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INTRODUCTION

Green organic chemistry seeks to mitigate the environ-
mental and health impacts of chemical processes by adhering
to the twelve principles of green chemistry, which emphasize
minimizing waste, reducing toxicity and conserving energy
[1,2]. In response to growing concerns about environmental
degradation and resource depletion, green chemistry has become
a critical focus in scientific research. This field aims to design
chemical products and processes that are more sustainable,
emphasizing the use of renewable feedstocks, safer solvents
and energy-efficient methods [3].
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Several key breakthrough in green organic chemistry have
significantly advanced sustainable methodologies. These include
the use of biocatalysis [4], where natural enzymes replace haza-
rdous chemical catalysts, offering selective and eco-friendly
transformations under mild conditions. The adoption of super-
critical carbon dioxide (scCO2) as a green solvent [5] provides
an environmentally benign alternative to traditional solvents,
while photoredox catalysis [6] leverages visible light to drive
chemical reactions, reducing energy consumption. Moreover,
innovations such as microwave-assisted organic synthesis
(MAOS) and flow chemistry [7] enable faster, energy-efficient
reactions with less waste. The development of solvent-free
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and catalysis-free reactions [8] further exemplifies the move
toward greener processes and the use of renewable feedstocks
[9] from biomass helps reduce reliance on non-renewable reso-
urces. These breakthroughs underscore the shift toward more
sustainable practices in chemistry.

Recent advancements in technology, particularly AI and
machine learning (ML), are revolutionizing green organic
chemistry by offering novel solutions to enhance sustainability.
AI methods are increasingly applied to optimize chemical reac-
tions, design eco-friendly processes and discover sustainable
materials [10]. AI algorithms can analyze extensive experi-
mental data to predict reaction outcomes, recommend greener
solvents and catalysts and devise more efficient synthetic routes.
This automation significantly reduces the time and resources
needed for chemical discovery, making sustainable practices
more attainable [11].

The significance of AI goes beyond optimization; it intro-
duces innovative approaches to longstanding challenges. For
instance, AI can swiftly screen numerous reaction conditions
to identify those that minimize waste, predict environmentally
friendly catalysts that reduce energy consumption and suggest
renewable feedstock alternatives. AI-driven retrosynthesis can
also propose multiple synthetic pathways, ranking them based
on their environmental impact [12].

However, integrating AI into green chemistry presents
challenges. High-quality, curated chemical datasets are often
limited, impacting the accuracy of AI models [13]. Further-
more, many AI models function as “black boxes,” lacking
transparency in their prediction processes, which can hinder
their acceptance among researchers [14]. Effective integration
of AI into experimental workflows necessitates interdisciplinary
collaboration among chemists, data scientists and AI specialists
to ensure that AI tools are practical and interpretable [15].

This review explores the transformative role of AI in green
organic chemistry, focusing on its applications in reaction
optimization, solvent selection, waste reduction and catalyst
design. It also addresses challenges related to data availability,
model interpretability and interdisciplinary collaboration,
providing a comprehensive overview of AI’s contributions to
advancing sustainable chemical processes.

AI in reaction optimization and predictive modeling

Machine learning (ML) in organic reaction prediction:
The optimizing reaction conditions in organic chemistry is
often a time-consuming process, involving the manipulation
of temperatures, catalysts and solvents to achieve the highest
yield with minimal resource use. Traditionally, this involves
the laborious trial-and-error experimentation. However, ML
offers a more efficient solution by analyzing vast datasets of
historical reactions to identify patterns that lead to optimal out-
comes. For example, ML models trained on reaction data can
accurately predict key variables such as yield, reaction time and
selectivity [16], allowing chemists to directly target the best
conditions. This significantly reduces resource consumption
and environmental impact.

A notable example is the work of Makarov et al. [17], who
developed a random forest-based ML model to predict the

yields of pyrrole and dipyrromethane condensation reactions
with aldehydes. Trained on over 1,200 reactions, their model was
integrated into a user-friendly web application, ChemPredictor
(http://chem-predictor.isc-ras.ru/reaction/yield/), where users
can input reaction components and temperature to predict yields.

The application of AI models such as neural networks and
random forests is particularly valuable for modeling complex
reaction dynamics, especially when non-linear relationships
between variables are involved–common in organic reactions
[18]. Beyond optimization, these models can also predict reac-
tion outcomes in unexplored conditions, offering the possibility
of discovering greener reaction pathways that reduce environ-
mental harm.

Coley et al. [19] further demonstrated AI’s potential in
predicting reaction outcomes by combining traditional reaction
templates with the pattern recognition capabilities of neural
networks. Their model, trained on 15,000 experimental reactions
from U.S. patents, ranked potential products by focusing on the
transformation from reactants to products, rather than overall
molecular structures. In 5-fold cross-validation, the model
successfully ranked the major product as the top candidate in
71.8% of cases, within the top 3 in 86.7% and within the top 5
in 90.8%.

Fig. 1 illustrates the retrosynthetic analysis of pyrazoline
derivatives, a class of heterocyclic compounds with significant
pharmacological applications, as predicted by the AI-powered
platform Syntelly. In this figure, the target molecule, a pyraz-
oline derivative, is shown in the center, with the AI suggesting
a series of sequential disconnections that reduce the complexity
of the molecule. Each step represents a synthetic transfor-
mation in reverse, providing insight into the starting materials
required to synthesize the target compound. The analysis high-
lights key reaction intermediates, reagents and the conditions
needed for each transformation [20]. However, none of the
predicted routes was considered viable compared. This is pri-
marily due to their ease of availability and the simpler methods
required for their preparation, making them more suitable for
efficient synthesis.

Syntelly’s AI-powered system predicts these reaction path-
ways by analyzing extensive chemical databases and using ML
algorithms to suggest efficient, eco-friendly routes [21]. This
approach aligns with green chemistry principles by proposing
synthetic methods that reduce waste, minimize the use of hazar-
dous reagents and optimize energy efficiency.

