

Synthesis and Biological Evaluation of *vicinal*-Diaryl Pyrazole Ethyl Carboxylate Analogs as Antiproliferative Agent against Pancreatic Cancer

SANDEEP SINGH^{1,0}, RAJEEV KUMAR SHARMA^{1,0}, AISHWARYA SINGH^{2,0}, MANOJ GARG^{2,0} and R. RAMAJAYAM^{3,*,0}

¹School of Pharmaceutical & Populations Health Informatics, DIT University, Mussoorie-Diversion Road, Village Makkawala, Dehradun-248009, India

²Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Sector-125, Noida-201313, India ³School of Pharmacy, Indus International University, Bathu-174301, India

*Corresponding author: E-mail: rramajayam@hotmail.com

|--|

vicinal Diaryl scaffold possessing various heterocycles displayed versatile pharmacological activities ranging from antibacterial to antiviral. Herein, the synthesis of novel *vicinal* diaryl pyrazole ethyl carboxylate analogs as central ring and evaluated for their antiproliferative activity against pancreatic cancer line, PANC-1. Among the synthesized 27 compounds, six compounds displayed the IC_{50} value for antiproliferative activity in single digit micromolar. The cytotoxicity results of the synthesized compounds especially compound **25** ($IC_{50} = 4.8 \mu M$) confirms that these analogs may require further investigation.

Keywords: vicinal Diaryl, Pyrazole, Cytotoxicity, Pancreatic cancer lines.

INTRODUCTION

The importance of heterocyclic compounds and its derivatives in the new drug discovery is attracted owing to their superior pharmacological activity. It is well documented that the heterocyclic compounds serves as precursor for various pharmaceuticals, organaocatalysts, veterinary medicines, polymers, dietary supplements, agrochemicals, etc. Over half of the medications approved by the US Food and Drug Administration (FDA) contain at least one heterocycle moiety [1-3]. 1,2-Azoles such as pyrazole, isoxazole and isothiazoles are the important members in the heterocyclic chemistry. Among the 1,2-azoles, pyrazole and its analogs occupied a prominent position in the medicinal chemistry due to its versatility. Over the past few decades, USFDA has approved more than 40 pyrazole containing molecules for various therapeutic categories [4]. In addition, pyrazole containing drugs may possess enhanced pharmacokinetic properties owing to its adjoining positions of two nitrogen atoms in the ring and act as hydrogen bond donor and hydrogen bond acceptor [5]. Recently, Ei-Gamal et al. [6] reported that pyrazole and its derivatives are capable to target various cancerous cells. Fig. 1 represents a familiar pyrazole compounds (1-4) as antiproliferative agents [7-10].

One of our main research interests is to synthesize the library of vicinal diaryl compounds hybrid with five/six/sevenmembered heterocycles and investigate for diverse pharmacological action. Previously, we reported vicinal diaryl diazepine for antiplatelet and antileukemic activities [11]. The diaryl diazepine 6 showed superior antiplatelet activity than aspirin. The importance of vicinal diaryl system in various therapeutic categories including combretastatin A-4 (CA-4, 7) is welldocumentated (Fig. 2) [12]. Resveratrol (8) is a natural polyphenolic compound and possess similar structural features of 1,2 vicinal diaryl as observed in CA-4. It exhibits potent antiproliferative activity against human pancreatic and breast cancer. However, this naturally occurring resveratrol has limited activity in certain model, which may be due to the cis-trans isomerization. The synthetic cis-analog (9) of resveratrol showed excellent antiproliferative active against PANC-1 cell lines. Recently, Grau *et al.* [13] synthesized indolic derivative (10), a cyclic analog of resveratrol and evaluted the in vitro cytotoxic activity, which is found to be eight times higher than resveratrol against HT-29 cancer cells. Compound 10 displayed better cytotoxicity profile than trans-resveratrol (8). These results prompted us to replace the olefinic bond with pyrazole heterocycle and lead

This is an open access journal, and articles are distributed under the terms of the Attribution 4.0 International (CC BY 4.0) License. This license lets others distribute, remix, tweak, and build upon your work, even commercially, as long as they credit the author for the original creation. You must give appropriate credit, provide a link to the license, and indicate if changes were made.

Fig. 1. FDA approved antiproliferative agent containing pyrazole moiety

Fig. 2. Vicinal diaryl heterocyclic system

to formation of general structure **5**. The improved biological activity was expected on replacement of olefinic bond with the rigid heterocycle thereby maintain both the phenyl rings

geometry are *cis* to each other. In this work, we aimed to synthesize *vicinal* diaryl pyrazole as antiproli-ferative agent and screened against pancreas cell line, PANC-1.

