

Synthesis, Characterization, Photocatalytic and Self Cleaning Behaviour of Sepiolite-Supported CdFe2O4 Nanocomposite

K. KALPANA and K. RAJATHI^{*,[®]}

PG and Research Department of Chemistry, Kalaignar Karunanidhi Government Arts College (Affiliated to Thiruvalluvar University, Vellore), Tiruvannamalai-606603, India

*Corresponding author: E-mail: rajathi_sridhar@rediffmail.com

This study employed the hydrothermal co-precipitation approach to synthesize several natural clay-sepiolite supported cadmium ferrite $(CdFe₂O₄)$ photocatalysts with different weight percentages of sepiolite (3, 5, 9 wt.%). Several techniques were used to characterize the sepiolite/CdFe₂O₄ composite like photoluminescence spectroscopy (PL), diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM) and BET surface area analysis. The results showed that improved $CdFe₂O₄$ with 5 wt.% sepiolite had superior photocatalytic activity than undoped $CdFe₂O₄$ in eliminating azo dye rhodamine-B when exposed to solar light. The sandwich-like microstructure is shown loosely clustering together in FE-SEM images, with an average particle size of about 50 nm. Moreover, the BET results showed that sepiolite/CdFe₂O₄ has a larger surface area than undoped CdFe₂O₄. CdFe₂O₄, supported by sepiolite, remarkably indicated good photocatalytic activity for up to four applications in a row. Sepiolite/CdFe2O₄ is characterized by a high degree of hydrophobicity, as shown by a contact angle of 108.3º and this hydrophobic property is useful for making materials that clean themselves.

Keywords: Sepiolite, Cadmium ferrite, Photocatalytic activity, Self cleaning behaviour, BET surface area analysis.

INTRODUCTION

Nowadays researchers have focused on the preparation of cadmium ferrite $(CdFe₂O₄)$ because of its various applications in many industries [\[1,2\].](#page-6-0) Ferrites are a class of metal oxides that mainly consist of iron oxides. Its optical, magnetic and electrical properties allow them to be applied in a multitude of ways, for example, photodegradation of industrial wastes or dyes [\[3\]](#page-6-0), the degradation of organic pollutants through piezoelectric catalysis [\[4,5\],](#page-6-0) components of battery electrodes [\[6\],](#page-6-0) materials used in solar cell windows [\[7\]](#page-6-0) and biological systems, such as bioimaging [\[8\]](#page-6-0) and magnetic resonance imaging as well as nanomaterials with both luminescent and magnetic properties [\[9\],](#page-6-0) either paramagnetic or ferromagnetic.

The tetrahedral (A) and octahedral (B) sites of cadmium ferrite nanoparticles, a representative of the general spinel ferrite system, are filled with non-magnetic (Cd^{2+}) ions coordinated with magnetic (Fe³⁺) ions [\[10,11\].](#page-6-0) The literature provides reports on a variety of synthetic methods for producing spinel-ferrite

nanoparticles. Solid state reaction [\[12\],](#page-6-0) sol-gel process [\[13\],](#page-6-0) combustion synthesis [\[14\],](#page-6-0) sonochemical technique [\[15\],](#page-6-0) electrochemical method [\[16\]](#page-6-0), hydrothermal method [\[17\]](#page-6-0), precursor route [\[18\],](#page-6-0) co-precipitation [\[19\],](#page-6-0) microemulsions [\[20\],](#page-6-0) reverse micelles [\[21\],](#page-6-0) solvothermal method [\[22\],](#page-6-0) ball milling [\[23\]](#page-6-0) and microwave processing [\[24\]](#page-6-0) are the few well-known methods. The adsorption of organic dyes and metals from aqueous solutions has been implemented in recent years using naturally occurring clay minerals such as bentonite, montmorillonite, palygorskite, kaolinite and sepiolite [\[25-33\].](#page-6-0)

Sepiolite $[Si_{12}Mg_8O_{30}(OH)_4(H_2O)_4.8H_2O]$, a magnesium phyllosilicate, consists of two tetrahedral layers of silica and a layer of magnesium ions with octahedral coordination. Sepiolite exhibits infinite channels with a cross-section of 0.4 nm^2 in size, similar to other phyllosilicates where the octahedron sheets are not constant [[34-36\].](#page-6-0) TiO_2 , Fe_2O_3 , Na_2O , MgO , SiO_2 , CaO, K_2O , Al_2O_3 and many other metals and metal oxides are found in sepiolite clay [\[37\].](#page-6-0) Excellent ion exchange and adsorption performance have been provided by this type of

This is an open access journal, and articles are distributed under the terms of the Attribution 4.0 International (CC BY 4.0) License. This license lets others distribute, remix, tweak, and build upon your work, even commercially, as long as they credit the author for the original creation. You must give appropriate credit, provide a link to the license, and indicate if changes were made.

clay mineral due to its unique micromorphology and nanoscale pores [\[38\]](#page-6-0).

