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INTRODUCTION

Pathogenic microorganisms such as bacteria, viruses, fungi,
and parasites are the primary cause of infectious illness trans-
mission. Antimicrobial therapy is the usual treatment for infectious
disorders, which involves the use of drugs that either destroy or
stop the growth of microorganisms without hurting the host.
Antimicrobial resistance (AMR), which refers to the ability
of microorganisms to resist the effects of antibiotics, is mostly
produced by the improper and excessive use of antimicrobial
drugs. Additionally, there are several interconnected and mutu-
ally dependent factors contributing to this phenomenon [1].
Launched in year 2015, the World Health Organization’s Global
Action Plan on antimicrobial resistance aims to optimize the
use of antimicrobial drugs and attract investment in their
research and development, a field that has experienced a halt
in recent decades [2]. To combat AMR, it is therefore essential
to find novel promising antimicrobial drugs [3].

Heterocyclic compounds are the most common structural
units of presently available medicines and common targets for
the drug discovery process [4,5]. A synthetic applicability and
wide range of biological activity makes heterocyclic comp-
ounds a most promising in drug discovery. With documented
wide ranging of effects including anticancer, antibacterial, anti-
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fungal, anti-inflammatory, analgesics, antihypertensive, anti-
tumor, antioxidant and local anesthetics properties, thiophene
and their derivatives are a highly interesting class of hetero-
cycllic chemicals [6,7]. For example, suprofen (non-steroidal
anti-inflammatory), articaine (anesthetic), cefoxitin (antimicro-
bial agent), penthiopyrad (fungicide), raltitrexed (anticancer),
thiophenfurin (antitumor), tiamenidine (antihypertension),
duloxetine (anti-anxiety), rivaroxaban (anticoagulant) are some
of thiophene based marketed drugs (Fig. 1).

In addition, chalcones are a class of natural and synthetic
compounds, of a great interest for a medicinal chemist because
of having specific chemical structure consisting of two aromatic
rings connected of three carbon α,β-unsaturated carbonyl system
[8-10]. Chalcones are extensively dispersed throughout many
plant sources. Their varied biological functions and their uses
in a drug discovery have drawn a lot of attention [11-14]. Wide
range of pharmacological properties, including anticancer [15-
18], anti-inflammatory [19-22], antioxidant [23,24], antimicro-
bial [25-29], antiviral [30], antidiabetic activities [31], among
others make chalcones valuable candidate for developing novel
therapeutic agents. Numerous studies have focused on the synth-
esis, modification and structural optimization of chalcones to
enhance their biological activity and selectivity [32]. For thera-
peutic applications, some drugs based on chalcones have received
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approval, for instance, sofalcone was formerly used as an anti-
ulcer and mucoprotective medication, hesperidin methyl-
chalcone used as a vascular protective, whilst metochalcone
was sold as choleretic/diuretics drgus (Fig. 2) [33,34].

In light of these informations and with the objective of
developing effective antibacterial substances, the current study
focuses on the synthesis of a range of innovative heterocyclic
compounds (4a-o) that have thiophene and chalcone as their
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Fig. 1. Structure of some marketed medicines based on thiophene
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structural components. Additionally, the antibacterial activity
of the synthesized compounds was assessed in vitro against
four bacterial strains and their pharmacokinetic parameters
(ADME) were predicted using in silico methods.

EXPERIMENTAL

Only laboratory grade reagents were used in the synthesis
of the compounds and commercial solvents were used without
further additional purification. All the melting points of the
synthesized compounds were measured using the open capillary
method and are uncorrected. Thin layer chromatography (TLC)
was used to track the reaction’s progress using Merck 60 F254

silica gel aluminum plates, while UV light (254 nm) was used
to visualize the spots. Shimandzu-8400 FT-IR spectrometer
was used to obtain FT-IR spectra, whereas Applied Biosystems-
API 2000 LC/MS/MS was used to record mass spectra. A Bruker
Advance Neo 400 MHz spectrometer was used to record 1H
& 13C NMR spectra.