EXPERIMENTAL

All chemicals and solvents were purchased from SD Fine Chemicals (India), Spectrochem (India) and Loba Chemicals (India) and used without any further purification. The progress of the reactions were monitored by thin-layer chromatography (TLC). TLC plates were visualized by illuminating with UV light (254 nm) or exposure to iodine vapours. ¹H NMR was recorded using Bruker AVANCE 500 MHz spectrometer. All NMR spectra were recorded in CDCl₃ or DMSO-*d*₆ using tetramethylsilane (TMS) as internal standard and the chemical shifts were expressed in ppm. Mass spectra were recorded on AB Sciex API 4000 LC-MS/MS instrument and IR spectra (KBr pellet) were recorded by on Agilent Cary 630 FTIR instrument.

General procedure for synthesis of 2,4-diketo esters (12a-i): An equimolar mixture of diethyl oxalate (42.87 mmol) and acetophenone derivatives (42.87 mmol) in methanol (20 mL) was added dropwise to sodium methoxide in MeOH (2.6 mL of 25% w/v, 12.0 mmol) and the reaction was allowed to proceed at reflux for 2 h. After cooling to 25 °C, the reaction mixture was poured into water (40 mL), acidified with HCl (1 mL of 37% w/v) and extracted with CHCl₃ (3 × 30 mL). The combined organic extracts were washed with brine (30 mL), dried over MgSO₄, filtered and finally the solvent was removed under vacuum to afford the respective diketo esters 12a-i. Yield and IR spectral data for 12a-i are given in Table-1.

TABLE-1 YIELD AND IR SPECTRAL DATA FOR β-DIKETO ESTERS (12a-i)					
Compound	R ₁	Yield (%)	$IR(cm^{-1})$		
12a	Н	78	1711, 1599		
12b	4-Cl	82	1700, 1588		
12c	4-Br	68	1696, 1618		
12d	3-Br	77	1734, 1611		
12e	3,4-(OCH ₃) ₂	89	1710, 1622		
12f	2-OH	65	1741, 1618		
12g	$2,4-Cl_2$	90	1730, 1629		
12h	4-OCH ₃	70	1708, 1625		
12i	4-CH ₃	73	1700, 1603		

General procedure for synthesis of *vicinal* diarylpyrazole analogs (14-40): The equimolar mixture of 2,4-diketo esters (12a-i) and phenylhydrazine derivatives (13a-c) were dissolved in ethanol (30 mL). The mixture was allowed to reflux for 6 h. The reaction was monitored throughout by TLC and the solvent was evaporated under vacuum after completion. The residue was extracted with ethyl acetate $(3 \times 30 \text{ mL})$ and then washed with water and brine solution. The organic solvent was removed under vacuum and the crude solid was collected, filtered and dried. The crude solid was then recrystallized from a suitable solvent to afford the desired compounds **14-40** (Scheme-I).

Ethyl 1,5-diphenyl-1*H*-**pyrazole-3-carboxylate (14):** Yield: 85%; white solid; IR (KBr, v_{max} , cm⁻¹): 1700 (C=O; ester), 1599, 1253, 1197, 922; ¹H NMR (DMSO-*d*₆) δ ppm: 0.99-1.02 (3H, t, *J* = 8 Hz), 4.28-4.34 (CH₂, q, *J* = 8 Hz), 7.03 (1H, s, pyrazole CH), 7.19-7.23 (2H, m, ArH), 7.26-7.28 (2H, m, ArH), 7.30-7.33 (3H, m, ArH); 7.40-7.42 (3H, m, ArH); MS: *m*/*z* 293.7 (M+1).

Ethyl 1-(2,4-dichlorophenyl)-5-phenyl-1*H***-pyrazole-3carboxylate (15):** Yield: 80%; white solid; IR (KBr, v_{max} , cm⁻¹): 1722 (C=O; ester), 1477, 1391, 1235, 1134, 769; ¹H NMR (CDCl₃) δ ppm: 1.39-1.43 (3H, t, *J* = 8 Hz), 4.41-4.45 (2H, q, *J* = 8 Hz), 7.06 (1H, s, pyrazole CH), 7.16-7.18 (2H, m, ArH), 7.29-7.34 (4H, m, ArH); 7.41-7.43 (2H, m, ArH); MS: *m/z* 361.8 (M+).

Ethyl 1-(4-fluorophenyl)-5-phenyl-1*H***-pyrazole-3carboxylate (16):** Yield: 87%; white solid; IR (KBr, v_{max} , cm⁻¹): 1727 (C=O; ester), 1574, 1482, 1397, 1225, 1126, 772; ¹H NMR (CDCl₃) δ ppm: 1.25-1.29 (3H, t, *J* = 8 Hz), 4.26-4.31 (2H, q, *J* = 8 Hz), 7.09 (1H, s, pyrazole CH), 7.20-7.25 (3H, m, ArH), 7.26-7.28 (3H, m, ArH), 7.29-7.34 (3H, m, ArH); MS: *m/z* 311.8 (M+1).

