M.A. Walters, *Nat. Rev. Drug Discov.*, 14, 279 (2015);
- https://doi.org/10.1038/nrd4578 22. L. Di, *Expert Opin. Drug Metab. Toxicol.*, **10**, 379 (2014); https://doi.org/10.1517/17425255.2014.876006
- 23. C.A. Lipinski, F. Lombardo, B.W. Dominy and P.J. Feeney, Adv. Drug Deliv. Rev., 23, 3 (1997);
 - https://doi.org/10.1016/S0169-409X(96)00423-1
- A. Jarrahpour, J. Fathi, M. Mimouni, T.B. Hadda, J. Sheikh, Z. Chohan and A. Parvez, *Med. Chem. Res.*, 21, 1984 (2012); https://doi.org/10.1007/s00044-011-9723-0
- S. Tahlan, K. Ramasamy, S. Lim, S.A. Shah, V. Mani and B. Narasimhan, *Chem. Cent. J.*, **12**, 139 (2018); <u>https://doi.org/10.1186/s13065-018-0513-3</u>
- S.G. Franzblau, R.S. Witzig, J.C. Mclaughlin, P. Torres, G. Madico, A. Hernandez, M.T. Degnan, M.B. Cook, V.K. Quenzer, R.M. Ferguson and R.H. Gilman, *J. Clin. Microbiol.*, 36, 362 (1998); <u>https://doi.org/10.1128/JCM.36.2.362-366.1998</u>
- C.B. Inderlied and M. Salfinger, Antimicrobial Agents and Susceptibility Tests: Mycobacteria, Manual of Clinical Microbiology, ASM Press, Washington, edn. 6, p. 1385 (1995).
- M.A. Morgan, C.D. Horstmeier, D.R. DeYoung and G.D. Roberts, J. Clin. Microbiol., 18, 384 (1983); https://doi.org/10.1128/jcm.18.2.384-388.1983
- S. Ali, A. Ehtram, N. Arora, P. Manjunath, D. Roy, N.Z. Ehtesham and S.E. Hasnain, Front. Cell. Infect. Microbiol., 11, 622487 (2021); https://doi.org/10.3389/fcimb.2021.622487
- J. Dundas, Z. Ouyang, J. Tseng, A. Binkowski, Y. Turpaz and J. Liang, *Nucleic Acids Res.*, 34, 116 (2006); <u>https://doi.org/10.1093/nar/gk1282</u>
- 31. T. Halgren, *Chem. Biol. Drug Des.*, **69**, 146 (2007); https://doi.org/10.1111/j.1747-0285.2007.00483.x
- D. Schneidman-Duhovny, Y. Inbar, R. Nussinov and H.J. Wolfson, *Nucleic Acids Res.*, 33, 363 (2005); <u>https://doi.org/10.1093/nar/gki481</u>
- J. Vaubourgeix, J.F. Bardou, F. Boisssier, S. Julien, P. Constant, O. Ploux, M. Daffe, A. Quemard, L. Mourey, J. Biol. Chem., 284, 19321 (2009); <u>https://doi.org/10.1074/jbc.M809599200</u>