Synthesis of N-(4-acetylphenyl)-5-chlorothiophene-2-
carboxamide (3): 1-(4-Aminophenyl)ethanone (p-amino aceto-
phenone) (2) (0.012 mol) dissolved in DMF (16 mL) was added
to diisopropyl ethylamine (DIPEA, (0.03 mol) and 5-chlorothio-
phene-2-carboxylic acid (1, 0.01 mol). Then hexafluoro-
phosphate benzotriazole tetramethyluranium (HBTU) was added
slowly and then refluxed for 6 h. TLC was used to verify the
consumption of starting material by employing MDC:
methanol (9.8:0.2) as mobile phase. Reaction mixture was
poured in (50 mL) water and then methylene dichloride (MDC)
(30 mL) was charged in the reaction mixture. Reaction mixture
was filtered to remove salt. The MDC layer was washed by

using 25 mL of water for 5 times and then concentrated. Methyl
tert-butyl ether (MTBE , 16 mL) was added to the residue and
it was agitated for 30 min was then filtered and dried the solid
3 in vacuum oven at 45-50 ºC. IR (KBr, νmax, cm–1): 3335 (N-
H), 3059 (C-H), 3001 (C-H), 1658 (C=O), 1597 (C=O), 1529
(N-H), 1427 (C=C), 844 (C-Cl), 808 (C-H). 1H NMR (400 MHz,
DMSO-d6) δ ppm: 2.56 (s, 3H), 7.31 (d, J = 4.1 Hz, 1H), 7.87
(d, J = 8.8 Hz, 2H), 7.99 (d, J = 9.0 Hz, 3H), 10.60 (s, 1H).
13C NMR (101 MHz, DMSO-d6) δ ppm: 26.99, 39.38, 39.59,
39.80, 40.01, 40.21, 40.42, 40.63, 119.95, 128.90, 129.86,
130.28, 132.72, 135.06, 139.11, 143.30, 159.62, 197.08. Mass
m/z: 280.2 (M+1)+.

Synthesis of chalcone derivatives (4a-o): Compound 3
(0.01 mol) was taken in a round bottom flask containing 27
mL methanol and then added to the substituted benzaldehyde
derivatives dissolved in 40% KOH solution. The reaction mixture
was agitated at 60-65 ºC for 12-18 h (Scheme-I). Reaction
completion was monitored by TLC using methanol:MDC
(0.2:9.8). Solid was filtered and recrystallized by methanol.

5-Chloro-N-(4-cinnamoylphenyl)thiophene-2-carbox-
amide (4a): Yield: 38.02%; m.p.: 160-162 ºC, m.f.: C20H14NO2SCl
(m.w.: 367.85). IR (KBr, νmax, cm–1): 3390 (N-H), 3091 (C-
H), 3059 (C-H), 1656 (C=O), 1595 (C=O), 1512 (N-H), 1427
(C=C), 837 (C-Cl), 808 (C-H), 796 (C-H). 1H NMR (400 MHz,
DMSO-d6) δ ppm: 10.64 (s, 1H), 8.22 (d, J = 8.8 Hz, 2H),
8.01 (d, J = 2.2 Hz, 1H), 7.98 (d, J = 9.2 Hz, 1H), 7.96-7.88
(m, 4H), 7.75 (d, J = 15.6 Hz, 1H), 7.48 (s, 3H), 7.32 (d, J = 4.1
Hz, 1H).13C NMR (101 MHz, DMSO-d6) δ ppm: 188.07,
159.64, 143.98, 143.44, 139.14, 135.27, 135.11, 133.33, 131.01,
130.29, 129.39, 129.33, 128.89, 122.43, 120.06. Mass m/z:
368.3 (M+1)+.
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5-Chloro-N-(4-(3-(4-hydroxyphenyl)acryloyl)phenyl)-
thiophene-2-carboxamide (4b): Yield: 43.73%; m.p.: 210-212
ºC, m.f.: C20H14NO3SCl (m.w.: 383.85). IR (KBr, νmax, cm–1):
3390 (N-H), 3085 (C-H), 3048 (C-H), 1669 (C=O), 1592
(C=O), 1524 (N-H), 1428 (C=C), 1220 (C-O) 845 (C-Cl), 811
(C-H), 775 (C-H). 1H NMR (400 MHz, DMSO-d6) δ ppm: 9.98
(s, 1H), 8.70 (s, 1H), 7.97 (d, J = 15.1 Hz, 1H), 7.82 (d, J =
7.5 Hz, 2H), 7.64 (dd, J = 7.4, 2.8 Hz, 3H), 7.41 (d, J = 15.1
Hz, 1H), 7.14 (d, J = 7.4 Hz, 2H), 6.98 (d, J = 7.5 Hz, 1H), 6.71
(d, J = 7.4 Hz, 2H). 13C NMR (101 MHz, DMSO-d6) δ ppm:
190.98, 159.30, 156.58, 144.36, 143.89, 141.28, 135.96, 134.20,
132.86, 129.96, 129.98, 129.58, 129.56, 127.94, 127.62, 122.95,
121.94, 121.92, 116.37, 116.38. Mass m/z: 384.8 (M+1)+.