For the production of inorganic and metal-based nanoparticles, co-precipitation is a simple process with a controllable size distribution, high yield and an environmental friendly solvent. Due to these advantages, it is decided to synthesize sepiolite-supported $CdFe₂O₄$ nanocomposite by employing hydrothermal co-precipitation method and evaluated its photocatalytic activity by using solar light to remove rhodamine-B dye and also examined its hydrophobic properties.

EXPERIMENTAL

Ferric nitrate nonahydrate $(Fe(NO₃)₃·9H₂O)$, cadmium acetate dihydrate $(Cd(CH_3COO)_2.2H_2O)$, sodium hydroxide and ethanol were of AR-grade purity (99% purity) and supplied by Himedia Chemicals. Rhodamine-B dye (*m.f.* C₂₈H₃₁N₂O₃Cl, *m.w.*: 479.01) was supplied by Colour Chem, Pondicherry, India. Himedia Chemicals supplied the sepiolite clay and washed thoroughly to eliminate the impurities. Distilled water was used throughout the experiments.

Characterization: Using a Siemens D5005 diffractometer and Cu $K\alpha$ ($k = 0.151418$ nm) radiation, the X-ray diffraction (XRD) patterns were analyzed. The diffractograms were recorded with count duration of 20 s and in a 2θ range between 10º and 80º. Using a Model ULTRA-55 field emission scanning electron microscope (FE-SEM), the morphology of nanocomposite was investigated. To capture images at different magnifications, samples were positioned on a gold platform inside the scanning electron microscope. A 200 kV ultra high-resolution transmission electron microscope (JEOL-2010) equipped with a Leica high-resolution optical microscope was used to capture HR-TEM images. A tiny quantity of catalyst solution was applied to a thin layer of copper grids with holes in them covered with carbon. The grids were checked and then allowed to air dry. The diffuse reflectance spectra of every catalyst were recorded using a Shimadzu UV 2450 model fitted with an integrating sphere, with powdered BaSO₄ as a reference. The Perkin-Elmer LS 55 fluorescence spectrometer was used to record the photoluminescence (PL) spectrum at room temperature. The surface area of nanocomposite was ascertained using a Micromeritics ASAP 2020 sorption analyzer. Using N_2 gas as adsorbate, the samples were analyzed at 77K following a 12 h degassing period at 423 K. The least-squares fit of the Brunauer-Emmett-Teller (BET) multipoint technique was employed to ascertain the specific surface area. A German made drop-shaped analyzer (DSA) manufactured by Kruss GmbH was used to record the contact angle in order to assessed the hydrophobicity of the nanocomposite.

Preparation of 5 wt.% sepiolite/CdFe₂O₄: Both pure $CdFe₂O₄$ and $CdFe₂O₄$ supported 5 wt.% sepiolite were prepared using the hydrothermal co-precipitation technique. The first step involved dissolution of 0.5 M of $Fe(NO₃)₃·9H₂O$ and 0.3 M of $Cd(CH_3COO)_2.2H_2O$ separately in 50 mL of distilled water. After mixing the above two solutions, 10 mL of ethanol and 0.5 g of sepiolite powder were added while being stirred constantly containing one drop of 0.2 M NaOH. The resulting solution was stirred at 80 ºC for 5 h. The final product was cleaned with

ethanol followed by distilled water and then dried at 100 ºC for 5 h. The $CdFe₂O₄$ nanoparticles supported by sepiolite were labelled as sepiolite/CdFe₂O₄ following a 6 h calcination at 700 °C. Similarly, pure CdFe₂O₄ nanoparticles were prepared using a method akin to this one, which did not need the use of sepiolite powder.

Photocatalytic degradation studies: The photocatalytic degradation were carried out in the summer from 11 a.m. to 2 p.m. under direct sunlight. A clear, 20 mm diameter borosilicate glass tube measuring 40 cm in height served as the reaction vessel in this experiment. The dye and sepiolite/CdFe₂O₄ solutions attained equilibrium between the adsorption and desorption processes after 0.5 h of magnetic stirring in a dark atmosphere. A 50 mL dye solution containing sepiolite/CdFe₂O₄ was continuously aerated using a pump to ensure complete mixing of the reaction solution and to add oxygen. During illumination, the solvent evaporation was negligible; concurrently, the initial sample was obtained in darkness while the adsorption process occurred. At regular intervals, a 2 mL sample was centrifuged and diluted to 10 mL volume. The sunlight intensity was measured with the LT Lutron LX-10/A Digital Lux metre.