Ethyl 5-(4-chlorophenyl)-1-phenyl-1*H*-pyrazole-3carboxylate (17): Yield: 85%; orange solid; IR (KBr, v_{max} , cm⁻¹): 1710 (C=O; ester), 1480, 1011, 829; ¹H NMR (400 MHz, DMSO- d_6) δ ppm: 1.19-1.22 (3H, t, *J* = 8 Hz), 4.18-4.22 (2H, q, *J* = 8Hz), 7.05 (1H, s, pyrazole CH), 7.38-7.42 (3H, m, ArH), 7.48-7.51 (2H, m, ArH), 7.56-7.58 (2H, d, ArH), 7.86-7.88 (2H, d, ArH); MS: *m/z* 327.7 (M+1).

Ethyl 5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-1*H***-pyrazole-3-carboxylate (18):** Yield: 85%; white solid; IR (KBr, v_{max} , cm⁻¹): 1726 (C=O; ester), 1484, 1235, 1019, 836; ¹H NMR (DMSO-*d*₆) δ ppm: 1.25-1.29 (3H, t, *J* = 8 Hz), 4.26-4.29 (2H, q, *J* = 8 Hz), 7.22-7.24 (3H, m, ArH), 7.39-7.41 (2H, m, ArH), 7.60-7.63 (1H, m, ArH), 7.75-7.77 (1H, d, ArH), 7.83-7.84 (1H, d, ArH); MS: *m/z* 418.9 (M+1).

Ethyl 5-(4-chlorophenyl)-1-(4-fluorophenyl)-1*H*pyrazole-3-carboxylate (19): Yield: 88%; white solid; IR (KBr, v_{max} , cm⁻¹): 1711 (C=O; ester), 1514, 1227, 1097, 829; ¹H NMR (CDCl₃) δ ppm: 1.39-1.42 (3H, t, *J* = 8 Hz), 4.41-

Scheme-I: Synthesis of 1,5-diarylpyrazole analogs

4.46 (2H, q, *J* = 8 Hz), 7.01 (1H, pyrazole CH), 7.05-7.07 (2H, d, ArH), 7.11-7.13 (2H, d, ArH); 7.27-7.29 (2H, d, ArH), 7.30-7.32 (2H, d, ArH); MS: *m/z* 345.8 (M+1).

Ethyl 5-(4-bromophenyl)-1-phenyl-1*H***-pyrazole-3carboxylate (20):** Yield: 81%; light brown; IR (KBr, v_{max} , cm⁻¹): 1718 (C=O; ester), 1599, 1473, 1354, 1249; ¹H NMR (CDCl₃) δ ppm: 1.37-1.42 (3H, t, *J* = 8 Hz), 4.41-4.46 (2H, q, *J* = 8 Hz), 7.03 (1H, pyrazole CH), 7.43-7.45 (1H, m, ArH), 7.58-7.62 (4H, m, ArH), 7.64-7.66 (2H, d, ArH), 7.76-7.78 (2H, d, ArH); MS: *m/z* 371.04 (M+).

Ethyl 5-(4-bromophenyl)-1-(2,4-dichlorophenyl)-1*H*pyrazole-3-carboxylate (21): Yield: 81%; light brown; IR (KBr, v_{max} , cm⁻¹): 1726 (C=O; ester), 1484, 1231, 1015, 871; ¹H NMR (DMSO- d_6) δ ppm: 1.23-1.27 (3H, t, J = 8 Hz), 4.22-4.26 (2H, q, J = 8 Hz), 7.02 (1H, pyrazole CH), 7.21-7.24 (2H, m, ArH), 7.36-7.38 (2H, m, ArH), 7.60-7.63 (1H, m, ArH), 7.75-7.77 (2H, m, ArH), MS: *m/z* 441.8 (M+1).

Ethyl 5-(4-bromophenyl)-1-(4-fluorophenyl)-1*H*pyrazole-3-carboxylate (22): Yield: 84%; orange solid; IR (KBr, v_{max} , cm⁻¹): 1689 (C=O; ester), 1514, 1242, 1011, 840; ¹H NMR (CDCl₃) δ ppm: 1.39-1.42 (3H, t, *J* =8 Hz), 4.40-4.44 (2H, q, *J* = 8 Hz), 7.00 (1H, pyrazole CH), 7.22-7.24 (2H, d, ArH), 7.58-7.60 (2H, d, ArH); 7.62-7.64 (2H, d, ArH), 7.78-7.80 (2H, d, ArH); MS: *m/z* 389.9 (M+1).

Ethyl 5-(3-bromophenyl)-1-phenyl-1*H***-pyrazole-3carboxylate (23):** Yield: 80%; white solid; IR (KBr, v_{max}, cm⁻¹): 1730 (C=O; ester), 1566, 1482, 1246, 775; ¹H NMR (CDCl₃) δ ppm: 1.31-1.36 (3H, t, *J* = 8 Hz), 4.40-4.45 (2H, q, *J* = 8 Hz), 7.01 (1H, pyrazole CH), 7.40-7.41 (2H, m, ArH), 7.58-7.62 (2H, m, ArH), 7.63-7.66 (3H, d, ArH), 7.76-7.78 (2H, d, ArH); MS: *m/z* 371.64 (M+).