5-Chloro-N-(4-(3-(3,4-dimethoxyphenyl)acryloyl)-
phenyl)thiophene-2-carboxamide (4c): Yield: 52.30%; m.p.:
145-147 ºC, m.f.: C22H18NO4SCl (m.w.: 427.90). IR (KBr, νmax,
cm–1): 3346 (N-H), 3091 (C-H), 2960 (C-H), 2933 (C-H), 1678
(C=O), 1581 (C=O), 1518 (N-H), 1427 (C=C), 823 (C-Cl), 802
(C-H), 729 (C-H). 1H NMR (400 MHz, DMSO-d6) δ ppm:
10.62 (s, 1H), 8.22 (d, J = 8.6 Hz, 2H), 8.00 (s, 1H), 7.93 (d, J
= 8.5 Hz, 2H), 7.87 (d, J = 15.5 Hz, 1H), 7.71 (d, J = 15.4 Hz,
1H), 7.56 (s, 1H), 7.40 (d, J = 8.1 Hz, 1H), 7.32 (s, 1H), 7.03 (d,
J = 8.3 Hz, 1H), 3.88 (s, 3H), 3.83 (s, 3H). 13C NMR (101 MHz,
DMSO-d6) δ ppm: 187.94, 159.63, 151.72, 149.53, 144.52,
143.23, 139.17, 135.07, 133.65, 130.26, 130.15, 128.86, 128.11,
124.39, 120.02, 119.94, 112.03, 111.22, 56.26, 56.08. Mass
m/z: 428.3 (M+1)+.

N-(4-(3-(2-Bromophenyl)acryloyl)phenyl)-5-chloro-
thiophene-2-carboxamide (4d): Yield: 50.10%; m.p.: 150-152
ºC, m.f.: C20H13NO2SBrCl  (m.w.: 446.74). IR (KBr, νmax, cm–

1): 3342 (N-H), 3026 (C-H), 1658 (C=O), 1612 (C=O), 1526
(C=C), 1508 (N-H), 1423 (C=C), 838 (C-Cl), 796 (C-H). 1H
NMR (400 MHz, DMSO-d6) δ ppm: 8.35 (d, J = 15.1 Hz,
1H), 7.85 (d, J = 7.4 Hz, 2H), 7.64 (d, J = 7.4 Hz, 3H), 7.50
(d, J = 15.2 Hz, 1H), 7.39 (dd, J = 7.4, 1.4 Hz, 1H), 7.24-6.95
(m, 4H). 13C NMR (101 MHz, DMSO-d6) δ ppm: 190.98,
156.58, 143.89, 143.31, 141.28, 137.10, 135.96, 134.20, 134.02,
132.86, 130.01, 129.58, 129.56, 129.17, 127.94, 127.74, 126.66,
123.18, 121.92, 121.94. Mass m/z: 447.7 (M+1)+.

N-(4-(3-(3-Bromophenyl)acryloyl)phenyl)-5-chlorothio-
phene-2-carboxamide (4e): Yield: 75.14%; m.p.: 186-188 ºC,
m.f.: C20H13NO2SBrCl  (m.w.: 446.74). IR (KBr, νmax, cm–1): 3352
(N-H), 3086 (C-H), 1649 (C=O), 1600 (C=O), 1531 (C=C),
1518 (N-H), 1425 (C=C), 831 (C-Cl), 792 (C-H). 1H NMR
(400 MHz, DMSO-d6) δ ppm: 10.64 (s, 1H), 8.25 (dd, J =
5.1, 3.5 Hz, 3H), 8.07 (d, J = 15.6 Hz, 1H), 8.00 (d, J = 4.1
Hz, 1H), 7.94 (d, J = 8.8 Hz, 2H), 7.87 (d, J = 7.8 Hz, 1H),
7.68 (dd, J = 24.8, 11.8 Hz, 2H), 7.43 (t, J = 7.9 Hz, 1H), 7.32
(d, J = 4.1 Hz, 1H). 13C NMR (101 MHz, DMSO-d6) δ ppm:
187.87, 159.65, 143.59, 142.17, 139.13, 137.80, 135.13, 133.41,
133.13, 131.38, 131.22, 130.41, 130.31, 128.87, 128.73, 123.90,
122.90, 120.01. Mass m/z: 447.6 (M+1)+.