AI is increasingly being leveraged to design reactions with a
lower environmental impact. For instance, IBM RXN for
chemistry [22], an AI-driven tool, predicts chemical reactions
and their optimal conditions, helping chemists minimize reso-
urce use and enhance efficiency. Similarly, Chematica [23], an
AI-powered retrosynthesis platform, identifies reaction pathways
that reduce steps, waste and energy consumption, aligning with
the principles of green chemistry.

Catalyst and reagent design: Catalysts are vital to green
organic chemistry as they lower activation energy, enabling
reactions to occur under milder, more energy-efficient condi-
tions [24]. AI has significantly enhanced catalyst design by
predicting performance across a wide range of reactions, identi-
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fying catalysts that minimize waste, reduce toxicity and lower
energy consumption [25].

One prominent example is Park et al. [26] introduced the
Chemical Markdown Language (CMDL), a domain-specific
language that enables seamless integration of historical experi-
mental data to fine-tune regression transformer (RT) models
for molecular design. This method has been applied to generate
and experimentally validate catalysts and polymers for ring-
opening polymerization, with broader applications to other
polymer classes. The CMDL-tuned models preserved key func-
tional groups, ensuring successful experimental outcomes and
showcasing its versatility in translating historical data into
actionable predictive models.

Mazheika et al. [27] demonstrated how AI-based subgroup
discovery can guide the rational design of catalytic materials.
Their model, trained on first-principles data, identified catalyst
“genes” that control CO2 activation for chemical conversion.
By correlating specific gene combinations with efficient C-O
bond elongation and reduced OCO-angle, they proposed pro-
mising new catalysts for CO2 conversion. This emphasizes the
potential of AI to reveal the mechanistic details and enhance
the development of more efficient catalysts.

AI is also making significant strides in replacing toxic
reagents with biodegradable alternatives [28]. ML models have
been instrumental in discovering organocatalysts–organic mole-
cules that act as sustainable catalysts, typically less harmful
than traditional metal-based options [29]. Furthermore, AI is
playing an increasingly critical role in enzyme design, offering
highly specific and sustainable biocatalysts, which provide
efficient and eco-friendly reaction pathways [30]. For example,
Gallarati et al. [31] applied an inverse design strategy using
the open-source genetic algorithm NaviCatGA and the OSCAR
database of organocatalysts. Focusing on the Pictet–Spengler
condensation reaction, they curated a database of 820 reactions
to train models of selectivity and activity. Through evolutionary
experiments across millions of possible catalysts, they identi-
fied privileged catalysts and extracted structure–performance
relationships. This demonstrates AI’s ability to streamline
complex chemical space exploration and optimize catalyst design.
Similarly, Zhou & Huang [32] reviewed the structure-based
and ML guided enzyme design, emphasizing the integration
of traditional molecular simulations with AI techniques. They
highlighted the importance of building comprehensive data-
bases and advanced algorithms to develop predictive models
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Fig. 1. The retrosynthetic analysis of pyrazoline derivatives predicted by Syntelly [Ref. 21]
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for enzyme design. These models are essential for exploring
sequence fitness landscapes and creating effective biocatalysts.

Table-1 provides an overview of several AI-powered tools
and platforms that are significantly advancing research in green
organic chemistry. These tools utilize AI to optimize various
aspects of chemical synthesis, such as reaction prediction, retro-
synthesis, catalyst design, solvent selection and waste reduc-
tion, thereby aligning with the 12 principles of green chemistry.

Overall, AI-driven innovations in catalyst and enzyme
design are transforming green chemistry. By uncovering new
catalysts, optimizing reaction conditions and replacing harmful
reagents with sustainable alternatives, AI is contributing to the
development of more environmentally friendly chemical proc-
esses. Each example highlights the interrelation of AI, sustaina-
bility and chemistry, demonstrating their convergence in tackling
contemporary environmental issues.

AI-Driven solvent selection and waste reduction

Solvent selection: Solvents play a significant role in the
environmental impact of chemical reactions. Many traditional
solvents, such as benzene and dichloromethane, are toxic, non-
biodegradable and difficult to dispose of safely. Green chemistry
emphasizes the shift towards safer, more sustainable alterna-
tives. AI has become a valuable tool in this pursuit by analyzing
solvent properties and predicting their behaviour under specific
reaction conditions. ML algorithms can recommend non-toxic,
biodegradable and recyclable solvents, aligning with the
principles of green chemistry [33,34].

A significant contribution to this effort by Sels et al. [35]
developed an AI-driven approach for solvent selection and sub-
stitution. They used a neural network, specifically the Kohonen
Self-organizing map, to cluster a solvent database based on the
physical properties. These clusters were then validated chemi-
cally and statistically and visualized in a user-friendly interface
via the SUSSOL (Sustainable Solvents Selection and Substi-

tution Software) tool. SUSSOL allows users to explore solvent
options and generate ranked alternatives for specific solvents
based on safety, health and environmental criteria. A depend-
able platform for picking greener, more sustainable solvents,
the tool was proven useful in case studies, which typically
matched with recommendations from existing literature.

AI has also been used to identify greener solvent alterna-
tives, such as ionic liquids and supercritical fluids, which offer
lower toxicity and volatility while maintaining high efficiency
in various organic reactions. ML models can evaluate and com-
pare the environmental footprints of different solvents based
on factors like toxicity, biodegradability and energy efficiency,
guiding chemists in making sustainable choices [36]. Lemaoui
et al. [37] further advanced the use of AI in solvent design by
combining molecular modeling with ensemble deep learning
to predict multiple properties of ionic liquids (ILs). Their study,
based on a dataset of 73,847 data points from 2,917 ILs, tested
eight ML models, finding that artificial neural networks (ANNs)
offered the most accurate predictions. The ANN model achieved
high R2 values across several properties, including 0.993 for
density and 0.907 for viscosity. Furthermore, their comprehen-
sive screening of 303,880 ILs led to the development of an
“Inverse Designer Tool” for selecting ILs based on specific green
chemistry criteria, aiding in the eco-efficient design of solvents
for industrial applications.

