

Effect of Substituent on the ¹³C NMR Chemical Shifts of Substituted 26-Membered [2+2] Macrocyclic Compounds

PARATHARAJ SENTHILKUMAR^{1,©} and KRISHNAN RADHAKRISHNAN^{2,*,©}

¹CRD Department, RECEPS Limited, Visakha Pharmacity Limited, Visakhapatnam-531019, India ²Department of Chemistry, Saraswathi Narayanan College of Arts and Science (Affiliated to Madurai Kamaraj University), Perungudi, Madurai-625022, India

*Corresponding author: E-mail: prskradha61@gmail.com; senthilkumarparatharaj@gmail.com

Received: 16 October 2023;	Accepted: 28 November 2023;	Published online: 31 December 2023;	AJC-21500

A series of substituted symmetrical 1⁴,1⁵,3⁴,3⁵,9⁴,9⁵,11⁴,11⁵-octamethoxy-2,10-*bis*(4-methoxyphenyl)-4,8,12,16-tetraaza-1,3,9,11(1,2), 6,14(1,4)-hexabenzenacyclohexadecaphane-4,7,12,15-tetraene compounds (macrocyclic compounds) was synthesized by condensation of various substituted benzaldehyde with 1,2-dimethoxy benzene followed by nitration, reduction and cyclization with terephthaldehyde. Isolated substituted compounds were characterized by UV, IR, NMR and mass spectrometric techniques. Investigation of substituents effect and mode of transmission of electronic effects have been carried out by ¹³C NMR chemical shifts measurement and correlated it with LFER parameters in substituted macrocyclic compounds.

Keywords: Substituent effects, Lynch correlations, Multiple regression analysis.

INTRODUCTION

In organic chemistry, Hammett equation is one of the famous and most effective and intensively examined experiential relationship to the quantitative exploration of reactivity. The Hammett equation explains a linear relationship connecting log k or log K of substituted benzoic acids. These correlations demonstrated as rate-rate, equilibrium-equilibrium or rate-equilibrium relationships. These relationships are frequently mentioned as linear free-energy relationships (LFER). The LFER has often been used to cover the whole correlation study in organic chemistry [1-3]. Modern studies show that Hammett parameters can be correlated with the reaction rates, equilibrium constants, IR frequencies, UV absorption and NMR chemical shifts [4-7]. Correlation of chemical shift with substituent constant used to identify the type of effect of the substituent on the physical property of the compounds [8-10]. The single substituent parameter (SSP) method has been applied to correlate the chemical shift of *m*- and *p*-substituted compounds to unsubstituted compounds using the σ_m and σ_p value as represented in eqn. 1 and the values of ${}^{13}C$ were calculated for *m*- and *p*- substituted cinnamic acids [11-13]. The dual substituent parameter (DSP)

method yields the effect of substituent effect in to inductive (σ_{I}) and resonance (σ_{R}) parameters as represented in eqn. 2.

$$\delta = \rho \sigma + \delta^{\circ} \tag{1}$$

$$\delta = \rho_{\rm I} \sigma_{\rm I} + \rho_{\rm R} \sigma_{\rm R} + \delta^{\rm o} \tag{2}$$

The substituent constant (σ), which is independent of nature of the reaction and measures the polar effect of the substituent. The reaction constant (ρ) , which is depends on the nature of reaction and measures the sensitivity of the reaction to the influence of the substituents. Electron withdrawing substituents have positive σ value and electron releasing substances have negative σ value. The σ -scale covers roughly the numerical range 0 ± 1.4 . The dual substitutent parameter (DSP) eqn. 2 is the most generally useful treatment and well-suited for the analysis of spectroscopic data. The values ρ_I and ρ_R are position dependant and give a direct measure of the transmission of inductive and resonance effects. The significance of resonance and inductive effects are represented by the blending factor (λ). Several authors [14-17] projected an eqn. 3 for identifying the influence of +M substituents on reactions. The DSP analysis of sterically congested systems has been improved by triple substituent parameter (TSP) by using Charton's steric parameter (v) using eqn. 4:

This is an open access journal, and articles are distributed under the terms of the Attribution 4.0 International (CC BY 4.0) License. This license lets others distribute, remix, tweak, and build upon your work, even commercially, as long as they credit the author for the original creation. You must give appropriate credit, provide a link to the license, and indicate if changes were made.

$$\delta = \rho \sigma + r(\sigma^{+} - \sigma^{-}) + \delta^{\circ}$$
(3)

$$\delta = \rho_{\rm I} \,\sigma_{\rm I} + \rho_{\rm R} \,\sigma_{\rm R} + \phi \nu + \delta^{\rm o} \tag{4}$$

Recently, we have reported the synthesis, characterization and antioxidant activity of novel 26 membered [2+2] macrocycles and the effect of substituents on the antimicrobial activities of substituted 1^4 , 1^5 , 3^4 , 3^5 , 9^4 , 9^5 , 11^4 , 11^5 -octamethoxy2, 10-*bis*(4methoxyphenyl) -4,8,12,16-tetraaza-1,3,9,11(1,2),6,14(1,4)hexabenzenacyclohexadecaphane-4,7,12,15-tetraene derivatives [18,19]. These reports prompted us to undertake a detailed 1^3 C NMR spectral correlation study of various substituted macrocyclic compounds.

EXPERIMENTAL

In this study, the substituted macrocyclic compounds (Fig. 1) were synthesized in order to study the correlations using the Hammett substituent constants and ¹³C NMR substituent induced chemical shifts (SCS) of substituted macrocyclic compounds. Additionally, SCS was also used to monitor the electronic effects in molecular structures and to understand long-range effects in extended π -systems.

