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INTRODUCTION

The substantial rise in environmental concerns, especially
water pollution, has largely been attributed to the swift indust-
rialization witnessed in recent times [1]. Nitrophenol, a widely
used materials in pharmaceutical and textile industries is a
major contaminant of water bodies. The current situation needs
efficient water treatment methods to eliminate harmful pollutants
or transform them into less toxic compounds before releasing
them into water bodies. Among different methods for degrada-
tion of organic pollutants like chemical oxidation, coagulation
photocatalytic reduction, etc. catalytic reduction is the best
way owing to its high selectivity, low cost and efficiency [2].
The development of low-cost catalysts is essential for effective
water treatments.

p-Aminophenol holds significant value as a pharmaceutical
intermediate in the production of paracetamol, a commonly used
pain relieving and fever-reducing medication. Traditionally,
p-aminophenol is synthesized through multi-step processes
involving iron-acid reduction of either p-nitrochlorobenzene
or p-nitrophenol. The primary drawback of iron-acid reduction
is the production of a substantial quantity of Fe–FeO sludge,
leading to significant environmental pollution concerns [3].
The conversion of p-nitrophenol to p-aminophenol using catal-
ytic reduction is a simple and cost-effective way. Among different
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catalyst metal oxides gets much attention owing to its low cost,
low toxicity and high efficiency [4,5]. CuO and SnO2 are two
main metal oxides that can be successfully utilized as a catalyst
[6]. Moreover, the synergistic effect of these materials can
improve the overall performance. Therefore, this work explored
the combined effect of this catalyst, which is prepared through
simple two-step process.

EXPERIMENTAL

Copper(II) sulphate pentahydrate (≥ 99%), sodium hydroxide
pellets and p-nitrophenol was purchased from Sisco Research
Laboratories Pvt. Ltd., India. Stannous chloride dihydrate (≥
99.99%) and ammonia solution (25%) was purchased from
Merck Ltd., India. All the chemicals were used as received
and the double distilled water was used for all the experimental
works.

Synthesis of SnO2: SnO2 nanoparticles were synthesized
using a simple co-precipitation method. A 0.5 M SnCl2·2H2O
was stirred for 1 h at room temperature. To keep the pH at 9,
5% aqueous NH3 solution was added dropwise and the mixture
was agitated for 1 h. For nucleation, precipitate developed and
was left at room temperature for 24 h. It was filtered and
washed continuously with double-distilled water and ethanol.
The precipitate was then dried at 80 ºC for 4 h and annealed at
600 ºC to obtain crystalline SnO2.
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Synthesis of SnO2/CuO nanocomposite: A facile room
temperature precipitation method was employed to synthesize
SnO2/CuO nanocomposite. In brief, 100 mg of SnO2 nano-
particles was dissolved in 100 mL of 0.05 M CuSO4·5H2O and
sonicated for 5 min followed by the addition of 125 mL of
0.125 M NaOH into the mixture dropwise. After 3 h of magnetic
stirring, the obtained product was allowed to settle at room
temperature for 12 h and then filtered, washed with double
distilled water and ethanol several times. The final product was
then dried at 80 ºC for 4 h in a hot air oven to obtain SnO2/
CuO nanocomposite. Bare CuO was synthesized without the
addition of SnO2.

Characterization: The XRD patterns of the samples were
examined using a Bruker D8 advance X-ray powder diffracto-
meter equipped with CuKα radiation (λ = 1.5406 Å). Diffuse
reflectance spectra were recorded with UV-visible spectro-
meter (Shimadzu, UV-2600). For the investigation of surface
morphology and elemental composition, a scanning electron
microscope (FEI Quanta FEG 200) was used. Thermo-Scientific
Nicolet iS50 instrument was used to record FTIR spectrum.

Catalytic studies: The ability of SnO2/CuO nanocom-
posite to catalyze the conversion of p-nitrophenol to p-amino-
phenol was evaluated using a spectrophotometric approach. In
this technique, approximately 1 mg of catalyst was introduced
into 3 mL solution containing 0.1 mM p-nitrophenol. Subse-
quently, 0.2 mL of NaBH4 (0.2 M) was added and then the UV-
visible spectra of the reaction mixture were monitored at various
time points.

RESULTS AND DISCUSSION

The powder XRD pattern was used to analyze the structure
and phase purity of the prepared samples. Fig. 1 shows the
XRD diffractograms of CuO, SnO2 and SnO2/CuO nanocom-
posite. These are consistent with JCPDS card file Nos. 00-902-
4580 (CuO) and 000-100-0062 (SnO2). The sharp and well
defined peaks confirmed the crystalline nature of the prepared
sample [2,6]. In SnO2/CuO nanocomposite, the finished
structure retains its integrity by incorporating two or more
constituent materials that possess notably distinct physical and
chemical characteristics, yet remain separate and identifiable.
Moreover, in SnO2/CuO nanocomposite, the diffraction peaks
of indivi-dual components are present, validating the successful
formation of the composite. The absence of other impurity
peaks confirms the high purity of the prepared samples.

From the FTIR spectra (Fig. 2), CuO shows two major
peaks at 496 cm–1 and 614 cm–1 belonging to the characteristic
vibrations of Cu–O bond, revealing the formation of CuO nano-
structure [7], while the main characteristics IR features of SnO2

appear at 462.38 and 596.1 cm–1 assigned to O–Sn–O and Sn–O
stretching vibrations, respectively [8]. The SnO2/CuO nano-
composite exhibits merged peaks between 481 and 600 cm–1,
indicating a potential interaction between CuO and SnO2.