The role of AI in promoting safer and more sustainable
chemical processes continues to expand. Several companies
have developed bespoke solvent selection guides to assist
scientists in making environmentally conscious choices. For
example, the Solvent Selection Guides from GSK [38], Pfizer
[39] and Sanofi [40] use AI to help chemists identify solvents
that align with environmental and safety standards. In addition,
AI-driven research has recommended the use of supercritical
CO2 (SC-CO2) as a greener solvent, significantly reducing the
ecological impact of chemical reactions. Based on these advan-

TABLE-1 
DETAILS OF SOME AI-POWERED TOOLS AND PLATFORMS IN GREEN CHEMISTRY RESEARCH 

Tool/Platform Functionality Example of application 

Open reaction database 
(ORD)  

Provides open-access data for AI model 
training in green chemistry 

ORD was used by chemists and data scientists to develop AI models 
for predicting sustainable synthesis pathways for drug discovery 

Toxicity estimation 
software tool (T.E.S.T.)
  

Uses AI to predict chemical toxicity for 
green chemistry applications 

T.E.S.T. predicted the toxicity of by-products in a pharmaceutical 
synthesis, allowing chemists to replace harmful reagents early in the 
process 

IBM RXN for chemistry AI-powered retrosynthesis and reaction 
prediction platform 

IBM RXN predicted greener synthetic pathways for organic 
compounds, resulting in a 30% reduction in hazardous waste 
generation in laboratory trials 

ASKCOS AI-based tool for retrosynthetic analysis, 
offering multiple synthetic pathways for a 
given target molecule 

ASKCOS proposed a sustainable synthetic route for a pharmaceutical 
intermediate, minimizing solvent waste by 25% 

Chemputer A programmable, automated chemistry 
platform that uses AI to execute chemical 
reactions 

The Chemputer automated an AI-predicted green synthesis pathway 
for a bioactive molecule, reducing energy consumption by 40% 

DeepChem A ML library designed for chemistry and 
materials science 

DeepChem was used to develop AI models that predicted eco-friendly 
catalysts for CO2 capture 

Reaction mechanism 
generator (RMG) 

Open-source AI tool for generating detailed 
reaction mechanisms and kinetics 

RMG generated a sustainable catalytic pathway for biomass 
conversion to biofuels, minimizing by-products and energy input 

Chematica (now Synthia) AI-based retrosynthesis tool that predicts 
synthetic routes with a focus on 
sustainability and cost-effectiveness 

Chematica suggested a green synthetic route for a complex 
pharmaceutical, reducing hazardous reagent use by 20% 
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cements, Huwaimel & Alobaida [41] used ML to explore the
solubility of tamoxifen in SC-CO2. By applying Adaboost
methods, they optimized three models viz. K-nearest Neighbor
(KNN), Theil-Sen Regression (TSR) and Gaussian Process Regr-
ession (GPR) with pressure and temperature as input variables.
Their models demonstrated strong predictive performance,
with ADA-KNN achieving an R2 of 0.996, the highest among
the models. This approach highlights the potential of AI in
advancing green chemistry, offering precise solubility predi-
ctions and facilitating the design of environmentally friendly
solvents. This interconnected use of AI in solvent selection
and optimization underscores its critical role in advancing sust-
ainable chemistry practices.

Minimizing byproducts and waste: Waste reduction is
a cornerstone of green chemistry. Traditional synthetic routes
often involve multiple steps, each generating its own waste [42].
AI enhances these pathways by analyzing reaction data to
suggest more efficient routes that minimize byproducts and
reduce the number of steps required. By identifying alternative
pathways or conditions that avoid unwanted byproducts, AI
significantly lowers the environmental footprint of organic
synthesis [43].

Liu & Hein [44] examine the revolutionary effect of auto-
mation, analytics and artificial intelligence on chemical synthesis.
Their work highlights the transformative impact of these tech-
nologies in enabling real-time reaction monitoring, data-driven
decision-making and autonomous experimentation. With AI
tools, chemists can analyze extensive datasets to optimize reac-
tion conditions more efficiently, which reduces errors and waste,
thereby supporting the development of scalable and sustainable
synthetic pathways.

Thus, Kariofillis et al. [45] demonstrated the integration
of data science techniques to guide substrate scope analysis in
a Ni/photoredox-catalyzed cross-coupling reaction using acetals
as radical sources. They employed tools such as DFT featuri-
zation, dimensionality reduction and hierarchical clustering
to develop a diverse collection of aryl bromides. By mapping
these methods onto the substrate space, they identified areas
of sparse coverage and trends in reaction yields, which high-
lighted regions of high efficiency and potential functional group
incompatibilities. This approach underscores how data science
can enhance reaction optimization and waste reduction.

In a different application, Jorayev et al. [46] optimized a
chemical route starting from biowaste derived mixtures, focu-
sing on converting waste terpenes to p-cymene. Without a
detailed kinetic model, they utilized the Bayesian optimization
algorithm TS-EMO (two-stage evolutionary multi-objective
optimization) to enhance the first two reaction steps for maxi-
mum conversion and selectivity. This successful application
of TS-EMO highlights its effectiveness in reaction optimization
even without prior kinetic data.

Furthermore, AI-based retrosynthesis tools play a crucial
role in designing pathways that minimize hazardous bypro-
ducts. For instance, the Synthia platform generates greener
synthetic routes by avoiding toxic byproducts and AI is also
utilized in flow chemistry to optimize continuous reactions in
real-time [47,48].

A case study by Hardy et al. [49] exemplifies the application
of computer-assisted synthesis planning (CASP) through its focus
on pupukeanane natural products. Using the Synthia™ program,
they generated and compared synthetic pathways, validating
existing methods and proposing novel synthesis strategies for
unprepared congeners. This study highlights the strategic value
of CASP in designing efficient routes for complex molecules.