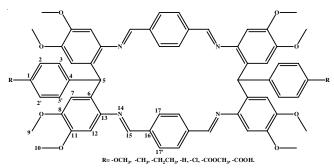


Fig. 1. Chemical structure of macrocyclic compounds

Assignment of ¹³C chemical shifts: The ¹³C chemical shifts were assigned by the intensity and substituent-induced chemical shifts (SCS) considerations. The ¹³C chemical shifts of the substituted 1⁴,1⁵,3⁴,3⁵,9⁴,9⁵,11⁴,11⁵-octamethoxy-2,10-*bis*(4-methoxyphenyl)-4,8,12,16-tetraaza-1,3,9,11(1,2),6,14 (1,4)-hexabenzen acyclohexadecaphane-4,7,12,15-tetraene compounds are presented in Table-1.

RESULTS AND DISCUSSION

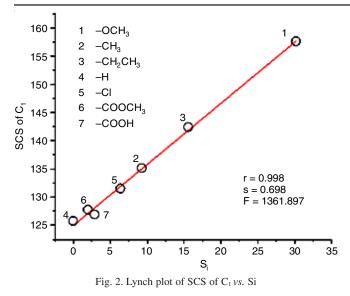
Substituent effects on the ¹³**C NMR chemical shifts of substituted macrocyclic compounds:** The ¹³C chemical shift data of several carbon atoms of substituted compounds has been correlated with the SSP (eqn. 1), DSP (eqn. 2) and Yukawa-Tsuno (eqn. 3) correlations.

Correlations with Lynch equation: In case of C₁, there is a good correlation with (r = 0.998) appropriate SCS (S_I) values and slope b is 0.921, which discloses that the fixed substituent $Y = C_{25}H_{23}N_2O_4$, has little effect on the additivity of this shifts [20-25]. A good correlation exists between SCS of $C_{22'}$ and S_o with a correlation coefficient (r = 0.997) and the slope value (b = 0.966), indicating that the fixed substituent Y, has little effect on the additivity of these shifts [20-25]. A poor correlation exists between SCS of $C_{33'}$ and S_m with a correlation coefficient (r = 0.818) and the slope value (b = 0.599) discloses that the fixed substituent Y diminishes the substituent effect [26]. The C₄ carbon affords a good correlation with S_p with a correlation coefficient r = 0.946 and the slope value b = 0.901 demonstrates that the fixed substituent Y diminishes the substituent effect [26]. The outcomes of Lynch correlations are given in Table-2 and the plots of Lynch correlations are shown in Fig. 2 using Lynch eqn. 5:

$$SCS_{X}(Y) = a + b [SCS_{X}(H)]$$
(5)

Hammett and dual substituent parameter correlations: Hammett equation is one of the famous most successful and intensively investigated empirical relationships to the quantitative exploration of reactivity in organic chemistry. The Hammett equation explains a linear relationship connecting log k or log K of substituted benzoic acids. Such correlations may be demonstrated as rate-rate, equilibrium-equilibrium or rate-equilibrium relationships and are usually referred to as linear free energy relationships (LFER). The ¹³C chemical shifts of the carbon atoms of the macrocyclic compound series afford several reasonable correlations using Hammett substituent parameters eqn. 1 and the data are given in Table-3 [20-26].

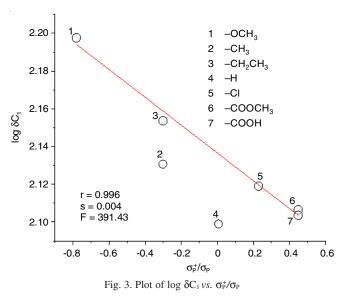
The outcomes of the correlations of ¹³C SCS values of macrocyclic compounds series with σ_I and σ_R constants according to eqn. 2 are presented in Table-4, whereas the outcomes


TABLE-1 ¹³ C NMR CHEMICAL SHIFTS OF SUBSTITUTED MACROCYCLIC COMPOUNDS										
	¹ S C 1	NMR CHEMICA	AL SHIFTS OF S	SUBSTITUTED	MACROCYCLI	C COMPOUND	S			
Substituent (R)	1	2/2'	3/3'	4	5	6/6'	7/7'	8/8'		
-OCH ₃	157.57	113.37	130.01	137.40	42.25	130.56	113.47	147.93		
-CH ₃	135.09	128.98	128.98	142.16	42.65	130.47	113.43	147.93		
-CH ₂ CH ₃	142.36	127.57	129.01	141.42	42.67	130.51	113.50	147.94		
-H	125.71	129.10	128.08	145.42	43.03	130.28	113.49	148.01		
-Cl	131.47	128.87	129.83	143.97	42.45	130.42	113.21	148.19		
-COOCH ₃	127.71	129.44	129.07	147.70	43.16	129.59	113.26	148.26		
-COOH	126.87	130.11	129.16	152.06	43.17	129.44	113.23	148.28		
Substituent (R)	9/9'	10/10'	11/11'	12/12'	13/13'	15/15'	16/16'	17/17'		
-OCH ₃	56.19	56.01	147.39	101.65	142.81	157.11	138.63	128.84		
-CH ₃	56.20	56.01	147.37	101.64	142.88	157.12	138.63	128.83		
-CH ₂ CH ₃	56.22	56.01	147.38	101.66	142.92	157.16	138.63	128.84		
-H	56.19	56.02	147.42	101.65	142.89	157.10	138.64	128.84		
-Cl	56.23	56.03	147.56	101.64	142.80	157.09	138.65	128.87		
-COOCH ₃	56.20	56.03	147.59	101.64	142.80	157.07	138.65	128.87		
-COOH	56.21	56.03	147.61	101.69	142.80	157.20	138.63	128.91		

TADLE 1

TABLE-2 RESULTS OF LYNCH CORRELATIONS (5) OF ¹³ C CHEMICAL SHIFTS OF COMPOUND Fig. 1 WITH SCS VALUES FOR MONOSUBSTITUTED BENZENES									
Carbons	Benzene SCS (S) ^a	Slope	Intercept	r ^b	n°	s ^d			
C ₁	SI	0.921	-115.12	0.998	7	0.697			
C _{22'}	S _o	0.966	-124.18	0.997	7	0.371			
C _{33'}	S _m	0.599	-77.097	0.818	7	0.292			
C_4	S _p	0.901	-130.99	0.946	7	1.589			

where 'a' is SCS value, 'b' is the Correlation coefficient, 'c' is the Number of data points, 'd' is Standard deviations


