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INTRODUCTION

The non-linear optical materials have become increasingly
important in science and technology in recent years. Non-linear
optics involve non-linear interactions between the light and the
medium. The crystals with non-linear optical properties are
used for applications including, optical data storage, high-speed
communications, frequency shifting, optoelectronics, photonics,
etc. [1-4]. Pure inorganic crystals are highly advantageous for
the impromptu and fast development of rapid optical communi-
cation networks. The advancement of existing photonic techno-
logies, such as frequency conversion, optoelectronics, storing
data, optical switching, UV filters, optical modulation and
detection devices, is a continuous endeavour for the photonic
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industry’s developers. NLO device design is currently greatly
aided by the wide range of inorganic compounds, e.g. potassium
dihydrogen phosphate (KDP), potassium dideuterium phosphate
(DKDP), ammonium dihydrogen phosphate (ADP), potassium
niobate (KNbO3), lithium niobate (LiNbO3), etc. which are the
building blocks of photonic devices [5,6]. Transparency, adeq-
uate quadratic susceptibility and the thermal stability to with-
stand powerful lasers without experiencing any negative effects
are all necessary for crystals to be of such immense utility. When
it comes to creating new NLO crystals, inorganic elements have
long been considered the most important component.

The ability of an inorganic class of materials to organize
themselves into single crystals that offer wide optical transp-
arency, frequency conversion, better optical response and diele-
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ctric features has drawn the attention of researchers [7,8]. The
inorganic materials are more advantageous than the organic
counterparts in design flexibility and strong mechanical and
thermal stability in high-power laser applications.

Researchers must thoroughly examine the intriguing inor-
ganic copper sulphate (CuSO4) crystal. CuSO4 finds important
uses in the printing and building sectors, moreover, CuSO4 is
used in the artwork and fireworks engineering as a colouring
agent. The aqueous solution of CuSO4 is widely used as a
resistive element in the electronic liquid resistors [9,10]. Init-
ially, Manomenova et al. [11] described the crystal formation
of CuSO4·5H2O, suitable for broadband optical filters. How-
ever, Justel et al. [12] reported the crystallization of CuSO4·
5H2O from a aqueous solution using NaCl. Inspired by the
earlier work on CuSO4 crystals, the high-quality CuSO4 crystals
were developed by a gradual evaporation procedure in the
present study for the optical and nonlinear optical applications.

EXPERIMENTAL

The starting reagent copper sulphate pentahydrate (AR
grade) was purchased from Sd-fine Chemicals, India and puri-
fied by repeated recrystallization processes to ensure their purity.
Recrystallized chemicals were used for the synthesis process.
A gradual evaporation process was applied for the formation
of CuSO4 crystals. Initially, a saturated solution of CuSO4·5H2O
was prepared using 25 mL of deionized water at 32 ºC. The
saturated solution was stirred well for around 4 h by a magnetic
stirrer and then filtered using micro-filter paper to remove any
remaining contaminants. The solution was subsequently main-
tained in a 100 mL beaker equipped with a porous cover to
promote the gradual evaporation of the solvent. A high-quality
CuSO4 crystals with optimum size were obtained in 20 days
(Fig. 1).

Fig. 1. Photograph of as-produced CuSO4 crystals

Characterization: The detection method includes the
structural and physico-chemical characteristic analysis. The
Reich-Seifert 3003-TT diffractometer was employed for the
powder XRD investigations to investigate the crystal form and
lattice constants for the CuSO4 samples. An FT/IR-6600 type-A

spectrometer was used to get the FTIR spectrum of the test
sample. The optical properties were studied in the UV-visible
spectral area using a Jasco International Co., Ltd. (V670 spectro-
photometer), Japan. The Kurtz and Perry method was followed
to evaluate the second harmonic generation of CuSO4 powdery
samples. A temperature-controlled, angle-tuned and extremely
effective generator was used for the Kurtz and Perry analysis.
The Vickers microhardness machine and a diamond pyramidal
indenter were used to measure the hardness nature of the prep-
ared crystals.