Ethyl 5-(3-bromophenyl)-1-(2,4-dichlorophenyl)-1Hpyrazole-3-carboxylate (24): Yield: 89%; white solid; IR (KBr, v_{max} , cm⁻¹): 1722 (C=O; ester), 1484, 1235, 1127, 817; ¹H NMR (DMSO-*d*₆) δ ppm: 1.18-1.22 (3H, t, *J* = 8 Hz), 4.20-4.23 (2H, q, *J* = 8 Hz), 7.05 (1H, pyrazole CH), 7.32-7.34 (2H, m, ArH), 7.38-7.41 (2H, m, ArH), 7.53-7.55 (1H, m, ArH), 7.62-7.64 (1H, d, ArH), 7.69-7.71 (1H, d, ArH); MS: *m/z* 440.96 (M+1).

Ethyl 5-(3-bromophenyl)-1-(4-fluorophenyl)-1*H*pyrazole-3-carboxylate (25): Yield, 92%; light yellow solid; IR (KBr, v_{max} , cm⁻¹): 1715 (C=O; ester), 1518, 1235, 1119, 847; ¹H NMR (CDCl₃) δ ppm: 1.39-1.42 (3H, t, *J* = 8 Hz), 4.43-4.46 (2H, q, *J* = 8 Hz), 7.03 (1H, pyrazole CH), 7.14-7.18 (2H, m, ArH), 7.30-7.31 (1H, m, ArH), 7.45-7.47 (1H, m, ArH), 7.74-7.76 (2H, d, ArH), 8.01-8.02 (2H, d, ArH); MS: *m/z* 389 (M+).

Ethyl 5-(3,4-dimethoxyphenyl)-1-phenyl-1*H*-pyrazole-3-carboxylate (26): Yield: 86%; white solid; IR (KBr, v_{max} , cm⁻¹): 1722 (C=O; ester), 1570, 1462, 1149, 1026, 765; ¹H NMR (DMSO-*d*₆) δ ppm: 1.39-1.42 (3H, t, *J* = 8 Hz), 4.25-4.29 (2H, q, *J* = 8 Hz), 3.51 (3H, s, OCH₃), 3.69 (3H, s, OCH₃), 6.72-6.75 (1H, d, ArH), 6.85-6.88 (1H, d, ArH), 7.07 (1H, pyrazole CH), 7.23-7.25 (1H, d, ArH), 7.29-7.33 (2H, m, ArH), 7.42-7.44 (3H, m, ArH); MS: *m/z* 353 (M+1).

Ethyl 1-(2,4-dichlorophenyl)-5-(3,4-dimethoxyphenyl)-1H-pyrazole-3-carboxylate (27): Yield: 87%; white solid; IR (KBr, v_{max}, cm⁻¹): 1710 (C=O; ester), 1488, 1235, 1027, 814; ¹H NMR (CDCl₃) δ ppm: 1.28-1.31 (3H, t, *J* = 8 Hz), 3.83 (3H, s, OCH₃), 3.9 (3H, s, OCH₃), 4.36-4.40 (2H, q, *J* = 8 Hz), 6.70-6.72 (1H, d, ArH), 6.82-6.84 (1H, d, ArH), 7.04 (1H, pyrazole CH), 7.31-7.32 (1H, m, ArH), 7.38-7.41 (1H, m, ArH), 7.53-7.55 (1H, m, ArH), 7.62-7.64 (1H, d, ArH); MS: *m/z* 422.4 (M+1).

Ethyl 5-(3,4-dimethoxyphenyl)-1-(4-fluorophenyl)-1*H*pyrazole-3-carboxylate (28): Yield: 83%; white solid; IR (KBr, v_{max} , cm⁻¹): 1707 (C=O; ester), 1514, 1439, 1216, 1130, 814; ¹H NMR (CDCl₃) δ ppm: 1.39-1.42 (3H, t, *J* = 8 Hz), 3.86 (3H, s, OCH₃), 3.91 (3H, s, OCH₃), 4.36-4.40 (2H, q, *J* = 8 Hz), 6.63 (1H, d, ArH), 6.77-6.80 (2H, d, ArH), 6.98 (1H, pyrazole CH), 7.04-7.06 (2H, d, ArH), 7.31-7.33 (2H, d, ArH); MS: *m/z* 371.13 (M+1).