Diffuse reflectance spectral study in the UV-visible region
was conducted to estimate the optical band gap of the prepared
sample (Fig. 3). The Kubelka-Munk theory is used for the
analysis of diffuse reflectance spectra obtained from weakly
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Fig. 1. XRD spectra of SnO2, CuO and SnO2/CuO nanocomposite
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Fig. 2. FTIR spectra of SnO2, CuO and SnO2/CuO nanocomposite

absorbing samples. The Kubelka-Munk function is obtained
from eqn. 1 [9]:

2(1 R)
F(R)

2R

−= (1)

where R is the measured reflectance. The band gap of the prep-
ared sample was calculated by plotting a graph of [F(R)hν]0.5

vs. energy (hν) (Fig. 4). The band gap of SnO2, CuO and CuO/
SnO2 nanocomposite were found to be 3.32, 1.30 and 1.4 eV,
respectively.

The SEM image of SnO2 nanoparticles (Fig. 5a) exhibits
spherical morphology with almost uniform sized particles
whereas individual CuO particles (Fig. 5b) show flake-like
morphology. But in the SnO2/CuO nanocomposite (Fig. 5c),
the flakes are grown over the spherical structure of SnO2 nano-
particles.

The catalytic activity of synthesized metal oxide and their
nano composites were analyzed by selecting, the reduction of
nitrophenol in presence of NaBH4 as a basic reaction. p-Nitro-
phenol was converted to p-aminophenol due to the transfer of
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Fig. 3. Diffuse reflectance (DR) spectra of SnO2, CuO and SnO2/CuO
nanocomposite
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Fig. 4. Calculated band gaps of SnO2, CuO and SnO2/CuO nanocomposite

electrons from NaBH4 to p-nitrophenol. However, the reaction
is possible under thermodynamic condition but kinetically
unfavourable because of the repelling nature of NaBH4 and
nitrophenolate ion. However, the present investigation has shown
that the synthesized CuO/SnO2 nanocomposite may address
this drawback by providing reactant molecules with an improved
surface for electron transfer.

Mechanism: The mechanism related to the reduction of
nitrophenol to aminophenol is shown in Fig. 6. The mechanism
entails the adsorption of p-nitrophenol and NaBH4 and a series
of electron and H+ transfer occurs through the surface of nano-
catalyst. Initially, the interaction between p-nitrophenol and
NaBH4 produces the nitrophenolate ion, which then changes
to unstable nitrosophenol. The unstable intermediate quickly
converts to p-hydroxyl nitrophenol and in the final step, p-
aminophenol is formed. The final stage was identified as the
rate determining step in the whole reduction process [2].

The progress of the reaction was assessed using UV-visible
absorption spectrophotometer. In the presence of NaBH4, the
aqueous solution of p-nitrophenol shows a characteristic red
shift from 317to 400 nm as a result of formation of nitropheno-
late ion [3]. But the intensity of peak at 400 nm persists for a
long time, indicating the necessity of catalyst to speed up the
reduction process. After the introduction of CuO/SnO2 nano-
composite, the intensity of nitrophenolate ion decreased with
time, at the same time a new peak was formed at 300 nm. The
new peak corresponds to p-aminophenol and the reaction was
completed within 6 min (Fig. 7a). The current study shows
that, as compared to the nanocomposite, the reduction using
individual CuO and SnO2 nanoparticles takes significantly
longer time and are less effective. The synergistic action of
individual nanoparticles results in the excellent catalytic activity
of nanocomposites. The p-nitrophenol reduction with CuO
ended in 12 min while it took 30 min for SnO2 nano-particle
(Fig. 7b-c).

The present work reports 97% conversion efficiency of
nanocomposite (Fig. 8a) and the efficiency was calculated from
eqn. 2:

o t

o

C C
Reduction (%) 100

C

−= ×

However, with CuO particles the conversion efficiency
was 99% which is slightly greater than nanocomposite, but
the time required for the same is as high as CuO-SnO2 (Fig.
8b). While, bare SnO2 nanoparticles exhibited 95% efficiency
which is displayed in Fig. 8c.

The kinetic studies of nanocomposites revealed that the
reduction follows a pseudo-first order kinetics. The rate of the
reaction is independent of the concentration of NaBH4, since
the concentration of NaBH4 was higher than that of nitrophenol
in this procedure. Therefore, it is proposed that the concen-

(2)

(  ) (  ) (  )

Fig. 5. SEM images of (a) SnO2, (b) CuO and (c) SnO2-CuO nanocomposite
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Fig. 6. Schematic showing the mechanism of nitrophenol reduction
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Fig. 7. UV-Visible absorption spectra of nitrophenol at various time intervals with (a) CuO-SnO2, (b) CuO and (c) SnO2
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tration of NaBH4 remains constant during the reaction. Hence,
the pseudo-first order equation was used to determine the rate
constant [10].

t

o

C
ln kt

C

 
= − 

 
(3)

where Co and Ct are the concentration of nitrophenol at the initial
phase and different time intervals, respectively, k is the rate
constant and t is the time. Fig. 9a described the linear variation
of ln Ct/Co with time, which also confirmed the pseudo-first
order nature of the reduction process. The lower rate constant
(k = 0.3026 min-1) at the beginning is due to the rearrangement
and reorganization of reactant molecules which needs some
time. After that, the reaction followed with higher rate constant
(k = 1.4763 min-1). Similarly, the similar pattern was observed
bare CuO and SnO2 nanoparticles also (Fig. 9b-c).

Conclusion

A cost-effective method for the synthesis of SnO2/CuO
nanocomposite is discussed. The synergistic effect of the indi-
vidual components acts highly effective catalyst for reducing
p-nitrophenol under mild reaction conditions. The conversion
efficiency of composite was found to be 97%. With a short span
of time and with a minimum amount of catalyst, the composite
exhibit high catalytic ability.
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