Additionally, in their assessment of AI applications in
retro-biosynthesis, Gricourt et al. [50] explore into the ways in
which AI-driven tools streamline the process of designing synth-
etic pathways. The review covers template based methods and
generative models, emphasizing AI’s role in minimizing hazar-
dous byproducts and aligning with green chemistry principles.
It also outlines advancements, challenges and future directions
in AI-powered retrosynthesis.

Finally, Ishida et al. [51] introduced “ReTReK”, a CASP
application integrating ML with retrosynthesis knowledge to
enhance synthetic route design. Their experimental results
showed that ReTReK effectively identifies preferred synthetic
routes by leveraging integrated knowledge, outperforming
methods without such data. This development illustrates AI’s
potential to improve CASP applications and contribute to more
efficient, greener synthetic strategies.

Enhancing sustainability with AI in catalysis

Catalysis optimization: Catalysis plays a crucial role in
advancing green organic chemistry and AI is making significant
contributions in this area. By designing more efficient catalysts,
AI helps reduce the energy required for chemical reactions and
minimizes harmful byproducts. One of the AI’s primary func-
tions is predicting the performance of various catalytic systems,
enabling researchers to identify catalysts that are both effective
and environmental friendly [52,53].

Kalikadien et al. [54] conducted an indepth study on the
enantioselective hydrogenation of olefins using Rh-based chiral
catalysts, a process explored for over 50 years. Although sele-
cting the right catalyst for desired reactivity or selectivity might
seem straightforward, the process of ligand engineering for new
prochiral olefins often relies on empirical trial and error. The
study aimed to determine if ML techniques could streamline
the identification of efficient chiral ligands.

The researchers created a large dataset of Rh-catalyzed
asymmetric olefin hydrogenation results specifically designed
for ML applications. They developed a computational frame-
work for automated quantum chemistry based featurization
of catalyst structures, incorporating both computationally inten-
sive and less demanding descriptors into their ML pipeline.
This approach was used to predict selectivity and reactivity.
While out-of-domain predictions showed limited success, even
with the most advanced descriptors, in-domain applications
achieved moderate success, particularly in predicting conver-
sion. This underscores the importance of balancing the cost and
benefit of computational descriptors and the need for tailored
designs. The study also highlights persistent challenges in pred-
icting enantioselectivity, especially with small datasets, emph-
asizing the need for diverse datasets and mechanistic insights
to enhance the reliability of statistical models.
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AI-based methods, such as genetic algorithms and neural
networks, further advance catalysis by analyzing extensive catal-
ytic data to predict the performance of new or existing catalysts
under various conditions. These methods have led to the disco-
very of more efficient catalysts that align with green chemistry
principles by reducing the use of toxic metals and harsh reaction
conditions. Moreover, AI helps optimize catalyst loading,
which reduces material waste [55].

Suvarna & Ramírez [56] also emphasized the importance
of accelerating catalyst discovery to address global challenges
in energy, sustainability and healthcare. Over the past decade,
data science concepts have increasingly been applied to catal-
ysis research. The authors categorize studies into deductive or
inductive approaches and analyze various catalytic tasks, model
reactions, data representations and algorithm choices.

Their review identifies key advancements and opportuni-
ties for cross-disciplinary knowledge transfer but also notes a
significant gap in integrating data science with experimental
catalysis. To address this, they propose a framework based on
four pillars of data science–descriptive, predictive, causal and
prescriptive analytics. They advocate for incorporating these
analytics into experimental workflows and standardizing data
to drive future research in digital catalysis, promoting a more
systematic and efficient approach to catalyst development.

AI optimization in catalysis is also exemplified by the
development of photo- and electrocatalysts that use less energy
and minimize toxic byproducts. For instance, AI models have
been used to design photocatalysts that harness sunlight for
reactions such as CO2 reduction to fuels, aligning with sustain-
ability goals. Moreover, AI has been employed to predict catalyst
performance in hydrogenation reactions, leading to the disco-
very of catalysts that operate under milder conditions and reduce
energy consumption [57].

In a related study, Li et al. [58] explored the catalytic poten-
tial of conjugated organic photoredox catalysts (OPCs), which
promote a wide range of chemical transformations. Predicting
the catalytic activities of OPCs is challenging due to the comp-
lex interplay of various properties, making traditional design
and trial-and-error methods less effective. To address this chall-
enge, the authors introduced a two-step data-driven approach
for targeted OPC synthesis and reaction optimization in metallo-
photocatalysis. Using Bayesian optimization and molecular
descriptors, they identified promising OPC candidates from a
virtual library of 560 molecules. This method enabled the disco-
very of OPC formulations that rivaled iridium catalysts, despite
testing only a small fraction (2.4%) of the possible reaction
conditions.

Renewable feedstocks: AI is significantly transforming
the use of renewable feedstocks, offering advancements over
traditional petroleum-based sources [59]. By analyzing exten-
sive datasets of chemical reactions, AI can identify alternative,
renewable feedstocks from biomass and other sustainable sour-
ces. This capability supports the development of green synthetic
pathways, reducing reliance on fossil fuels and minimizing
the carbon footprint of chemical production [60,61]. Osman
et al. [62] investigated the optimization of biodiesel production
from waste materials through computational chemistry and

machine learning. Their research highlights the role of these
technologies in various aspects of biodiesel production, inclu-
ding catalyst design, reaction optimization and waste feedstock
analysis. They identify waste feedstocks such as used cooking
oil, animal fat, vegetable oil, algae, fish waste, municipal solid
waste and sewage sludge as key sources for biodiesel. Signifi-
cantly, waste cooking oil alone contributes to about 10% of
global biodiesel production, with restaurants generating over
1,000,000 m3 annually. Microalgae, with its high oil yield, is
particularly efficient, producing up to 31 times more oil than
palm oil. Enhancing biodiesel production and promoting the
sustainable use of waste feedstocks can be achieved through
computational and ML approaches, as demonstrated in this
work.