Ethyl 5-(2-hydroxyphenyl)-1-phenyl-1*H*-pyrazole-3carboxylate (29): Yield: 88%; white solid; IR (KBr, v_{max} , cm⁻¹): 1741 (C=O; ester), 1588, 1465, 1231, 1097, 858; ¹H NMR (DMSO-*d*₆) δ ppm: 1.21-1.23 (3H, t, *J* = 8 Hz), 4.23-4.26 (2H, q, *J* = 8 Hz), 6.87 (1H, pyrazole CH), 7.48-7.52 (2H, m, ArH), 7.69-7.71 (2H, m, ArH), 7.82-7.84 (2H, m, ArH), 8.00-8.03 (2H, m, ArH); MS: *m*/z 309.24 (M+1).

Ethyl 1-(2,4-dichlorophenyl)-5-(2-hydroxyphenyl)-1*H*pyrazole-3-carboxylate (30): Yield: 88%; white solid; IR (KBr, v_{max} , cm⁻¹): 1730 (C=O; ester), 1599, 1467, 1272, 1100, 817; ¹H NMR (DMSO- d_6) δ ppm: 1.27-1.29 (3H, t, *J* = 8 Hz), 4.16-4.19 (2H, q, *J* = 8 Hz), 6.92 (1H, pyrazole CH), 7.46-7.48 (2H, m, ArH), 7.52-7.54 (1H, m, ArH), 7.65-7.67 (2H, m, ArH), 7.78-7.80 (2H, m, ArH); MS: *m/z* 377.8 (M+).

Ethyl 1-(4-fluorophenyl)-5-(2-hydroxyphenyl)-1*H*pyrazole-3-carboxylate (31): Yield: 83%; orange solid; IR (KBr, v_{max} , cm⁻¹): 1741 (C=O; ester), 1592, 1465, 1231, 1100, 862; ¹H NMR (DMSO-*d*₆) δ ppm: 1.27-1.29 (3H, t, *J* = 8 Hz), 4.16-4.19 (2H, q, *J* = 8 Hz), 7.01 (1H, pyrazole CH), 7.05-7.08 (3H, m, ArH), 7.24-7.26 (2H, d, ArH), 7.52-7.54 (1H, m, ArH), 7.65-7.67 (2H, d, ArH); MS: *m/z* 327.5 (M+1).

Ethyl 5-(2,4-dichlorophenyl)-1-phenyl-1*H*-pyrazole-3carboxylate (32): Yield: 85%; white solid; IR (KBr, v_{max} , cm⁻¹): 1732 (C=O; ester), 1454, 1256, 1125, 789; ¹H NMR (CDCl₃) δ ppm: 1.29-1.32 (3H, t, *J* = 8 Hz), 4.38-4.42 (2H, q, *J* = 8 Hz), 7.03 (1H, s, pyrazole CH), 7.14-7.16 (2H, m, ArH), 7.30-7.35 (4H, m, ArH); 7.41-7.43 (2H, m, ArH); MS: *m*/*z* 361.78 (M+).

Ethyl 1,5-*bis*(2,4-dichlorophenyl)-1*H*-pyrazole-3carboxylate (33): Yield: 89%; white solid; IR (KBr, v_{max} , cm⁻¹): 1730 (C=O; ester), 1458, 1235, 1127, 806; ¹H NMR (DMSO*d*₆) δ ppm: 1.25-1.29 (3H, t, *J* = 8 Hz), 4.27-4.30 (2H, q, *J* = 8 Hz), 7.13 (1H, pyrazole CH), 7.31-7.33 (1H, m, ArH), 7.40-7.42 (1H, d, ArH), 7.53-7.56 (1H, dd, ArH), 7.64-7.68 (1H, d, ArH), 7.70-7.71 (1H, d, ArH) 7.77-7.78 (1H, m, ArH); MS: *m*/z 430.96 (M+1).

Ethyl 5-(2,4-dichlorophenyl)-1-(4-fluorophenyl)-1*H*pyrazole-3-carboxylate (34): Yield: 84%; white solid; IR (KBr, v_{max} , cm⁻¹): 1734 (C=O; ester), 1521, 1439, 1127, 769; ¹H NMR (DMSO- d_6) δ ppm: 1.16-1.19 (3H, t, *J* = 8 Hz), 4.18-4.21 (2H, q, *J* = 8 Hz), 7.1 (1H, pyrazole CH), 7.32-7.34 (1d, m, ArH), 7.48-7.51 (1H, m, ArH), 7.59-7.62 (1H, m, ArH), 7.74-7.76 (2H, d, ArH) 7.84-7.86 (2H, m, ArH); MS: *m/z* 380.41 (M+1).