N-(4-(3-(4-Bromophenyl)acryloyl)phenyl)-5-chloro-
thiophene-2-carboxamide (4f): Yield: 75.14%; m.p.: 198-200
ºC, m.f.: C20H13NO2SBrCl  (m.w.: 446.74). IR (KBr, νmax, cm–

1): 3362 (N-H), 3076 (C-H), 1662 (C=O), 1620 (C=O), 1531
(C=C), 1512 (N-H), 1418 (C=C), 827 (C-Cl), 792 (C-H). 1H

NMR (400 MHz, DMSO-d6) δ ppm: 9.98 (s, 1H), 7.99 (d, J =
15.1 Hz, 1H), 7.81 (d, J = 7.6 Hz, 2H), 7.64 (dd, J = 7.5, 3.1
Hz, 3H), 7.43 (dd, J = 29.5, 11.3 Hz, 3H), 7.18 (d, J = 7.4 Hz,
2H), 6.98 (d, J = 7.5 Hz, 1H). 13C NMR (101 MHz, DMSO-
d6) δ ppm: 190.98, 156.58, 144.36, 143.89, 141.28, 135.96,
135.77, 134.20, 132.86, 132.27, 132.27, 129.58, 129.56, 129.54,
129.52, 127.94, 124.18, 122.95, 121.94, 121.92. Mass m/z:
447.6 (M+1)+.

5-Chloro-N-(4-(3-(2-fluorophenyl)acryloyl)phenyl)-
thiophene-2-carboxamide (4g): Yield: 58.00%; m.p.: 174-176
ºC, m.f.: C20H13NO2SClF  (m.w.: 385.84). IR (KBr, νmax, cm–1):
3348 (N-H), 3066 (C-H), 1652 (C=O), 1614 (C=O), 1527
(C=C), 1509 (N-H), 1420 (C=C), 839 (C-Cl), 780 (C-H). 1H
NMR (400 MHz, DMSO-d6) δ ppm: 8.34 (d, J = 15.1 Hz, 1H),
7.84 (d, J = 7.6 Hz, 2H), 7.65 (dd, J = 7.5, 1.2 Hz, 3H), 7.43 (d,
J = 15.1 Hz, 1H), 7.32-7.23 (m, 1H), 7.20-7.09 (m, 1H), 7.04-
6.90 (m, 3H). 13C NMR (101 MHz, DMSO-d6) δ ppm: 190.98,
158.55, 156.58, 143.89, 141.28, 140.76, 135.96, 134.20, 132.86,
130.59, 130.12, 129.58, 129.56, 127.94, 126.05, 125.44, 122.53,
121.94, 121.92, 116.76. Mass m/z: 386.5 (M+1)+.

5-Chloro-N-(4-(3-(3,4-difluorophenyl)acryloyl)-
phenyl)thiophene-2-carboxamide (4h): Yield: 41.56%; m.p.:
169-171 ºC, m.f.: C20H12NO2SF2Cl (m.w.: 403.83). IR (KBr,
νmax, cm–1): 3356 (N-H), 3082 (C-H), 1661 (C=O), 1612 (C=O),
1528 (C=C), 1505 (N-H), 1432 (C=C), 834 (C-Cl). 1H NMR
(400 MHz, DMSO-d6) δ ppm: 8.23 (d, J = 15.1 Hz, 1H), 7.83
(d, J = 7.6 Hz, 2H), 7.65 (d, J = 7.5 Hz, 3H), 7.55 (d, J = 15.1
Hz, 1H), 7.13-7.02 (m, 2H), 6.96 (ddd, J = 12.7, 8.7, 6.3 Hz,
2H). 13C NMR (101 MHz, DMSO-d6) δ ppm: 190.98, 156.58,
152.92, 148.15, 144.33, 143.89, 141.28, 135.96, 134.25, 134.20,
132.86, 129.58, 129.57, 127.94, 126.22, 123.24, 121.94, 121.92,
116.84, 114.56. Mass m/z: 404.5 (M+1)+.