RESULTS AND DISCUSSION

P-XRD studies: The most popular non-destructive testing
method for identifying crystalline materials is X-ray diffraction
(XRD). Tiny CuSO4 samples were chosen for the experimental
analysis. The peak intensities were found by scanning the CuSO4

sample in 2θ orientations between 0º and 110º. Fig. 2 shows
the XRD peaks of CuSO4 crystal. The diffractogram shows the
peaks with 2θ values of 18.964º, 22.48º, 27.68º, 31.84º, 37.72º,
42.50º, 56.97º, 67.75º and 86.62º. A significant peak is found
around 18.964º. The crystallographic planes associated with
the indexed peaks are (100), (110), (111), (200), (210), (211),
(311), (401) and (422). Considering the XRD findings, the CuSO4

crystallized in a triclinic configuration with the P1 group. The
lattice parameters were obtained to be a = 5.97Å, b = 6.11 Å,
c = 10.70 Å, α = 77.27º, β = 82.32º, γ = 72.56º. The values
agree rather well with the previously reported data of CuSO4

crystal [13].
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Fig. 2. The XRD spectrum for CuSO4 crystal

FTIR studies: Fig. 3 displays the recorded FTIR spectrum
of CuSO4 between 4000 and 400 cm–1. The spectrum shows a
broad absorbance band in the higher wavenumber region
between 3065 and 3575 cm–1. This broad absorbance is because
of the stretching vibration of the water molecules. The weak
bands found between 2500 and 2000 cm–1 are due to the OH
group in the crystal. The strong band at 1623 cm–1 is due to the
bending mode of the OH group, whereas the strong bands at
1149 and 1091 cm–1 are due to the asymmetric and symmetric
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Fig. 3. FT-IR spectrum of CuSO4 crystal

vibrations of the S=O group. The bands at 996 and 618 cm–1

are due to the SO4
2– non-degenerate and degenerate modes. The

band at 781 cm–1 is because of the Cu-O-H coordination, while
the peak at 449 cm–1 is due to the SO4

2– bending mode.
UV-Vis spectral studies: The optical property was inves-

tigated in the 300-650 nm wavelength range and the spectrum
(Fig. 4) shows that the transmittance of CuSO4 initially increases
from 300 nm and attains a maximum percentage at 325 nm.
From 325 nm to 575 nm, the sample shows a constant maxi-
mum transmittance and then shows a slight decrease in the
transmittance. The CuSO4 sample is highly transparent in the
wavelength range between 325 nm and 575 nm, making it
suitable for optical applications such as optical bandpass filters
in this spectral region. The UV data was interpreted to investi-
gate the optical bandgap of CuSO4. The Tauc formula was
applied to determine the absorption coefficient (α) of CuSO4

sample [14]:

αhν = A(hν – Eg)n

where Eg denotes the bandgap; A is the constant and n refers
to an integer. For a permissible direct transition, n should be
2. The curve generated between hν and (αhν)2 is illustrated in
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Fig. 4. Optical transmittance spectrum of CuSO4 crystals

Fig. 5 and based on the plot, the bandgap of CuSO4 is found to
be 3.9 eV.
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Fig. 5. Tauc plot of prepared CuSO4 crystal

When incident light interacts with a material, it can either
be refracted or absorbed; the degree of this relies on the conduc-
tivity, refractive index and extinction coefficient of the material
[15]. The refractive index (n) was obtained through the following
expression:

S S

1 1
n

T T 1
= +

−

where TS denotes the (%) transmittance.
The wavelength-related variation in the refractive index

is displayed in Fig. 6. The curve demonstrates that the refractive
index decreases significantly from the 300 to 325 nm range.
The refractive index exhibits a slight decrease thereafter,
attaining a minimum value of 1.112 within the 350-550 nm
wavelength range. With the further wavelength increase, the
refractive index marginally increases.
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Fig. 6. Plot of variation in the refractive index against wavelength
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The potential of an element to either reflect or absorb
light at a designated wavelength is represented by its extinction
coefficient (k), which can be represented as [16]:

k
4

αλ=
π

Fig. 7 illustrates the correlation between k and λ of light.
The curve shows that the k value is maximum at 300 nm. With
the increase in wavelength, the k value drecreases considerably,
attaining a low value at 325 nm. The k value is the minimum
in the 325–550 nm wavelength range. The optical conductance
of CuSO4 was evaluated using the below formula [17]:

opt

n c

4

ασ =
π

where c is the velocity of light.
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Fig. 7. Plot of extinction coefficient variations with wavelength

Fig. 8 illustrates the dependency of the optical conduc-
tance of CuSO4 with the light energy. The optical conductance
slightly decreases in the 2.0-2.5 eV energy range and attains a
minimal value. After that, the optical conductance slightly
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Fig. 8. Plot of variations in optical conductivity against photon energy

increases in the 2.5-3.55 eV energy range, then it increases
sharply to reach its maximum at 4.10 eV. The excellent optical
conductivity of the prepared CuSO4 crystal validates the remark-
able photoresponse of the material. This characteristic improves
the suitability of the material for applications involving infor-
mation processing.