TABLE-3RESULTS OF STATISTICAL TREATMENT OF ¹³ C – CHEMICAL SHIFT WITH $\sigma_p^{,o}, \sigma_p^{,o}, \sigma_p^{,$									
Carbon	Scale	ρ	r	S	F	log(IZD)°	n		
	σ_{p}	-0.113 ± 0.020	0.956	0.014	31.644	2.152 ± 0.010	5		
	σ_{p}^{o}	-0.082 ± 0.071	0.553	0.038	1.325	2.138 ± 0.020	5		
	σ_{p}^{+}	-0.074 ± 0.010	0.987	0.010	117.261	2.135 ± 0.003	5		
C_1	$\sigma_{ m p}^{-}$	-0.071 ± 0.021	0.888	0.021	11.165	2.154 ± 0.011	5		
	$\sigma_p^+ \sigma_p$	-0.074 ± 0.004	0.996	0.004	391.43	2.137 ± 0.002	5		
	$\sigma_{\rm p}/\sigma_{\rm p}^{-}$	-0.073 ± 0.021	0.898	0.020	12.442	2.155 ± 0.011	5		
	$\sigma_{\rm p}^{+}/\sigma_{\rm p}^{-}$	-0.057 ± 0.010	0.970	0.011	47.374	2.143 ± 0.010	5		
	σ_{p}	0.042 ± 0.010	0.801	0.010	20.099	2.156 ± 0.003	7		
	σ_{p}^{o}	0.046 ± 0.021	0.78	0.012	4.655	2.154 ± 0.010	5		
	σ_{p}^{+}	0.030 ± 0.010	0.935	0.010	34.571	2.161 ± 0.002	7		
C_4	$\sigma_{ m p}^{-}$	0.030 ± 0.010	0.897	0.010	20.479	2.155 ± 0.003	7		
	$\sigma_p^+ \sigma_p$	0.030 ± 0.010	0.924	0.010	29.406	2.160 ± 0.002	7		
	$\sigma_{\rm p}/\sigma_{\rm p}^{-}$	0.030 ± 0.010	0.900	0.010	21.304	2.154 ± 0.003	7		
	$\sigma_{\rm p}^{+}/\sigma_{\rm p}^{-}$	0.023 ± 0.003	0.949	0.005	45.087	2.158 ± 0.002	7		
	σ_{p}	-0.005 ± 0.001	0.890	0.001	18.977	2.115 ± 0.000	7		
	σ_{p}^{o}	-0.004 ± 0.002	0.735	0.001	3.515	2.115 ± 0.001	5		
	σ_{p}^{+}	-0.003 ± 0.001	0.845	0.001	12.453	2.114 ± 0.000	7		
C_6	$\sigma_{\rm p}^{-}$	-0.003 ± 0.000	0.963	0.000	63.18	2.115 ± 0.000	7		
	$\sigma_p^+ \sigma_p$	-0.003 ± 0.001	0.808	0.001	9.414	2.114 ± 0.000	7		
	$\sigma_{\rm p}/\sigma_{\rm p}^{-}$	-0.003 ± 0.000	0.962	0.000	62.689	2.115 ± 0.000	7		
	$\sigma_{\rm p}^{+}/\sigma_{\rm p}^{-}$	-0.002 ± 0.001	0.907	0.001	23.059	2.115 ± 0.000	7		
	σ_{p}	0.002 ± 0.000	0.986	0.000	169.683	2.170 ± 0.000	7		
	σ_{p}^{o}	0.002 ± 0.000	0.997	0.000	467.801	2.170 ± 0.000	5		
	σ_{p}^{+}	0.001 ± 0.000	0.898	0.000	20.792	2.171 ± 0.000	7		
C_8	$\sigma_{\rm p}^{-}$	0.001 ± 0.000	0.958	0.000	55.803	2.170 ± 0.000	7		
	$\sigma_p + \sigma_p$	0.001 ± 0.000	0.912	0.000	24.78	2.171 ± 0.000	7		
	$\sigma_{\rm p}/\sigma_{\rm p}^{-}$	0.001 ± 0.000	0.956	0.000	52.88	2.170 ± 0.000	7		
	$\sigma_{\rm p}^{+}/\sigma_{\rm p}^{-}$	0.001 ± 0.000	0.934	0.000	34.14	2.170 ± 0.000	7		
	σ_{p}	-0.000 ± 0.000	0.961	0.000	36.469	2.196 ± 0.000	5		
	σ_{p}^{o}	-0.000 ± 0.000	0.983	0.000	56.354	2.196 ± 0.000	4		
	σ_{p}^{+}	-0.000 ± 0.000	0.837	0.000	7.027	2.196 ± 0.000	5		
C ₁₅	$\sigma_{ m p}^{-}$	-0.000 ± 0.000	0.964	0.000	39.845	2.196 ± 0.000	5		
	$\sigma_p^+ \sigma_p$	-0.000 ± 0.000	0.831	0.000	6.707	2.196 ± 0.000	5		
	$\sigma_{\rm p}/\sigma_{\rm p}^{-}$	-0.000 ± 0.000	0.963	0.000	38.244	2.196 ± 0.000	5		
	$\sigma_{\rm p}^{+}/\sigma_{\rm p}^{-}$	-0.000 ± 0.000	0.888	0.000	11.136	2.196 ± 0.000	5		
	σ_{p}	0.009 ± 0.004	0.711	0.003	5.119	1.630 ± 0.001	7		
	σ_{p}^{o}	0.007 ± 0.008	0.438	0.004	0.714	1.630 ± 0.002	5		
	σ_{p}^{+}	0.007 ± 0.002	0.825	0.002	10.626	1.632 ± 0.001	7		
C ₅	$\sigma_{\rm p}^{-}$	0.006 ± 0.002	0.760	0.003	6.847	1.630 ± 0.001	7		
	$\sigma_p^+ \sigma_p$	0.006 ± 0.002	0.770	0.003	7.285	1.631 ± 0.001	7		
	$\sigma_{p} \sigma_{p}^{-}$	0.007 ± 0.002	0.767	0.003	7.162	1.633 ± 0.001	7		
	$\sigma_{\rm p}^{+}/\sigma_{\rm p}^{-}$	0.005 ± 0.002	0.822	0.002	10.389	1.631 ± 0.001	7		

of multiple regression analysis of ¹³C chemical shift with σ_{p} , $(\sigma_p^+ - \sigma_p)$ and σ_p^o , $(\sigma_p^+ - \sigma_p^o)$ constants using eqn. 3 are presented in Table-5.