5-Chloro-N-(4-(3-(4-hydroxy-3-methoxyphenyl)acryl-
oyl)phenyl)thiophene-2-carboxamide (4i): Yield: 40.56%;
m.p.: 188-190 ºC, m.f.: C21H16NO4SCl  (m.w.: 413.87). IR (KBr,
νmax, cm–1): 3316 (N-H), 3055 (C-H), 1643 (C=O), 1608 (C=O),
1551 (C=C), 1516 (N-H), 1423 (C=C), 840 (C-Cl), 786 (C-H).
1H NMR (400 MHz, DMSO-d6) δ ppm: 3.80 (s, 3H). 6.68 (t, J
= 8.8 Hz, 1H), 6.84-6.74 (m, 2H), 6.98 (d, J = 7.5 Hz, 1H),
7.42 (d, J = 15.1 Hz, 1H), 7.64 (dd, J = 7.4, 2.4 Hz, 3H), 7.82
(d, J = 7.5 Hz, 2H), 7.96 (d, J = 15.1 Hz, 1H), 8.56 (s, 1H),
9.99 (s, 1H). 13C NMR (101 MHz, DMSO-d6) δ ppm: 190.98,
156.58, 149.57, 148.50, 144.33, 143.89, 141.28, 135.96, 134.20,
132.86, 129.58, 129.56, 127.94, 127.58, 123.24, 123.18, 121.94,
121.92, 115.81, 111.78, 56.79. Mass m/z: 414.5 (M+1)+.

5-Chloro-N-(4-(3-(3-hydroxy-4-methoxyphenyl)-
acryloyl)phenyl)thiophene-2-carboxamide (4j): Yield: 40.55%;
m.p.: 125-127 ºC, m.f.: C21H16NO4SCl (m.w.: 413.87). IR (KBr,
νmax, cm–1): 3371 (N-H), 3079 (C-H), 1667 (C=O), 1616 (C=O),
1527 (C=C), 1506 (N-H), 1416 (C=C), 845 (C-Cl), 760 (C-H).
1H NMR (400 MHz, DMSO-d6) δ ppm: 10.00 (s, 2H), 8.09 (s,
3H), 7.97 (d, J = 15.1 Hz, 3H), 7.81 (d, J = 7.4 Hz, 6H), 7.64
(dd, J = 7.5, 2.2 Hz, 9H), 7.40 (d, J = 15.1 Hz, 3H), 6.99 (d, J
= 7.5 Hz, 3H), 6.86-6.78 (m, 6H), 6.70-6.63 (m, 3H), 3.80 (s,
9H), 2.00 (s, 1H). 13C NMR (101 MHz, DMSO-d6) δ ppm:
190.98, 156.58, 150.33, 146.89, 144.33, 143.89, 141.28,
135.96, 134.20, 132.86, 129.75, 129.58, 129.56, 127.94,
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123.24, 121.94, 121.92, 120.86, 113.52, 112.85, 56.79. Mass
m/z: 414.6 (M+1)+.

5-Chloro-N-(4-(3-(4-methoxyphenyl)acryloyl)phenyl)-
thiophene-2-carboxamide (4k): Yield: 70.31%; m.p.: 164-166
ºC, m.f.: C21H16NO3SCl (m.w.: 397.87). IR (KBr, νmax, cm–1):
3372 (N-H), 3064 (C-H), 1658 (C=O), 1608 (C=O), 1524
(C=C), 1509 (N-H), 1436 (C=C), 824 (C-Cl), 785 (C-H). 1H
NMR (400 MHz, DMSO-d6) δ ppm: 8.19 (d, J = 15.1 Hz,
1H), 7.85 (d, J = 7.4 Hz, 2H), 7.74 (d, J = 7.5 Hz, 1H), 7.66
(d, J = 7.4 Hz, 2H), 7.53 (d, J = 15.1 Hz, 1H), 7.28 (d, J = 7.4
Hz, 2H), 6.97 (d, J = 7.5 Hz, 1H), 6.84 (d, J = 7.4 Hz, 2H),
3.78 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ ppm: 190.98,
160.84, 156.58, 144.36, 143.89, 141.28, 135.96, 134.20, 132.86,
129.58, 129.56, 129.38, 129.38, 128.73, 127.94, 122.95, 121.94,
121.92, 114.57, 114.55, 56.04. Mass m/z: 398.7 (M+1)+.