Ethyl 5-(4-methoxyphenyl)-1-phenyl-1*H*-pyrazole-3carboxylate (35): Yield, 90%; white solid; IR (KBr, v_{max} , cm⁻¹): 1695 (C=O; ester), 1521, 1436, 1242, 1179, 1030, 773; ¹H NMR (DMSO- d_6) δ ppm: 1.23-1.25 (3H, t, *J* = 8 Hz), 3.74 (3H, s, OCH₃), 4.24-4.27 (2H, q, *J* = 8 Hz), 6.85-6.87 (2H, d, ArH), 6.93 (1H, pyrazole CH), 7.11-7.13 (2H, d, ArH), 7.26-7.28 (2H, m, ArH), 7.40-7.41 (3H, m, ArH); MS: *m/z* 333.51 (M+1).

Ethyl 1-(2,4-dichlorophenyl)-5-(4-methoxyphenyl)-1*H***-pyrazole-3-carboxylate (36): Yield, 92%; white solid; IR (KBr, v_{max}, cm⁻¹): 1730 (C=O; ester), 1518, 1439, 1261, 1182, 1022, 836; ¹H NMR (DMSO-***d***₆) δ ppm: 1.24-1.26 (3H, t,** *J* **= 8 Hz), 3.81 (3H, s, OCH₃), 4.32-4.26 (2H, q,** *J* **= 8 Hz), 6.81-6.83 (2H, d, ArH), 6.96 (1H, pyrazole CH), 7.15-7.17 (2H, d, ArH), 7.30-7.32 (1H, m, ArH), 7.58-7.60 (1H, m, ArH), 7.70-7.71 (1H, m, ArH); MS:** *m/z* **392.7 (M+1).**

Ethyl 1-(4-fluorophenyl)-5-(4-methoxyphenyl)-1*H*pyrazole-3-carboxylate (37): Yield: 81%; white solid; IR (KBr, v_{max} , cm⁻¹): 1700 (C=O; ester), 1514, 1227, 1192, 1033 840; ¹H NMR (DMSO- d_6) δ ppm: 1.29-1.31 (3H, t, *J* = 8 Hz), 3.83 (3H, s, OCH₃), 4.30-4.33 (2H, q, *J* = 8 Hz), 6.98-7.00 (2H, d, ArH), 7.02 (1H, pyrazole CH), 7.23-7.25 (2H, d, ArH), 7.42-7.44 (2H, d, ArH), 7.54-7.56 (2H, d, ArH); MS: *m/z* 341.23 (M+1).

Ethyl 1-phenyl-5-(*p*-tolyl)-1*H*-pyrazole-3-carboxylate (**38**): Yield: 82%; white solid; IR (KBr, v_{max} , cm⁻¹): 1681 (C=O; ester), 1419, 1246, 1197, 1007, 769; ¹H NMR (DMSO-*d*₆) δ ppm: 1.15-1.17 (3H, t, *J* = 8 Hz), 2.24 (3H, s, CH₃), 4.28-4.31 (2H, q, *J* = 8 Hz), 6.97 (1H, pyrazole CH), 7.07-7.13 (3H, m, ArH), 7.25-7.28 (2H, d, ArH), 7.39-7.43 (4H, m, ArH); MS: *m*/z 307.14 (M+1).

Ethyl 1-(2,4-dichlorophenyl)-5-(*p*-tolyl)-1*H*-pyrazole-3-carboxylate (39): Yield: 89%; white solid; IR (KBr, v_{max} , cm⁻¹): 1730 (C=O; ester), 1480, 1231, 1115, 1022, 821; ¹H NMR (CDCl₃) δ ppm: 1.39-1.42 (3H, t, *J* = 8 Hz), 2.31 (3H, s, CH₃), 4.41-4.46 (2H, q, *J* = 8 Hz), 7.02 (1H, pyrazole CH), 7.04-7.09 (4H, m, ArH), 7.30-7.33 (1H, dd, ArH), 7.40-7.42 (2H, d, ArH); MS: *m*/z 375.8 (M+).

Ethyl 1-(4-fluorophenyl)-5-(*p*-tolyl)-1*H*-pyrazole-3carboxylate (40): Yield: 98%; yellow solid; IR (KBr, v_{max} , cm⁻¹): 1715 (C=O; ester), 1521, 1223, 1104, 844; ¹H NMR (CDCl₃) δ ppm: 1.35-1.39 (3H, t, *J* = 8 Hz), 2.38 (3H, s, CH₃), 4.28-4.32 (2H, q, *J* = 8 Hz), 7.03 (1H, pyrazole CH), 7.26-7.30 (2H, d, ArH), 7.32-7.34 (2H, d, ArH), 7.54-7.56 (2H, d, ArH), 7.62-7.64 (2H, d, ArH); MS: *m/z* 325.8 (M+1).