Zhao et al. [63] applied ML to optimize the oxidative
pyrolysis of biomass in a fixed-bed reactor. They developed
an ANN model to predict yields of various products including
water, tar, gas, char and CO/CO2 concentrations. The study reve-
aled that oxidative pyrolysis is more complex than inert pyrol-
ysis due to the influence of oxygen on both homogeneous and
heterogeneous oxidation processes. By using a combination
of logsig and purelin transfer functions in the ANN and optimi-
zing the model with particle swarm optimization (PSO), they
achieved a relative error below 10%. This demonstrates the
potential of ML to improve biomass conversion processes and
enhance the use of renewable feedstocks for bioenergy produc-
tion.

Additionally, AI models are increasingly used to identify
bio-based alternatives for traditional petroleum-derived
reagents in organic synthesis. These models help predict the
performance of renewable feedstocks in various chemical reac-
tions, facilitating the design of greener production processes
[64]. Jana et al. [65] focused on optimizing biodiesel produc-
tion from waste cooking oil using a CaO-based catalyst derived
from solid ostrich eggshells. They compared several ML techni-
ques, including Type 1 Fuzzy logic system (T1FLS), response
surface methodology (RSM), adaptive neuro-fuzzy inference
system (ANFIS) and Type 2 fuzzy logic system (T2FLS). The
T2FLS model demonstrated the highest accuracy with a deter-
mination coefficient (R2) of 99.1%, exhibiting its superior capab-
ility in handling dynamic chemical processes.

Sultana et al. [66] examined the effects of light-dark cycles
and NaNO dosage on the development and lipid production
of Chlorella kessleri, a microalgal biomass with considerable
bioenergy potential. They developed response surface method-
ology (RSM) and support vector regression (SVR) models, with
Bayesian optimization (BOA) improving SVR accuracy. Com-
bining BOA with the crow search algorithm, they identified
optimal conditions for maximizing specific growth rate (SGR),
biomass productivity and lipid productivity. This demonstrates
the effectiveness of integrating ML and optimization techni-
ques to enhance microalgal biomass productivity for bioenergy
applications.

Moreover, ML has been applied to optimize the conversion
of lignocellulosic biomass into valuable chemicals and identify
sustainable, bio-based solvents, such as lactic acid and ethyl
lactate, which are more environmental friendly than traditional
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solvents [67]. Sonwai et al. [68] utilized ML to predict specific
methane yields (SMY) from lignocellulosic biomass (LB) using
a dataset with 14 features. The random forest model was the
most effective, achieving a coefficient of determination (R2)
of 0.85 and a root mean square error of 0.06. They discovered
that cellulose content had the greatest impact on SMY and
identified an optimal LB-to-manure ratio of 1:1 for biogas
production. This study highlights the successful application of
ML in modeling and optimizing anaerobic digestion processes,
thus enhancing biogas production efficiency.

Integration of AI with experimental workflows:

Data availability and quality: A significant challenge in
applying AI to green organic chemistry is the limited availa-
bility and quality of data. ML models rely on large datasets to
accurately predict reaction outcomes, solvent behaviour and
catalyst efficiency [69]. However, high-quality experimental
data is often scarce or restricted, which limits the development
of dependable AI models. Furthermore, conventional chemistry
data may not be directly applicable to green chemistry, where
sustainable and innovative approaches are emphasized, com-
plicating the training of AI systems [70,71].

To overcome these barriers, there is a growing push toward
open-access databases and data-sharing initiatives within the
chemical sciences [72,73]. For instance, the Materials Project
[74] and the open reaction database [75] offer freely accessible
reaction data that can be utilized to train AI models. These
collaborative efforts are essential for improving the accuracy
and effectiveness of AI-driven tools in advancing green organic
chemistry.

Interdisciplinary collaboration: To unlock the full
potential of AI in green organic chemistry, collaboration between
chemists, data scientists and AI experts is essential. Chemists
bring critical domain knowledge to interpret AI-generated pre-
dictions, while data scientists focus on building robust models
capable of generalizing to new datasets [76,77]. This interdisci-
plinary approach is key to effectively integrating AI into experi-
mental workflows. A vital aspect of collaboration is enhancing
the interpretability of AI models. For chemists to rely on and
employ AI predictions, they require understanding of the mech-
anisms by which the models produce their suggestions. Recent
advancements in explainable AI (XAI) are addressing this by
making AI models more transparent and interpretable, fostering
trust and enabling broader adoption in the laboratory [78].

The success of AI in green chemistry hinges on multi-
disciplinary efforts. For example, in silico medicine’s pharma.
AI project–a commercially available, end-to-end generative
AI software and robotics platform–enhances pharmaceutical
research productivity by combining expertise from chemists,
AI specialists and data scientists [79]. Explainable AI methods,
such as SHAP (SHapley Additive Explanations), further contri-
bute by making AI models more transparent to chemists, brid-
ging the gap between AI predictions and practical applications
[80].

Role of Al in 12 principles of green chemistry: AI is
increasingly pivotal in advancing sustainability in organic
chemistry by aligning with the 12 principles of green chemistry,

which aim to reduce environmental and health impacts. Each
concept is supported by AI in the following ways:

Prevention: AI-powered retrosynthesis tools, such as
ASKCOS, optimize synthetic pathways to minimize waste by
suggesting routes that generate fewer byproducts [81].

Atom economy: AI tools like Chemprop enhance atom
economy by proposing synthetic routes that maximize the incor-
poration of starting materials into the final product, thus reducing
waste [82].

Less hazardous chemical syntheses: AI models identify
safer alternatives to hazardous reagents, such as predicting non-
toxic substitutes for cyanide-based reactions [83].

Designing safer chemicals: ML platforms, like syntelly,
predict chemical toxicity and assist in designing safer comp-
ounds by evaluating organ toxicity, environmental impact and
bioaccumulation [84].

Safer solvents and auxiliaries: AI tools, such as ILThermo
Database, help select safer, eco-friendly solvents by analyzing
extensive solvent property data and suggesting alternatives to
hazardous solvents [85].

Design for energy efficiency: AI-driven optimization tools
in microwave-assisted organic synthesis (MAOS) reduce energy
consumption by predicting optimal reaction conditions [86].