5-Chloro-N-(4-(3-(3-ethoxy-4-methoxyphenyl)acryl-
oyl)phenyl)thiophene-2-carboxamide (4l): Yield: 91.27%;
m.p.: 170-172 ºC, m.f.: C23H20NO4SCl (m.w.: 441.93). IR (KBr,
νmax, cm–1): 3385 (N-H), 3048 (C-H), 1686 (C=O), 1606 (C=O),
1529 (C=C), 1511 (N-H), 1421 (C=C), 824 (C-Cl), 754 (C-H).
1H NMR (400 MHz, DMSO-d6) δ ppm: 8.01 (d, J = 15.1 Hz,
1H), 7.82 (d, J = 7.6 Hz, 2H), 7.65 (dd, J = 7.6, 5.0 Hz, 3H),
7.39 (d, J = 15.1 Hz, 1H), 6.95 (ddd, J = 12.7, 8.9, 4.4 Hz, 3H),
6.80 (d, J = 7.4 Hz, 1H), 4.03 (q, J = 6.0 Hz, 2H), 3.79 (s, 3H),
1.39 (t, J = 6.0 Hz, 3H). 13C NMR (101 MHz, DMSO-d6) δ
ppm: 190.98, 156.58, 152.17, 149.60, 144.33, 143.89, 141.28,
135.96, 134.20, 132.86, 130.25, 129.58, 129.56, 127.94, 123.24,
122.13, 121.94, 121.92, 114.29, 114.20, 64.52, 56.79, 13.83.
Mass m/z: 442.7 (M+1)+.

5-Chloro-N-(4-(3-(4-(dimethylamino)phenyl)acryloyl)-
phenyl)thiophene-2-carboxamide (4m): Yield: 65.35%; m.p.:
162-164 ºC, m.f.: C22H19N2O2SCl  (m.w.: 410.92). IR (KBr, νmax,
cm–1): 3355 (N-H), 3018 (C-H), 1645 (C=O), 1604 (C=O), 1516
(C=C), 1502 (N-H), 1427 (C=C), 841 (C-Cl), 756 (C-H). 1H NMR
(400 MHz, DMSO-d6) δ ppm: 7.97 (d, J = 15.2 Hz, 1H), 7.82
(d, J = 7.5 Hz, 2H), 7.65 (dd, J = 7.5, 5.5 Hz, 3H), 7.37 (d, J
= 15.1 Hz, 1H), 7.12 (d, J = 7.4 Hz, 2H), 6.99 (d, J = 7.5 Hz,
1H), 6.55 (d, J = 7.4 Hz, 2H), 2.88 (s, 6H). 13C NMR (101 MHz,
DMSO-d6) δ ppm: 190.98, 156.58, 151.12, 144.36, 143.89,
141.28, 135.96, 134.20, 132.86, 129.93, 129.91, 129.58, 129.56,
127.94, 123.80, 122.95, 121.94, 121.92, 112.73, 112.71, 41.92,
41.91. Mass m/z: 411.6 (M+1)+.

5-Chloro-N-(4-(3-(4-nitrophenyl)acryloyl)phenyl)-
thiophene-2-carboxamide (4n): Yield: 81.30%; m.p.: 176-178
ºC, m.f.: C20H13N2O4SCl (m.w.: 412.85). IR (KBr, νmax, cm–1):
3375 (N-H), 3060 (C-H), 1678 (C=O), 1605 (C=O), 1532
(C=C), 1504 (N-H), 1416 (C=C), 1323 (C-N), 834 (C-Cl),
754 (C-H). 1H NMR (400 MHz, DMSO-d6) δ ppm: 8.18-8.09
(m, 3H), 7.83 (d, J = 7.5 Hz, 2H), 7.74 (d, J = 15.1 Hz, 1H),
7.65 (dd, J = 7.5, 5.4 Hz, 3H), 7.56 (d, J = 7.4 Hz, 2H), 6.99
(d, J = 7.5 Hz, 1H). 13C NMR (101 MHz, DMSO-d6) δ ppm:
190.98, 156.58, 147.81, 144.36, 143.89, 142.40, 141.28, 135.96,
134.20, 132.86, 129.58, 129.56, 129.14, 129.12, 127.94, 124.46,
124.45, 122.95, 121.93, 121.92. Mass m/z: 413.6 (M+1)+.

5-Chloro-N-(4-(3-(2-hydroxy-5-nitrophenyl)acryl-
oyl)phenyl)thiophene-2-carboxamide (4o): Yield: 39.14%;
m.p.: 202-204 ºC, m.f.: C20H13N2O5SCl (m.w.: 428.85). IR (KBr,

νmax, cm–1): 3383 (N-H), 3046 (C-H), 1654 (C=O), 1613 (C=O),
1521 (C=C), 1503 (N-H), 1424 (C=C), 1328 (C-N), 826 (C-Cl),
724 (C-H). 1H NMR (400 MHz, DMSO-d6) δ ppm: 9.54 (s,
1H), 10.00-7.97 (m, 3H), 10.00-7.89 (m, 4H), 10.00-7.79 (m,
6H), 10.00-7.71 (m, 7H), 10.00-7.02 (m, 10H), 10.00-1.69
(m, 12H), 10.00-2.02 (m, 12H). 13C NMR (101 MHz, DMSO-
d6) δ ppm: 190.98, 163.70, 156.58, 143.89, 141.28, 140.25,
139.39, 135.96, 134.20, 132.86, 129.58, 129.57, 127.94, 126.22,
123.30, 123.24, 121.93, 121.92, 120.11, 118.23. Mass m/z:
427.6 (M+1)+.