 C_1 – carbon atom: The chemical shift of C_1 carbon appeared over a range of 31.86 ppm. The outcome of the SSP analysis is shown in Table-3; a fairly good correlation afforded

by σ_P^+/σ_P constant is given in eqn. 6. The plot of log $\delta C_1 vs. \sigma_P^+/\sigma_P$ is shown in Fig. 3.

$$\label{eq:constraint} \begin{split} \log\,\delta C_1 &= -0.074\;(\pm\,0.004)\;\sigma_{\rm P}^{+}/\sigma_{\rm P} + 2.137\;(\pm\,0.002) \quad (6)\\ r &= 0.996;\;s = 0.004;\;F = 391.43;\;n = 5 \end{split}$$

TABLE-4
DSP ANALYSIS OF CHEMICAL SHIFT DATA WITH DUAL PARAMETER eqn. 2

Carbon	Scale			R	SE	F	*		2 2 /2
Carbon		$\rho_{\rm I}$	$\frac{\rho_R}{0.164 \pm 0.020}$				$log (IZD)^{\circ}$ 2.125 ± 0.010	n 4	$\lambda = \rho_R / \rho_I$
G	$\sigma_{\rm I}, \sigma_{\rm R}$	-0.101 ± 0.020	-0.164 ± 0.020	0.996	0.01	67.668		4	1.62
	$\sigma_{\rm I}, \sigma_{\rm R}^{\rm o}$	-0.100 ± 0.100	-0.119 ± 0.041	0.915	0.023	5.149	2.149 ± 0.020	5	1.53
C_1	$\sigma_{I}, \sigma_{R}^{+}$	-0.100 ± 0.032	-0.100 ± 0.011	0.977	0.012	20.610	2.136 ± 0.010	5	1.30
	σ_{I}, σ_{R}	-0.100 ± 0.093	-0.153 ± 0.100	0.881	0.034	1.731	2.132 ± 0.033	4	1.55
	F, R	-0.100 ± 0.040	-0.129 ± 0.023	0.974	0.013	18.444	2.138 ± 0.013	5	1.78
	σ_{I}, σ_{R}	0.040 ± 0.020	0.064 ± 0.020	0.881	0.01	5.188	2.163 ± 0.010	6	1.58
	$\sigma_{I}, \sigma_{R}^{o}$	0.020 ± 0.010	0.100 ± 0.010	0.983	0.003	59.063	2.159 ± 0.002	7	3.19
C_4	$\sigma_{\rm I}, \sigma_{\rm R}^{+}$	-0.002 ± 0.020	0.020 ± 0.010	0.838	0.01	4.701	2.166 ± 0.010	7	12.76
	$\sigma_{I}, \sigma_{R}^{-}$	0.043 ± 0.010	0.080 ± 0.010	0.990	0.003	77.778	2.164 ± 0.002	6	1.84
	F, R	0.022 ± 0.011	0.056 ± 0.010	0.960	0.005	23.336	2.162 ± 0.003	7	2.55
	σ_{I}, σ_{R}	-0.004 ± 0.003	-0.004 ± 0.003	0.649	0.001	1.089	2.115 ± 0.001	6	1.14
	$\sigma_{I}, \sigma_{R}^{o}$	-0.003 ± 0.001	-0.006 ± 0.001	0.959	0.001	23.181	2.115 ± 0.000	7	2.10
C_6	$\sigma_{I}, \sigma_{R}^{+}$	-0.001 ± 0.003	-0.002 ± 0.001	0.775	0.001	3.012	2.114 ± 0.001	7	1.85
	$\sigma_{I}, \sigma_{R}^{-}$	-0.004 ± 0.001	-0.010 ± 0.002	0.930	0.001	9.608	2.114 ± 0.000	6	1.55
	F, R	-0.004 ± 0.002	-0.005 ± 0.001	0.899	0.001	8.461	2.115 ± 0.001	7	1.38
	σ_{I}, σ_{R}	0.002 ± 0.000	0.001 ± 0.000	0.950	0.000	14.022	2.170 ± 0.000	6	0.69
	$\sigma_{I}, \sigma_{R}^{o}$	0.002 ± 0.000	0.001 ± 0.000	0.993	0.000	148.010	2.170 ± 0.000	7	0.84
C ₈	$\sigma_{\rm I}, \sigma_{\rm R}^{+}$	0.001 ± 0.000	0.000 ± 0.000	0.926	0.000	12.057	2.170 ± 0.000	7	0.40
	$\sigma_{\rm I}, \sigma_{\rm R}^{-}$	0.002 ± 0.000	0.002 ± 0.000	0.981	0.000	37.418	2.170 ± 0.000	6	0.80
	F, R	0.002 ± 0.000	0.001 ± 0.000	0.999	0.000	712.431	2.170 ± 0.000	7	0.72
	σ_{I}, σ_{R}	-0.000 ± 0.000	-0.000 ± 0.000	0.982	0.000	13.833	2.196 ± 0.000	4	0.52
	$\sigma_{I}, \sigma_{R}^{o}$	-0.000 ± 0.000	-0.000 ± 0.000	0.988	0.000	40.177	2.196 ± 0.000	5	0.94
C ₁₅	$\sigma_{I}, \sigma_{R}^{+}$	-0.000 ± 0.000	-0.000 ± 0.000	0.891	0.000	3.840	2.196 ± 0.000	5	0.52
	$\sigma_{I}, \sigma_{R}^{-}$	-0.000 ± 0.000	-0.000 ± 0.000	0.999	0.000	248.264	2.196 ± 0.000	4	0.72
	F, R	-0.000 ± 0.000	-0.000 ± 0.000	0.825	0.000	3.187	2.196 ± 0.000	6	0.47
	σ_{I}, σ_{R}	0.002 ± 0.010	0.014 ± 0.010	0.821	0.003	3.100	1.633 ± 0.002	6	6.81
	$\sigma_{I}, \sigma_{R}^{o}$	-0.001 ± 0.002	0.016 ± 0.002	0.965	0.001	26.798	1.632 ± 0.001	7	10.58
C ₅	$\sigma_{I}, \sigma_{R}^{+}$	-0.007 ± 0.010	0.010 ± 0.002	0.853	0.002	5.332	1.634 ± 0.001	7	0.78
	$\sigma_{I}, \sigma_{R}^{-}$	0.003 ± 0.002	0.020 ± 0.002	0.985	0.001	47.353	1.633 ± 0.000	6	6.12
	F, R	-0.001 ± 0.003	0.015 ± 0.003	0.948	0.001	17.576	1.633 ± 0.001	7	17.81