Use of renewable feedstocks: AI advances biofuel tech-
nologies by optimizing production processes, screening new
materials and assessing economic and environmental impacts,
thus reducing reliance on fossil fuels [87].

Reduce derivatives: AI-based retrosynthesis tools, like
the Molecular Transformer model, streamline processes by
eliminating unnecessary derivatization steps, reducing reagent
use and waste [88].

Catalysis: AI enhances the design of efficient organo-
catalysts and biocatalysts, predicting catalyst behaviour and
optimizing enzyme design for greener and more sustainable
chemical processes [89].

Design for degradation: Artificial intelligence models
forecast biodegradability, facilitating the development of comp-
ounds that breakdown into non-toxic byproducts. The online
chemical modeling environment (OCHEM) provides tools for
accurate biodegradability prediction and structural feature
analysis [90].

Real-time analysis for pollution prevention: AI-based
systems monitor reactions in real time, predicting hazardous
byproducts and allowing adjustments to prevent pollution. For
example, AI models have optimized phenol removal from waste-
water using a Photo-Fenton reagent [91].

Inherently safer chemistry for accident prevention: AI
predicts hazardous reaction conditions and suggests safer alter-
natives. An explainable AI model with convolutional neural
networks achieves a low false negative rate, enhancing safety
by identifying critical substructures and addressing data imbal-
ance [92].

The 12 principles of green chemistry initially proposed
by Anastas & Warner [93] provide a framework for designing
the chemical processes and products which are environmental
friendly and sustainable. These principles aim to minimize
the negative environmental and health impacts of chemical
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production by reducing waste, conserving energy and avoiding
the use of hazardous substances.

AI’s impact on reducing energy use, enhancing safety and
minimizing waste is particularly significant. AI facilitates sus-
tainable chemical processes by optimizing reaction conditions,
identifying safer ingredients and minimizing waste. As AI techno-
logies advance, their role in green chemistry will continue to grow,
fostering more eco-friendly and efficient chemical processes.

Challenges and opportunities

Challenges

Data quality and availability: High-quality datasets are
essential for training AI models effectively, but comprehensive
datasets in the context of green organic chemistry are often
limited. This limitation is critical as insufficient or poorly curated
data can lead to biased, unreliable or inaccurate predictions,
undermining the effectiveness of AI tools in advancing sustain-
able chemistry. For example, green chemistry often focuses
on eco-friendly solvent selection, but the available datasets
related to these solvents may lack the diversity and complete-
ness needed for robust AI training. Additionally, in emerging
areas of green chemistry, there might not be enough historical
data to adequately train models, further complicating AI’s role
in this field. Expanding collaborative data-sharing initiatives
and creating standardized datasets across industries could help
overcome this challenge [94].

Complexity of chemical systems: Organic reactions typi-
cally involve complex, multi-step processes with numerous
variables, including solvents, catalysts and reagents. AI models,
particularly ML algorithms, may struggle to fully capture the
intricate, non-linear relationships in these systems. This chall-
enge becomes even more pronounced in green chemistry, where
eco-friendly reactions must account for both sustainability and
efficiency. For instance, ML models trained to optimize specific
reactions, like the Suzuki-Miyaura coupling and Buchwald–
Hartwig coupling reactions, may not be easily transferable to
greener alternatives that use different, more sustainable reagents
and conditions. Moreover, many green chemistry processes
involve dynamic systems where reactions are influenced by real
time conditions like temperature, pH and pressure, making pre-
diction models even more complex to generalize effectively [95].

Interdisciplinary knowledge: Integrating AI into green
chemistry necessitates collaboration between chemists, data
scientists and environmental experts. These fields have distinct
terminologies, methodologies and approaches, which can lead
to communication gaps and hinder collaboration. Developing
effective AI-driven solutions for green chemistry requires a
deep understanding of both domains: chemists need to under-
stand AI’s capabilities and limitations, while AI researchers
must grasp the nuances of chemical processes. A collaboration
between IBM and the University of Toronto that developed a
synthesis prediction tool demonstrates the value of such inter-
disciplinary efforts but also highlights the learning curve involved.
To overcome these challenges, fostering interdisciplinary educ-
ation and creating shared knowledge platforms can streamline
collaboration and facilitate better AI integration into green
chemical research [96-98].

Scalability and generalization: AI models developed for
specific green chemistry reactions may not generalize well to
other contexts or processes. For instance, an AI model trained
to optimize a single reaction under specific conditions might
perform poorly when applied to different reactions or eco-
friendly synthesis routes. This lack of generalization is a signifi-
cant hurdle in scaling AI applications across different chemical
industries and processes. Ensuring scalability is essential for
AI to have a broader impact on green chemistry, particularly
in industries that require flexibility and adaptability in prod-
uction. Emerging techniques such as transfer learning, where
knowledge gained from one model is applied to another related
problem, offer a promising approach for enhancing AI general-
ization in green chemistry. However, further research is needed
to fine-tune these models so they can be reliably applied to new
and diverse chemical systems [99].

Ethical and regulatory concerns: AI’s use in chemistry
raises ethical and regulatory issues, including data privacy,
intellectual property and potential misuse. Establishing clear
guidelines and regulations for AI in chemical research is nece-
ssary for responsible implementation. The use of AI in green
chemistry needs to comply with ethical and regulatory guide-
lines to ensure sustainability and safety. Ethical considerations
surrounding the environmental impact of AI itself, particularly
in data centers and computing power, pose a challenge to its
alignment with green chemistry’s sustainability goals. Fig. 2
illustrates the key ethical considerations that arise during the
integration of AI in the research and development process for
quantum chemical simulations [100]. As AI becomes incre-
asingly central to advancing computational chemistry, these
considerations ensure that the technology is implemented res-
ponsibly, with a focus on transparency, safety and sustainability.