Antiproliferative activity: The antiproliferative effect of 1,5-diarylpyrazole analogs (14-40) against pancreatic cancer cell line, PANC-1, was determined by colorimetric assay using 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) [14]. The cells were trypsinized and 4×10^3 cells were seeded in 100 µL medium in each well of a 96-well plate (Cole Parmar). The cells were incubated at 37 °C in a CO₂ incubator for 24 h. After 24 h, the cells were treated with increasing concentrations of 1, 10 and 100 µM of *vicinal* diarylpyrazole analogs. After 72 h, 20 µL of MTT (Sigma-Aldrich, USA) was added to each well and incubated at 37 °C in a CO₂ incubator for 2 h. The formazan crystals formed were dissolved in 100 µL of stock solution, dimethyl sulphoxide (DMSO) (Qualigens). The absorbance was measured at 570 nm using a Multiskan GO microplate spectrophotometer (Thermo Scientific,

USA). Percentage survival curves were plotted to calculate the half-maximal inhibitory concentrations (IC_{50}).

RESULTS AND DISCUSSION

Title compounds, vic.-diaryl analog containing pyrazole was synthesized in two steps as outlined in Scheme-I. Initially, Claisen condensation of corresponding acetophenone derivatives (11a-i) with diethyloxalate in presence of sodium methoxide in methanol to obtain 2,4-diketo ester (12a-i) [15]. The IR spectrum of 2,4-diketo esters displayed prominent intense peaks at 1618-1588 and 1740-1710 cm⁻¹ for carbonyl stretching of β -diketone and ester, respectively. The yield of 2,4-diketo esters were obtained in the range of 65-90%. Subsequently, 2,4-diketo esters (12a-i) reacted with substituted phenylhydrazine derivatives (13a-c) furnished corresponding ethyl 1,5-diphenyl-1*H*-pyrazole-3-carboxylate analogs (**14-40**) [16]. The purification was carried out by recrystallization and yields in the range of 82-90%. The IR spectrum of cyclized compound, 1,5-diaryl pyrazole, confirmed the disappearance of carbonyl stretching of ketone of 2,4-diketo esters. The ¹H NMR displays quartet and triplet for CH₂ and CH₃ protons of the ester. The CH proton of pyrazole at 4th position appears as a singlet at δ 7.07 to 7.1 ppm. All the halogen compounds displayed a prominent M+2 peak in the MS spectrum.

Antiproliferative activity: The antiproliferative activity of *vicinal* diaryl pyrazole compounds was assessed against PANC-1 pancreatic cancer cell line using standard MTT assay [14,17]. The IC₅₀ results are displayed in Table-2. Among 27

TABLE-2 CYTOTOXIC DATA FOR 1,5-DIARYLPYRAZOLE AGAINST PANC-1 PANCREATIC CANCER CELL LINE				
Compound	R ₁		IC ₅₀ (μm)	
14	Н	Н	> 100	
15	Н	$2, 4-Cl_2$	9.15 ± 1.1	
16	Н	4-F	57.15 ± 3.5	
17	4-Cl	Н	42.86 ± 8.2	
18	4-Cl	2,4-Cl ₂	52.86 ± 4.0	
19	4-Cl	4-F	7.63 ± 2.1	
20	4-Br	Н	68.94 ± 6.5	
21	4-Br	2,4-Cl ₂	52.77 ± 2.0	
22	4-Br	4-F	57.18 ± 4.5	
23	3-Br	Н	72.96 ± 6.8	
24	3-Br	2,4-Cl ₂	98.21 ± 4.5	
25	3-Br	4-F	4.8 ± 1.0	
26	3,4-(OCH ₃) ₂	Н	59.1 ± 6.6	
27	3,4-(OCH ₃) ₂	2,4-Cl ₂	69.17 ± 6.1	
28	3,4-(OCH ₃) ₂	4-F	> 100	
29	2-OH	Н	> 100	
30	2-OH	2,4-Cl ₂	98.66 ± 8.0	
31	2-OH	4-F	> 100	
32	2,4-Cl ₂	Н	9.81 ± 1.3	
33	2,4-Cl ₂	2,4-Cl ₂	8.91 ± 0.9	
34	2,4-Cl ₂	4-F	7.4 ± 1.53	
35	4-OCH ₃	Н	32.32 ± 2.06	
36	4-OCH ₃	2,4-Cl ₂	59.51 ± 2.0	
37	$4-OCH_3$	4-F	56.5 ± 3	
38	4-CH ₃	Н	39.22 ± 3.07	
39	4-CH ₃	2,4-Cl ₂	59.2 ± 5.13	
40	4-CH ₃	4-F	95.91 ± 8.03	
Doxorubicin			4.32 ± 1.06	

compounds, 6 compounds (**15**, **19**, **25**, **32**, **33** and **34**) are singledigit micro molar inhibitors. Compound **25** was found to be equally potent (4.8 μ M) as compared to the standard drug, doxorubicin (IC₅₀ = 4.32 ± 1.06 μ M). The substituent fluorine at 4th position in phenyl ring B and any other halogen in aryl ring A increases the potency. Loss of activity was observed when introducing the electron donating groups like methyl and methoxy groups in aryl ring A. Thus, the presence of electron withdrawing substituents in both phenyl rings plays a critical role in cytotoxicity.