	TABLE-5										
	RESULTS OF MULTIPLE REGRESSION ANALYSIS OF ¹³ C CHEMICAL SHIFTS WITH										
	σ_p , $(\sigma_p^+ - \sigma_p)$ AND σ_p^{o} , $(\sigma_p^+ - \sigma_p^{o})$ CONSTANTS USING YUKAVA-TSUNO eqn. 3										
Carbon	Scale	ρ	r	R	SE	F	n				
C ₁	$\sigma_{p,}(\sigma_{p}^{+}-\sigma_{p})$	-0.020 ± 0.023	-0.165 ± 0.040	0.960	0.012	23.793	7				
C_1	σ_{p}^{o} , $(\sigma_{p}^{+} - \sigma_{p}^{o})$	-0.021 ± 0.020	-0.137 ± 0.017	0.989	0.010	45.343	5				
C_4	$\sigma_{p,}(\sigma_{p}^{+}-\sigma_{p})$	0.030 ± 0.012	0.030 ± 0.020	0.935	0.010	13.829	7				
C ₄	σ_p^{o} , $(\sigma_p^{+} - \sigma_p^{o})$	0.030 ± 0.014	0.040 ± 0.014	0.954	0.010	10.197	5				
C ₆	$\sigma_{p,}(\sigma_{p}^{+}-\sigma_{p})$	-0.005 ± 0.002	0.000 ± 0.003	0.890	0.001	7.613	7				
C ₆	σ_p^{o} , $(\sigma_p^{+} - \sigma_p^{o})$	-0.003 ± 0.003	-0.002 ± 0.003	0.785	0.001	1.605	5				
C ₈	$\sigma_{p,}(\sigma_{p}^{+}-\sigma_{p})$	0.002 ± 0.000	-0.001 ± 0.000	0.998	0.000	424.939	7				
C_8	$\sigma_{p}^{o}, (\sigma_{p}^{+} - \sigma_{p}^{o})$	0.002 ± 0.000	0.000 ± 0.000	0.997	0.000	184.519	5				
C ₁₅	$\sigma_{p,}(\sigma_{p}^{+}-\sigma_{p})$	-0.000 ± 0.000	0.000 ± 0.000	0.992	0.000	62.264	5				
C ₁₅	σ_p^{o} , $(\sigma_p^{+} - \sigma_p^{o})$	-0.000 ± 0.000	0.000 ± 0.000	0.987	0.000	18.821	4				

The chemical shift data in Table-1 shows that the electron releasing substituent causes a downfield shift whereas the electron withdrawing substituent causes an upfield shift. The DSP analysis of C_1 carbon with various σ_R scale is given in Table-4. The excellent correlation is given in eqns. 7 and 8.

$$\begin{split} &\log \delta C_1 = -0.101 \ (\pm 0.020) \ \sigma_I - 0.164 \ (\pm 0.020) \\ &\sigma_R + 2.125 \ (\pm 0.010) \end{split} \tag{7} \\ &R = 0.996; \ SE = 0.010; \ F = 67.668; \ n = 4 \\ &\log \delta C_1 = -0.100 \ (\pm 0.040) \ F - 0.129 \ (\pm 0.023) \\ &R + 2.138 \ (\pm 0.013) \end{aligned} \tag{8}$$

$$R = 0.974$$
; $SE = 0.013$; $F = 18.444$; $n = 5$

The value of slopes ρ_1 and ρ_R are negative, which discloses that the reverse substituent effect activates on C₁ carbon atom. The results of the Yukawa-Tsuno correlation (eqn. 3) is given in Table-5, while the highest fit is given in eqn. 9:

$$\log \delta C_1 = -0.021 (\pm 0.020) \sigma_p^o - 0.137 (\pm 0.017) (\sigma_p^+ - \sigma_p^o) + 2.103 (\pm 0.006)$$
(9)

R = 0.989; SE = 0.01; F = 45.343; n = 5

C₄–carbon atom: The chemical shift of C₄ carbon appeared over a range of 14.66 ppm. The results of the SSP analysis is shown in Table-3; a fairly good correlation afforded by σ_p^+/σ_p^- constant is given in eqn. 10.

$$\log \delta C_4 = 0.023 \ (\pm \ 0.003) \ \sigma_P^+ / \sigma_P^- + 2.158 \ (\pm \ 0.002) \tag{10}$$

Thus, the chemical shift data in Table-1 shows that the electron releasing substituent causes an upfield shift whereas the electron withdrawing substituent causes a downfield shift. The DSP analysis of C_4 carbon with various σ_R scale is given in Table-4 and the highest fit is given in eqns. 11 and 12.