Antimicrobial activity: The non-automated broth-dilution
method was utilized to estimate the minimal inhibition concen-
tration (MIC) of all the synthesized chalcone derivatives of
N-(4-acetylphenyl)-5-chlorothiophene-2-carboxamide (4a-o).
Using this technique, the quantity of antimicrobial drugs required
to stop the growth of a particular microbe can be determined quan-
titatively [35]. Escherichia coli (MTCC 443), Pseudomonas
aeruginosa (MTCC 1688), Staphylococcus aureus (MTCC 96),
Streptococcus pyogenes (MTCC 442) are the bacterial strains
obtained from Institute of Microbial Technology, Chandigarh,
India used for screening the antibacterial activity. In order to
obtain the proper inoculum size of 108 CFU mL-1 in each well
using the microdilution method, a standardized inoculum for
each bacterial strain was generated by comparing the turbidity.
To prepare a stock solution, each synthesized molecule was
diluted in DMSO to a concentration of 2000 µg/mL. The
synthesized drug concentrations of 1000 µg/mL, 500 µg/mL
and 250 µg/mL were taken for primary screening. To achieve
the necessary concentration in each test well of a microtiter
plate, each dilution was spread on microtiter plates with two-
fold strength (2X) Mueller Hinton broth (MH broth). After
that, the microtiter plates were incubated at 37 ºC. A standard
inoculum size of 50 µL of bacterial suspension was added to
each test and growth control well for inoculation. The active
synthetic medications identified by this first screening were
examined in a second round of dilution tests against microbe.
The substances recognized as active in the first screening were
diluted in a similar way to yield 200 µg/mL, 100 µg/mL, 50
µg/mL, 25 µg/mL and 12.5 µg/mL. Before being inoculated,
the antibiotic-free control tube was immediately subculture
by equally spreading a loopful of medium over a fourth of a
plate that was suitable for the test organism’s development.
The plate was then incubated at 37 ºC for 24 h. Turbidity was
used to identify the bacterial growth after the incubation period
[36,37].

In silico study (ADME analysis): To anticipate the physico-
chemical property, an in silico investigation of the synthesized
compounds (4a-o) was conducted in this study. Swiss ADME
web tool used to assist with lipophilicity, water solubility,
pharmacokinetics, drug similarity and medicinal chemistry. The
synthesized compounds’ structures were sketched in Chem-
Draw Ultra 12.0 and translated into SMILES format for
prediction.

RESULTS AND DISCUSSION

The synthetic route for preparing novel chalcone derivatives
of N-(4-acetylphenyl)-5-chlorothiophene-2-carboxamide has
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been shown in Scheme-I. In first step, 5-chlorothiophene-2-
carboxylic acid (1) and 1-(4-aminophenyl)ethanone (2) were
coupled by simple acid amine coupling reaction resulted in
the formation of N-(4-acetylphenyl)-5-chlorothiophene-2-
carboxamide (3). Then compound 3 was condensed with
substituted aromatic aldehydes by refluxing it in presence of
base results in desired chalcone derivatives of N-(4-acetyl-
phenyl)-5-chlorothiophene-2-carboxamide (4a-o).

Biological evolution

Antibacterial activities: Results of antibacterial activity
of compounds (4a-o) are shown in Table-1. Against Gram-
negative, E. coli (MTCC 443), compounds 4b and 4n displayed
good activity. Both compounds exhibit slightly more activity
than chloramphenicol and ciprofloxacin, with a minimum
inhibitory concentration (MIC) of 12.5 µg/mL. Against Gram-
negative, P. aeruginosa (MTCC 1688), compounds 4b, 4e, 4i,

TABLE-1 
ANTIBACTERIAL ACTIVITY OF  

SYNTHESIZED DERIVATIVES (4a-o) 

Compound E.  
coli 

P. 
aeruginosa 

S.  
aureus 

S. 
pyogenus 

3 50 62.5 100 100 
4a 125 100 100 250 
4b 12.5 6.25 100 125 
4c 100 62.5 25 125 
4d 250 250 125 250 
4e 62.5 25 100 250 
4f 125 125 250 100 
4g 125 125 125 62.5 
4h 250 250 250 100 
4i 125 12.5 100 62.5 
4j 250 250 125 100 
4k 125 250 500 500 
4l 250 100 250 500 