Energy consumption of AI models: Training large AI
models requires substantial computational power, which directly
translates into high energy consumption. This presents a paradox,
as AI is often viewed as a tool to promote sustainability in green
chemistry, yet its own carbon footprint can be quite large [101].
Strubell et al. [102] highlighted the environmental cost of
training large AI models, revealing that a single model could
emit as much CO2 as five cars over their lifetime. This energy
consumption poses a challenge to the sustainability goals of
green chemistry. Efforts are being made to mitigate this issue,
such as developing more energy-efficient algorithms and hard-
ware, or incorporating renewable energy sources into AI infras-
tructure. Nonetheless, balancing the environmental costs of AI
with its potential benefits for advancing green chemistry remains
a critical challenge. Table-2 compares AI models based on their
energy consumption (kWh) and environmental benefits, focu-
sing on applications in green chemistry. Energy consumption
is estimated based on model training and execution, while
environmental benefits highlight the models’ contributions to
waste reduction, efficiency and sustainability.

Opportunities

Enhanced efficiency and sustainability optimization of
synthesis pathways: AI can significantly enhance the effici-
ency and sustainability of chemical processes by optimizing
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reaction conditions, predicting greener alternatives and reducing
waste. This leads to more sustainable practices and reduced
environmental impact. In traditional chemistry, the optimi-
zation of reaction conditions, such as temperature, pressure,
solvent choice and catalyst selection, often requires time cons-
uming experimentation. AI, particularly ML algorithms, can
efficiently analyze large datasets and predict the optimal condi-
tions for specific reactions, minimizing the use of hazardous
materials, energy and time. For example, AI has been shown
to optimize catalytic hydrogenation reactions, increasing yield
while reducing waste and resource consumption, thereby
contributing to greener synthetic routes. This not only supports
the principles of green chemistry but also has direct impli-
cations for industrial applications where efficiency and sustain-
ability are paramount [103].

Accelerating discovery and innovation enhanced
catalyst design: AI accelerates the discovery of new materials,
catalysts and reaction pathways by analyzing large datasets,
offering insights that would be difficult to obtain through tradi-
tional trial-and-error methods. This capability speeds up the
development of new pharmaceuticals, materials and chemicals,
driving innovation in the field. An ability of AI to process vast
amounts of data allows for faster identification of ecofriendly
catalysts that are essential for sustainable chemical processes.
For example, Wang & Jiang [104]  and Lin et al. [105] used ML
to predict the activity of metal-organic frameworks (MOFs), a
class of materials known for their potential as green catalysts.
By rapidly screening a variety of materials, AI enables the dis-
covery of highly efficient and environmental friendly catalysts
that can be used in industrial processes, reducing reliance on

PROCESS-RELATED PRINCIPLES

Ethical: Autonomy explicability

Ethical: Beneficence - Non-maleficene - Justice

Methodological: (Resource) efficiency

Methodological: Accuracy, predictive validity

Definition of
required properties

Comparison:
Requirements met?

Molecule/material
design by AI

In silico 
characterization 

by AI/QC

YES Reaction design
by AI/QC

Human agency AI agency Shared agency
Synthesis and lab

experiments

OUTCOME-RELATED PRINCIPLES

NO

Fig. 2. Pathways for the ethical considerations in AI driven research and development process for quantum chemical simulations [Ref. 100]

TABLE-2 
COMPARISON OF AI MODELS ENERGY CONSUMPTION AND ENVIRONMENTAL BENEFITS IN GREEN ORGANIC CHEMISTRY 

AI model type Energy consumption (kWh) Environmental benefits 

Deep neural networks (DNN) High (~200 kWh for large 
models) 

High accuracy in predicting reaction pathways, reducing trial-and-error 
experiments 

Random forest (RF) Medium (~50-70 kWh) Effective in optimizing reaction conditions, solvent selection 
Support vector machines (SVM) Medium (~30-50 kWh) Moderate accuracy but efficient in small datasets, reducing computational 

waste 
Gaussian process regression (GPR) Low (~10-20 kWh) Highly interpretable, balances energy use and prediction efficiency 
Genetic algorithms (GA) Low (~10 kWh) Adaptive optimization of processes, reduces chemical waste 
Convolutional neural networks (CNN) High (~150-180 kWh) Excellent for pattern recognition in complex data, but energy-intensive 
Reinforcement learning (RL) High (~120-150 kWh) Strong in decision-making tasks, reducing energy consumption in 

synthetic route optimization 
k-Nearest neighbors (k-NN) Low (~5-15 kWh) Simple model, low energy usage, effective for quick predictions with 

smaller datasets 
Bayesian networks (BN) Medium (~40-60 kWh) Efficient in uncertainty modeling, improves sustainability through 

probabilistic predictions 
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toxic or rare materials. This accelerates the development of
cleaner chemical technologies and supports a more sustainable
chemical industry [104,105].

Personalized and adaptive approaches: AI enables
personalized and adaptive approaches to green chemistry by
tailoring reaction conditions to specific substrates, reactants
and desired outcomes. In traditional chemistry, reaction condi-
tions are often optimized for general scenarios, but AI allows
for more precise customization of these conditions to maximize
efficiency and sustainability for specific chemical processes.
AI-driven systems can monitor and adjust reactions in real-
time, making adaptive changes based on the conditions and
inputs at any given moment. This leads to dynamic control of
processes, optimizing energy usage, reducing waste and impro-
ving yields. For instance, real-time process monitoring using
AI was successfully applied in green chemistry to reduce reso-
urce consumption, with the system making adaptive adjust-
ments to reaction conditions. Such systems are particularly
beneficial in industrial settings, where real-time adaptability
can lead to significant reductions in material waste and energy
consumption, aligning with the principles of green chemistry
[106,107].