$$\begin{split} &\log \, \delta C_4 = 0.043 \; (\pm \; 0.010) \; \sigma_{\rm I} + 0.080 \; (\pm \; 0.014) \\ &\sigma_{\rm R}^- + 2.164 \; (\pm \; 0.002) \\ & {\rm R} = 0.990; \; {\rm SE} = 0.003; \; {\rm F} = 77.778; \; {\rm n} = 6 \end{split}$$

$$\log \delta C_4 = 0.022 (\pm 0.011) F + 0.056 (\pm 0.010) R + 2.162 (\pm 0.003)$$
(12)

R = 0.960; SE = 0.005; F = 23.336; n = 7

The value of ρ_I and ρ_R are positive, which discloses that the normal substituent effect activates on C₄ carbon atom, *i.e.* an electron withdrawing substituent decreases the C₄ carbon atom

shielding and an electron releasing substituent increases it. The magnitude of ρ_R greater than ρ_I indicates the predominance of resonance effect over inductive effect in the chemical shift of C₄ carbon atom. The results of the Yukawa-Tsuno correlation (eqn. 3) is given in Table-5 and the highest fit is given in eqn. 13:

$$\log \delta C_4 = 0.030 (\pm 0.014) \sigma_p^o + 0.040 (\pm 0.014) (\sigma_p^+ - \sigma_p^o) + 2.164 (\pm 0.005)$$
(13)
$$R = 0.954; SE = 0.010; F = 10.197; n = 5$$

C₆ – **carbon atom:** The chemical shift of C₆ carbon atom appeared over a range of 1.12 ppm. The SSP analysis results is shown in Table-3 and the correlation afforded by σ_p^- constant is given in eqn. 14:

$$\log \delta C_6 = -0.003 (\pm 0.000) \sigma_p^- + 2.115(\pm 0.000)$$
(14)
r = 0.963; s = 0.000; F = 63.18; n = 7

The chemical shift data in Table-1 shows that the electron releasing substituent causes a downfield shift whereas the electron withdrawing substituent causes an upfield shift. The DSP analysis of C₆ carbon with various σ_R scale is also given in Table-4 and the greatest fit is given in eqns. 15 and 16:

$$\begin{split} &\log \delta C_6 = -0.003 \ (\pm \ 0.001) \ \sigma_I - 0.006 \ (\pm \ 0.001) \\ &\sigma_R^\circ + 2.115 \ (\pm \ 0.000) \end{split} \tag{15} \\ &R = 0.959; \ SE = 0.001; \ F = 23.181; \ n = 7 \\ &\log \delta C_6 = -0.004 \ (\pm \ 0.002); \ F - 0.005 \ (\pm \ 0.001) \\ &R + 2.115 \ (\pm \ 0.001) \end{aligned} \tag{16}$$

R = 0.899; SE = 0.001; F = 8.461; n = 7

The value of the slopes ρ_I and ρ_R are negative, which discloses that the reverse substituent effect activates on C₆ carbon atom. The Yukawa-Tsuno correlation (eqn. 3) is given in Table-5 and the greatest fit is given in eqn. 17.

$$\log \delta C_6 = -0.005 (\pm 0.002) \sigma_p + 0.000 (\pm 0.003) (\sigma_p^+ - \sigma_p) + 2.075 (\pm 0.001)$$
(17)

R = 0.890; SE = 0.001; F = 7.613; n = 7

C₈–carbon atom: The chemical shift of C₈ carbon atom appeared over a narrow range of 0.36 ppm. The SSP analysis results is shown in Table-3 and the correlation afforded by σ_P^{o} constant is given in eqn. 18:

$$\log \delta C_8 = 0.002 \ (\pm \ 0.000) \ \sigma_p^o + 2.170 \ (\pm \ 0.000) \ (18)$$

The chemical shift data in Table-1 shows that the electron releasing substituent causes an upfield shift whereas the electron withdrawing substituent causes a downfield shift. The DSP analysis of C_8 carbon with various σ_R scale is given in Table-4 and the greatest fit is given in eqns. 19 and 20.

$$\begin{split} &\log \delta C_8 = 0.002 \ (\pm \ 0.000) \ \sigma_I + 0.001 \ (\pm \ 0.000) \\ &\sigma_R^\circ + 2.170 \ (\pm \ 0.000) \ (19) \\ &R = 0.993; \ SE = 0.000; \ F = 148.01; \ n = 7 \\ &\log \delta C_8 = 0.002 \ (\pm \ 0.000) \ F + 0.001 \ (\pm \ 0.000) \\ &R + 2.170 \ (\pm \ 0.000) \ (20) \end{split}$$

R = 0.999; SE = 0.000; F = 712.431; n = 7

The value of ρ_1 and ρ_R are positive, which discloses that the normal substituent effect activates on C₈ carbon atom, *i.e.* an electron-withdrawing substituent decreases the C₈ carbon atom shielding and an electron-releasing substituent increases it, which is further confirmed by using the Yukawa-Tsuno correlation (Table-5). The highest fit is given in eqn. 21.

$$\log \delta C_8 = 0.002 (\pm 0.000) \sigma_p - 0.001 (\pm 0.000) (\sigma_p^+ - \sigma_p) + 2.170 (\pm 0.000)$$
(21)

R = 0.998; SE = 0.000; F = 424.939; n = 7

C₁₅-carbon atom: The chemical shift of C₁₅ carbon was appeared over a relatively narrow range of 0.124 ppm. The SSP analysis results shown in Table-3 confirmed the outcomes and a fairly good correlation afforded by σ_p^- constant is given in eqn. 22.

$$\log \delta C_{15} = -0.000 \ (\pm \ 0.000) \ \sigma_{\rm P}^{-} + 2.196 \ (\pm \ 0.000) \ (22)$$

$$r = 0.964; s = 0.000; F = 39.845; n = 5$$

Table-1 shows that the electron-releasing substituent causes an upfield shift whereas the electron withdrawing substituent causes a downfield shift. The DSP analysis results of C_{15} carbon with various σ_R scale is given in Table-4 and the highest fit is given in eqns. 23 and 24.