The relationship between the electrical conductivity (σele),
optical conductivity (σopt) and absorption coefficient (α) is
given by the following expression [18]:

opt
ele

2λσ
σ =

α
Fig. 9 shows the electrical conductivity variation about

the photon energy. The CuSO4 crystal is found to have higher
electrical conductivity at the lower energy photons. With the
increase in photon energy, the electrical conductivity decreases
linearly and attains a minimum value at higher energy.
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Fig. 9. Plot of variations in electrical conductivity against photon energy

The complex dielectric constant (ε*) is described by the
relation [19]:

ε* = ε1 + iε2

The dielectric real (ε1) and imaginary (ε2) portions were
determined from the relations:

ε1 = n2 – k2 and ε2 = 2nk

Fig. 10 shows the variation of dielectric constant portions
ε1 and ε2 related to the wavelength. Observations revealed that
the real portion (ε1) behaves like the transmittance spectra,
increasing from 300 to 325 nm and then reaching a maximum
saturation in the higher wavelength region. On the other hand,
the imaginary portion (ε2) exhibits a steep decline from 300 to
325 nm and then reaches the minimum saturation in the higher
wavelength region.

Second harmonic generation test: The SHG value of
CuSO4 sample was evaluated with the Kurtz & Perry method
[20]. The SHG experiment used a “Q-switched Nd: YAG laser”
functioning at 1064 nm with a 6 ns pulse width. The greenish
light of CuSO4 powder (532 nm) emission verified the product-
ion of the second harmonic radiation. The powdered KDP was
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Fig. 10. Variation of the dielectric constants with wavelength

served as the reference material. The prepared CuSO4 was found
to have a second harmonic ability 1.10 times that of the KDP.

Microhardness analysis: Hardness measurement is a
helpful non-destructive testing technique to ascertain a strength
or abilityof the material to withstand deformations [21]. Several
features like lattice energy, interatomic spacing, temperature
and heat generation affect a material’s hardness. The crystalline
samples were carefully polished during the experimental proce-
dure to prevent surface imperfections. Loads of varying scales
(10, 20, 30, 40 and 50 g) were applied to CuSO4 crystals on
the microhardness tester platform for a predetermined time
(10 s). Due to the creation of microcracks at greater stresses,
the highest applied load was limited to 50 g. The microhardness
of CuSO4 was evaluated using the following equation [22]:

2
v 2

1.8544P
H Kg/mm

d
=

where, P represents the applied load and d is the typical inden-
tations. The microhardness number (Hv) is shown against the
applied load in Fig. 11 and it is observed that the Hv starts at 5 g
and increases with increasing load. The graph of Log P vs. log
d is displayed in Fig. 12. The plot indicates a linear increase in
log d with log P. The least-square fit approach was applied to
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determine the work hardening coefficient (n). According to
the Onitsch’s proposal, a material is classified as soft if its n
value is greater than 1.6 and as hard if it is between 1.0 and
1.6 [23]. The results reveal that the n value is 3.02, representing
that CuSO4 is a soft material.

Conclusion

The copper sulphate CuSO4 crystals were produced using
the gradual evaporation procedure and characterized by powder-
XRD, FTIR, UV-Vis, SHG and microhardness analyses. The
XRD measurements show that the CuSO4 crystallized into the
triclinic form. The distinct diffraction peaks in the XRD spect-
rum define the excellent crystalline state of the samples. The
optical measurements demonstrated high transmittance of the
CuSO4 in the UV-visible spectrum. The bandgap of CuSO4 is
found to be 3.9 eV and also have a second harmonic ability
1.10 times that of the KDP. Microhardness analysis indicates
that the hardness number Hv increases with the increasing load.
The prepared CuSO4 crystals exhibit remarkable optical transp-
arency and optical properties, along with the appropriate second
harmonic generation and microhardness characteristics, rend-
ering them suitable for the optoelectronic applications.
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