Improved safety and risk management-predictive toxi-
cology: AI improves safety by predicting potential hazards
and optimizing reaction conditions to minimize risks associated
with chemical reactions and byproducts. Traditional methods
for assessing the toxicity of chemicals and their environmental
impact are often slow and costly. AI-driven predictive toxico-
logy models enable the early identification of potentially hazar-
dous substances, allowing chemists to avoid dangerous materials
or design safer alternatives during the early stages of chemical
development. The Toxicity Estimation Software Tool (T.E.S.T.),
developed by the U.S. Environmental Protection Agency (EPA),
leverages ML to predict the toxicity of chemicals and is widely
used in green chemistry. By providing early warnings about
toxic or harmful substances, AI tools like T.E.S.T. help to
enhance overall safety and ensure that chemical processes align
with the ethical and regulatory requirements of sustainable
chemistry. This contributes to reducing occupational and environ-
mental hazards in chemical manufacturing [108].

Advancement of green chemistry principles: AI supports
the advancement of green chemistry by integrating sustainable
principles into the design, optimization and implementation
of chemical processes. By focusing on reducing energy use,
minimizing waste, utilizing renewable feedstocks and desig-
ning safer chemicals, AI-driven approaches promote sustaina-
bility across the chemical industry. AI optimizes reactions to
minimize energy inputs, enabling energy-efficient practices
essential to green chemistry. It also facilitates the use of renew-
able feedstocks and helps design processes that produce fewer
harmful byproducts. Collaborative initiatives such as the open
reaction database (ORD) illustrate the role of AI in enhancing
green chemistry through the promotion of shared, open-access
resources for sustainable synthesis. AI has also been instrumen-
tal in reducing energy requirements in discovering organic
photovoltaic materials and scaling up green processes from
lab research to industrial production, thus broadening the adop-

tion of sustainable practices across industries [109-112]. Expan-
ding on these AI applications will allow for continued progress
in green chemistry, ensuring that AI-driven methodologies not
only enhance efficiency and innovation but also align with the
broader goals of sustainability and safety across industries.

Future perspectives: As AI continues to evolve, its potential
for global adoption in green organic chemistry is immense.
The integration of AI models in optimizing chemical reactions,
designing eco-friendly materials and reducing waste aligns
perfectly with global sustainability goals. However, widespread
adoption of AI across laboratories and industries requires
overcoming certain barriers.

One critical factor for global adoption is the accessibility
of AI tools. To enable broader use, AI platforms must become
more user-friendly, enabling chemists without advanced data
science expertise to leverage these technologies. Furthermore,
cloud-based AI systems can provide scalable solutions for
laboratories and small businesses worldwide, reducing the need
for substantial infrastructure investments. AI democratization
will also require the development of open-access databases
that are robust and well-curated, containing high-quality data
relevant to green chemistry. Another essential consideration
is the energy consumption of AI models themselves. While AI
optimizes chemical processes to reduce environmental impacts,
the computational power required to train certain models, parti-
cularly deep learning models, can be energy-intensive. Future
developments should focus on enhancing the efficiency of AI
algorithms, prioritizing models that balance environmental
benefits with low energy use.

Regulatory challenges also present a key hurdle to AI-driven
sustainable chemistry. Currently, there are no comprehensive
global frameworks regulating the use of AI in chemical synth-
esis and green technologies. AI models, especially those that
act as “black boxes” with opaque decision-making processes,
may face scrutiny from regulatory bodies concerned with safety
and transparency. Governments and international organizations
need to establish regulatory guidelines that ensure AI’s safe
and ethical implementation in chemistry. These frameworks
should include data protection, explainability requirements for
AI models and safety standards to ensure AI-driven chemical
processes do not inadvertently introduce environmental risks.
Moreover, global collaboration will be crucial in addressing
regulatory challenges and fostering innovation in AI for sustain-
able chemistry. Interdisciplinary partnerships involving chemists,
AI researchers, policy makers and environmental agencies are
necessary to develop global standards that encourage both
innovation and safety. International forums such as the United
Nations Environment Programme (UNEP) or World Economic
Forum (WEF) could play pivotal roles in fostering cooperation,
ensuring that AI technologies are adopted responsibly while
promoting sustainability.

The future of AI in green chemistry holds great promise,
but its global adoption will require overcoming challenges
related to accessibility, energy efficiency and regulatory over-
sight. As AI continues to revolutionize sustainable chemistry,
creating a structured framework for its ethical and responsible use
will be essential for long-term environmental and societal benefits.
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Conclusions

Artificial intelligence (AI) is reshaping the landscape of
green organic chemistry by introducing innovative, data-driven
solutions that significantly enhance the sustainability of chemical
processes. Throughout this review, we have explored the ways
AI optimizes reaction conditions, solvent selection, waste redu-
ction and catalyst design, driving forward the goals of green
chemistry. By leveraging ML algorithms and predictive models,
AI enables more efficient, eco-friendly synthetic pathways,
reducing both the environmental footprint and resource consum-
ption associated with organic synthesis. While AI’s transforma-
tive impact on green chemistry is clear, several challenges must
be addressed to unlock its full potential. Data availability and
quality remain critical issues, as many AI models rely on exten-
sive, curated datasets, which are often sparse in the field of
green chemistry. Additionally, the lack of transparency in AI
models, often described as the “black box” problem, can create
barriers to adoption by chemists who require understandable
and interpretable results to guide their experimental work. These
challenges highlight the need for ongoing interdisciplinary
collaboration between chemists, data scientists and AI specialists
to develop more practical, interpretable AI tools. Despite these
obstacles, the future of AI in green organic chemistry is promising.
AI-driven approaches are accelerating innovation in sustain-
able chemical research by optimizing reaction pathways, pred-
icting safer solvents and catalysts and reducing harmful bypro-
ducts. As data-sharing initiatives grow and ML models become
more sophisticated, AI will increasingly support the realization
of 12 principles of green chemistry. Furthermore, AI’s potential
to scale up green chemistry innovations from the lab to indus-
trial applications offers the prospect of widespread adoption of
sustainable practices within the chemical industry. Consequently,
AI holds the promise to transform our methodologies in organic
synthesis and enhance our strategies for reducing the ecological
footprint of chemical processes. As AI technologies continue
to evolve, their integration into green chemistry will be instru-
mental in driving the transition toward a more sustainable and
eco-friendly future for the chemical industry.
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