4m 100 62.5 500 250 
4n 12.5 25 50 100 
4o 125 50 62.5 125 

Chloramphenicol 50 50 50 50 
Ciprofloxacin 25 25 50 50 
Norfloxacin 10 10 10 10 

 

4n and 4o displayed good activity by having MIC 6.25 µg/mL,
25 µg/mL, 12.5 µg/mL, 25 µg/mL and 50 µg/mL, respectively.
Chloramphenicol is similar to a compound 4o, while compounds
4e and 4n, it has a higher level than chloramphenicol and is
equivalent to ciprofloxacin. However, in the case of compounds
4b and 4i, it has a higher level than both chloramphenicol and
ciprofloxacin. Against Gram-positive S. aureus (MTCC 96),
compounds 4c and 4n displayed good activity by having MIC
25 and 50 µg/mL, respectively. For compound 4c, it is more
than chloramphenicol and ciprofloxacin combined, but for
compound 4n, it is equivalent with those two standard drugs.
None of the compounds showed any activity comparable to
or higher than that of any conventional drug against Gram-
positive S. pyogenus (MTCC 442).

In silico analysis: The results of the WLOGP vs. TPSA
function, as shown in Fig. 3 and Table-2, were predicted for
the blood brain barrier (BBB) penetration and human gastro-
intestinal absorption (HIA) using the BOILED-egg model
developed by the SwissADME online base tool. In the grap-
hical representation white region shows high possibility of
passive absorption by gastrointestinal track and yellow region
shows high possibility of brain penetration. Blue coloured dots
are predicted as an active effluxed by P-gp (PGP+) and red
dots are not substrate of P-gp (PGP−).
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Fig. 3. Brain or Intestinal EstimateD permeation method (BOILED-egg)
predictive graphical representation of synthesized derivatives (4a-o)

TABLE-2 
PHYSICO-CHEMICAL PROPERTY FOR BOILED-EGG METHOD 

Compound m.w. WLOGP TPSA (Å) PGP subtract GI absorption BBB permeant 
3 279.74 3.67 74.41 No High Yes 

4a 367.85 5.25 74.41 No High No 
4b 383.85 4.96 94.64 No High No 
4c 427.90 5.27 92.87 No High No 
4d 446.74 6.01 74.41 No High No 
4f 446.74 6.01 74.41 No High No 
4g 385.84 5.81 74.41 No High No 
4h 403.83 6.37 74.41 No High No 
4i 413.87 4.96 103.87 No High No 
4j 413.87 4.96 103.87 No High No 
4k 397.87 5.26 83.64 No High No 
4l 441.93 5.66 92.87 No High No 

4m 410.92 5.32 77.65 No High No 
4n 412.85 5.16 120.23 No Low No 
4o 428.85 4.86 140.46 No Low No 
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Fig. 4. Bioavailability radar, A glance at a drug-likeness of synthesized derivatives (4a-o) [LIPO: Lipophilicity as a XLOGP3 between -0.7
and 5.0. Size: molecular size between 150-500 g/mol. POLAR: Polarity as TPSA between 20-130 Å2. INSOLU: Insolubility (0 < Log
S (ESOL) < 6). INSATU: in saturation as fraction of carbons in the sp3 hybridization < 0.25. FLEX: Flexibility as no rotatable bonds
should be more then 9]
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Pharmacokinetics studies: Drug likeness of all the syn-
thesized derivatives (4a-o) were evaluated by SwissADME web
base tool by predicting the physico-chemical properties like
lipophilicity, size, polarity, solubility, flexibility and saturation
and the results are shown in Table-3. The bioavailability radar
pink area (Fig. 4) represent the optimum range for each prop-
erty.

Conclusion

A series of N-(4-acetylphenyl)-5-chlorothiophene-2-carb-
oxamide chalcone derivatives (4a-o) has been successfully
synthesized with a good to average yield and characterized by
spectral analysis. In vitro antibacterial study revealed that all
the compounds show moderate to good antibacterial activity.
Among all the synthesized compounds, compounds 4n inhibit
both Gram-positive and Gram-negative bacteria probable due
to presence of -NO2 group. From their physico-chemical studies
all the compounds show good gastrointestinal absorption and
no blood brain barrier permeability and show drug-likeness
characteristic. All these studies revealed that potency of these
compounds as a future antibiotic drug.
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