$$\begin{split} &\log \delta C_{15} = 0.000 \ (\pm \ 0.000) \ \sigma_{I} + 0.000 \ (\pm \ 0.000) \\ &\sigma_{R} + 2.196 \ (\pm \ 0.000) \\ &R = 0.999; \ SE = 0.000; \ F = 248.264; \ n = 4 \end{split}$$

$$\log \delta C_{15} = -0.000 (\pm 0.000) \text{ F} - 0.000 (\pm 0.000)$$

$$R + 2.196 (\pm 0.000) \tag{24}$$

$$R = 0.825; SE = 0.000; F = 3.187; n = 6$$

Based on eqns. 23 and 24, the results of the Yukawa-Tsuno eqn. 3, is given in Table-5. The greatest fit is given in eqn. 25.

$$\log \delta C_{15} = 0.000 (\pm 0.000) \sigma_p^{\circ} - 0.000 (\pm 0.000) (\sigma_p^{\circ} - \sigma_n^{\circ}) + 2.196 (\pm 0.000)$$
(25)

R = 0.992; SE = 0.000; F = 62.264; n = 5

C₅–carbon atom: The chemical shift of C₅ carbon atoms appeared over a narrow range of about 0.948 ppm. The SSP analysis of C₅ σ_p , σ_p° , σ_p^{+} , σ_p^{-} , σ_p^{+}/σ_p , σ_p/σ_p^{-} and $\sigma_p^{+}/\sigma_p^{-}$ gave poor correlation coefficients (r) 0.711, 0.438, 0.825, 0.760, 0.770, 0.767 and 0.822, respectively. Equations 26-28 described the results of the SSP analysis that was performed.

$$\begin{split} \log \delta C_5 &= 0.009 \ (\pm \ 0.004) \ \sigma_p + 1.630 \ (\pm \ 0.001) \ (26) \\ &r &= 0.711; \ s = 0.003; \ n = 7 \\ \log \delta C_5 &= 0.007 \ (\pm \ 0.002) \ \sigma_P^+ + 1.632 \ (\pm \ 0.001) \ (27) \\ &r &= 0.825; \ s = 0.002; \ n = 7 \\ \log \delta C_5 &= 0.006 \ (\pm \ 0.002) \ \sigma_P^- + 1.630 \ (\pm \ 0.001) \ (28) \end{split}$$

$$r = 0.760; s = 0.003; n = 7$$

The DSP results of C_5 carbon with various σ_R scale is given in Table-4 and the excellent correlation is shown in eqns. 29 and 30.

$$\begin{split} &\log \delta C_5 = 0.003 \ (\pm \ 0.002) \ \sigma_I + 0.020 \ (\pm \ 0.002) \\ &\sigma_R + 1.633 \ (\pm \ 0.000) \\ &R = 0.985; \ SE = 0.001; \ F = 47.353; \ n = 6 \end{split}$$

$$\log \delta C_5 = -0.001 (\pm 0.003) F + 0.015 (\pm 0.003)$$

R + 1.633 (\pm 0.001) (30)

R = 0.948; SE = 0.001; F = 17.576; n = 7

The triple substituent parameter (TSP) analysis of Charton's steric parameter (v) gave good correlations valus as shown in Table-6. The high correlation coefficient (R) and minimum standard error (SE) of the regression equation provide TSP analysis the best fit, as shown in eqns. 31 and 32.

$$\log \delta C_{5} = -0.001 (\pm 0.001) \sigma_{I} + 0.015 (\pm 0.001) \sigma_{R}^{\circ} - 0.004 (\pm 0.001) \nu + 1.634 (\pm 0.000)$$
(31)

$$R = 0.999; SE = 0.000; n = 5$$

$$\log \delta C_{-} = 0.004 (\pm 0.000) E \pm 0.000 (\pm 0.000)$$

$$R - 0.004 (\pm 0.000) V + 1.634 (\pm 0.000) (32)$$

$$R = 0.999$$
, $s = 0.00$, $n = 5$

A better description of the composition of the electrical effect [26,27] is given by eqn. 33:

$$P_{\rm R} = \frac{\beta 100}{\alpha + \beta + \phi} \tag{33}$$

where P_R is defined as the percentage of delocalized effect. The result of the TSP analysis (Table-6) shows that the delocalized effect is predominant over the localized effect and the magnitude (%) of the steric factor [26] is represented by eqn. 34 which confirmed that the steric effect is also operating to some extent.

TSP ANALYSIS OF SCS DATA OF C5 CARBON ATOMS OF 1 ⁴ ,1 ⁵ ,3 ⁴ ,3 ⁵ ,9 ⁴ ,9 ⁵ ,11 ⁴ ,11 ⁵ -OCTAMETHOXY- 2,10- <i>BIS</i> (4-METHOXYPHENYL)-4,8,12,16-TETRAAZA-1,3,9,11(1,2),6,14(1,4)-HEXABENZENA CYCLOHEXADECAPHANE-4,7,12,15-TETRAENE COMPOUNDS EMPLOYING eqn. 33									
Scale	α	β	φ	R	s	F	P _R	Ps	
$\sigma_{I}, \sigma_{R}, \nu$	-0.002 ± 0.001	0.009 ± 0.001	-0.005 ± 0.001	0.998	0.000	69.191	56.2	31.2	
$\sigma_{I}, \sigma_{R}^{o}, \nu$	-0.001 ± 0.001	0.015 ± 0.001	-0.004 ± 0.001	0.999	0.000	178.454	75.0	20.0	
$\sigma_{I}, \sigma_{R}^{+}, \nu$	-0.008 ± 0.005	0.003 ± 0.002	-0.003 ± 0.006	0.918	0.002	1.781	21.4	21.4	
σ_{I}, σ_{R} -, v	0.002 ± 0.004	0.017 ± 0.006	-0.002 ± 0.003	0.981	0.001	8.303	80.9	9.5	
F, R, ν	-0.004 ± 0.000	0.009 ± 0.000	-0.004 ± 0.000	0.999	0.000	20129.8	52.9	23.5	

TABLE-6

$$Ps = \frac{\phi 100}{\alpha + \beta + \phi}$$
(34)

Conclusion

A series of substituted macrocyclic compounds were synthesized by the condensation of substituted benzaldehydes with 1,2-dimethoxy benzene followed by nitration, reduction and cyclization with terephthaldehyde. The synthesized substituted molecules were characterized by the ¹H & ¹³C spectral data. The ¹³C NMR spectral data of the substituted macrocyclic compounds have been correlated with Hammett substituent constants and F and R parameters. The ¹³C NMR spectral correlations produced the greatest number of satisfactory correlations.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interests regarding the publication of this article.