Conclusion

A series of *vicinal*-diaryl pyrazole ethyl carboxylate analogs (**14-40**) was synthesized, characterized and evaluated for antiproliferative activity against PANC-1 cell lines. Six of the synthesized compounds showed significant cytotoxicity against PANC-1 cell line at single digit micro molar level. The presence of halogen substituent(s) either in one or both aryl rings exhibit the cytotoxic activity. Among them, compound **25** was found to be more potent with an IC₅₀ of 4.8 μ M and also equally effective as observed for standard drug doxorubicin. Further, the structural investigations of these synthesized compounds and biochemical research are needed to reveal its possible mode of action.

ACKNOWLEDGEMENTS

The authors thank Ms. Shweta Sharna and Dr. Deepak Kumar for providing technical assistance in MS data.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interests regarding the publication of this article.

REFERENCES

- 1. Y.J. Wu, Progress in Heterocyclic Chem., 24, 1 (2012); https://doi.org/10.1016/B978-0-08-096807-0.00001-4
- 2. J. Jampilek, *Molecules*, **24**, 3839 (2019); https://doi.org/10.3390/molecules24213839

- 3. E. Kabir and M. Uzzaman, *Results Chem.*, **4**, 100606 (2022); https://doi.org/10.1016/j.rechem.2022.100606
- G. Li, Y. Cheng, C. Han, C. Song, N. Huang and Y. Du, *RSC Med. Chem.*, 13, 1300 (2022); https://doi.org/10.1039/D2MD00206J
- N. Chopra, D. Kaur and G. Chopra, ACS Omega, 3, 12688 (2018); https://doi.org/10.1021/acsomega.8b01523
- M.I. El-Gamal, S.O. Zaraei, M.M. Madkour and H.S. Anbar, *Molecules*, 27, 330 (2022); https://doi.org/10.3390/molecules27010330
- V. Singhania, C.B. Nelson, M. Reamey, E. Morin, R.D. Kavthe and B.H. Lipshutz, Org. Lett., 25, 4308 (2023); https://doi.org/10.1021/acs.orglett.3c01380
- F. Xu, J. Chen, X. Xie, P. Cheng, Z. Yu and W. Su, Org. Process Res. Dev., 24, 2252 (2020);

https://doi.org/10.1021/acs.oprd.0c00302

- L. Yao, N. Mustafa, E.C. Tan, A. Poulsen, P. Singh, M.D. Duong-Thi, J.X.T. Lee, P.M. Ramanujulu, W.J. Chng, J.J.Y. Yen, S. Ohlson and B.W. Dymock, J. Med. Chem., 60, 8336 (2017); https://doi.org/10.1021/acs.jmedchem.7b00678
- T. Sugawara, S.J. Baumgart, E. Nevedomskaya, K. Reichert, H. Steuber, P. Lejeune, D. Mumberg and B. Haendler, *Int. J. Cancer*, **145**, 1382 (2019); https://doi.org/10.1002/ijc.32242
- R. Ramajayam, R. Giridhar, M.R. Yadav, R. Balaraman, H. Djaballah, D. Shum and C. Radu, *Eur. J. Med. Chem.*, 43, 2004 (2008); https://doi.org/10.1016/j.ejmech.2007.11.023
- R. Ramajayam, Eur. J. Med. Chem., 162, 1 (2019); https://doi.org/10.1016/j.ejmech.2018.10.054
- 13. L. Grau, R. Soucek and M.D. Pujol, *Eur. J. Med. Chem.*, **246**, 114962 (2023);

https://doi.org/10.1016/j.ejmech.2022.114962
14. M.V. Berridge, P.M. Herst and A.S. Tan, *Biotechnol. Annu. Rev.*, 11, 127 (2005);

https://doi.org/10.1016/S1387-2656(05)11004-7

- T.D. Penning, J.J. Talley, S.R. Bertenshaw, J.S. Carter, P.W. Collins, S. Docter, M.J. Graneto, L.F. Lee, J.W. Malecha, J.M. Miyashiro, R.S. Rogers, D.J. Rogier, S.S. Yu, G.D. Anderson, E.G. Burton, J.N. Cogburn, S.A. Gregory, C.M. Koboldt, W.E. Perkins, K. Seibert, A.W. Veenhuizen, Y.Y. Zhang and P.C. Isakson, *J. Med. Chem.*, 40, 1347 (1997); https://doi.org/10.1021/jm960803q
- K.R. Abdellatif, M.A. Chowdhury, Y. Dong and E.E. Knaus, *Bioorg. Med. Chem.*, 16, 6528 (2008); <u>https://doi.org/10.1016/j.bmc.2008.05.028</u>
- F. Denizot and R. Lang, J. Immunol. Methods, 89, 271 (1986); https://doi.org/10.1016/0022-1759(86)90368-6