REFERENCES

- E. Rosta and A. Warshel, J. Chem. Theory Comput., 8, 3574 (2012); https://doi.org/10.1021/ct2009329
- J. Shorter, Correlation Analysis in Organic Chemistry, An Introduction to Linear Free Energy Relationship, London, p. 119 (1973).
- 3. D. Iguchi, D. Ravelli, R. Erra-Balsells and S.M. Bonesi, *Molecules*, 25, 2061 (2020);
- https://doi.org/10.3390/molecules25092061
- 4. C. Hansch, A. Leo and R.W. Taft, *Chem. Rev.*, **91**, 165 (1991); https://doi.org/10.1021/cr00002a004
- A. Ikezaki, T. Ikeue and M. Nakamura, *Inorg. Chim. Acta*, 335, 91 (2002); https://doi.org/10.1016/S0020-1693(02)00819-8
- N.Y. Gorobets, S.A. Yermolayev, T. Gurley, A.A. Gurinov, P.M. Tolstoy, I.G. Shenderovich and N.E. Leadbeater, J. Phys. Org. Chem., 25, 287 (2012); https://doi.org/10.1002/poc.1910
- C. Bustos, L. Alvarez-Thon, E. Molins, I. Moreno-Villoslada, G. Vallejos-Contreras, C. Sánchez, X. Zarate, D. Mac-Leod Carey and E. Schott, *J. Mol. Struct.*, **1171**, 349 (2018);
- https://doi.org/10.1016/j.molstruc.2018.05.088
 H. Yuan, P.-W. Chen, M.-Y. Li, Y. Zhang, Z.-W. Peng, W. Liu, R.S. Paton and C. Cao, *J. Mol. Struct.*, **1204**, 127489 (2020); https://doi.org/10.1016/j.molstruc.2019.127489
- M.B. Smith and J. March, March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, Wiley: Hoboken, NJ, USA, edn, 6, p. 401 (2007).

- F.A. Carey and R.J. Sundberg, Advanced Organic Chemistry, Part A: Structure and Mechanisms, Springer: Berlin/Heidelberg, Germany, edn. 5, p. 335 (2007).
- F.A. Carroll, Perspectives on Structure and Mechanism in Organic Chemistry; John Wiley & Sons: Hoboken, NJ, USA, p. 366 (1998).
- J.H. Markgraf, L. Hong, D.P. Richardson and M.H. Schofield, Magn. Reson. Chem., 45, 985 (2007); https://doi.org/10.1002/mrc.2082
- 13. H.S. Lee, J.S. Yu and C.K. Lee, *Bull. Korean Chem. Soc.*, **30**, 2351 (2009);
- https://doi.org/10.5012/bkcs.2009.30.10.2351
- N. Kalyanasundaram, S.P. Sakthinathan, R. Suresh, D. Kamalakkannan, S. John Joseph, G. Vanangamudi and G. Thirunarayanan, *Int. Lett. Chem. Phys. Astron*, 28, 23 (2014); <u>https://doi.org/10.56431/p-4z1nao</u>
- D.J. Craik and R.T.C. Brownlee, Prog. Phys. Org. Chem., 14, 1 (1983); https://doi.org/10.1002/9780470171936.ch1
- N.B. Chapman and J. Shorter, Advances in Linear Free Energy Relationships, Plenum: London (1972).
- 17. L.P. Hammett, Physical Organic Chemistry, McGraw Hill Book Company, Inc., New York, Chapter VII, (1970).
- K. Radhakrishnan, P. Senthilkumar, P.K. Manikandan and U.K. Ray, J. Adv. Sci. Res., 12, 198 (2021).
- P. Senthilkumar, K. Radhakrishnan and P.K. Manikandan, World J. Pharm. Res., 11, PP1103 (2022).
- R. Arulkumaran, V. Manikandan and G. Thirunarayanan, World Sci. News, 80, 235 (2017).
- 21. R. Arulkumaran, V. Manikandan, P. Christhuraj and G. Thirunarayanan, *World Sci. News*, **62**, 93 (2017).
- G. Thirunarayanan, K.G. Sekar and R.L. Narayanan, Int. Lett. Chem., Phys. Astron., 32, 88 (2014); https://doi.org/10.56431/p-4kg378
- M. Rajarajan, R. Senbagam, V. Vijayakumar, V. Manikandan, S. Balaji, G. Vanangamudi and G. Thirukumaran, *World Sci. News*, 9, 155 (2015).
- G. Thirunarayanan, M. Gopalakrishnan and G. Vanangamudi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 67, 1106 (2007); https://doi.org/10.1016/j.saa.2006.09.034
- G. Thirunarayanan, Bull. Chem. Soc. Ethiop., 28, 73 (2014); https://doi.org/10.4314/bcse.v28i1.9
- J.E. Arrowsmith, M.J. Cook and D.J. Hardstone, *Org. Magn. Reson.*, 11, 160 (1978);
- https://doi.org/10.1002/mrc.1270110314
- P. Mohandass, K. Radhakrishnan, S. Manimekalai, V. Suriyanarayanan and S. Radhakrishnan, *Asian J. Res. Chem*, **11**, 43 (2018); <u>https://doi.org/10.5958/0974-4150.2018.00010.X</u>