RESULTS AND DISCUSSION

Powder XRD studies: The PXRD pattern of 5 wt.% sepiolite/ $CdFe₂O₄$ reveals that the synthesized sample has tetrahedral phases of $CdFe₂O₄ (JCPDS card No. 54-0964 and 22-1063)$ and rhombohedral phases of α -Fe₂O₃ (JCPDS card No. 79-1741) [\[39\].](#page-6-0) In Fig. 1b, the diffraction peaks at 25.86º, 32.74º, 36.45º and 41.85º for the planes (012), (104), (002) and (113), respectively. The 2θ values observed at 32.15º, 34.51º, 38.62º, 49.12º, 52.32º and 62.35º correspond to the (111), (311), (200), (024) , (422) and (511) diffraction planes of CdO [\[40\],](#page-6-0) whereas the 2θ values at 30.25º, 35.91º, 37.41º, 43.13º, 55.40º, 62.17º and 66.76º correspond to (220), (311), (222), (400), (220), (103) and (311) planes of tetrahedral phases of $CdFe₂O₄$ [\[41\].](#page-6-0)

Fig. 1. XRD patterns of (a) prepared $CdFe₂O₄$ (b) prepared 5 wt% sepiolite/ $CdFe₂O₄$

In addition, no evidence of additional crystalline defects and the diffraction peaks have not changed appreciably. The other new peaks shown in Fig. 1b confirm the presence of sepiolite clay particles. There are no visible crystallographic defects and no additional diffraction peaks have changed significantly. The average crystallite size of sepiolite/ $CdFe₂O₄$ is determined from the Scherrer's equation to be 24.5 nm.

FE-SEM studies: The FE-SEM images of 5 wt.% sepiolite/ $CdFe₂O₄$ at different magnifications and locations are shown in Fig. 2. The FE-SEM images of sepiolite/CdFe₂O₄ exhibited the sandwich-like microstructure loosely clustering together and the average size of particles is about 50 nm. The porous structures of randomly oriented nanocomposites can also produce nanoflakes and help the dye molecules bind to catalyst surfaces. The particles in the sepiolite/ $CdFe₂O₄$ samples have smooth surfaces and irregular forms. Moreover, several tiny particles are clearly visible on the surface of sepiolite clay.

HR-TEM studies: At low-magnification, the TEM images of sepiolite/CdFe2O4 (Fig. 3a-d) revealed a large number of regular shaped hollow spherical-like particles with a diameter of below 50 nm, which further proves that $CdFe₂O₄$ nanoparticles are uniformly deposited on the surface of the sepiolite clay surface.

Diffuse reflectance spectral (DRS) studies: The fundamental absorption edge of tetrahedral $CdFe₂O₄$ rises at 430 nm, which is attributed to its intrinsic band gap of 2.95 eV. Fig. 4 displays the prepared $CdFe₂O₄$ (Fig. 4b) and sepiolite/CdFe₂O₄ (Fig. 4a) diffuse reflectance spectra in the reflectance mode. In the UV and visible spectrum, 5 wt.% $CdFe₂O₄$ shows reduced reflectance (increased absorbance) in contrast to $CdFe₂O₄$ and sepiolite/ $CdFe₂O₄$. Incorporation of sepiolite loading helps $CdFe₂O₄$ to better absorb the visible range of 400 to 800 nm, which proves that sepiolite/ $CdFe₂O₄$ can be used as a UV and visible light active semiconductor photocatalyst.

Fig. 2. FE-SEM images of SP-CdFe₂O₄ at (a) 1 μ m (b) 2 μ m and (c) 200 nm and (d) 300 nm

Fig. 3. HR-TEM images of sepiolite/CdFe₂O₄ (a, b) 20 nm, (c) lattice fringes at 2 nm and (d) SAED pattern of sepiolite/CdFe₂O₄ at 5 1/nm

Fig. 4. Diffuse reflectance spectra of (a) prepared CdFe₂O₄ and (b) 5 wt% sepiolite/CdFe₂O₄

Photoluminescence (PL) studies: The PL spectrum of 5 wt.% sepiolite/CdFe₂O₄ at an excitation wavelength of 315 nm shows a sharp peak at ~430 nm, which is due to the emission of the host nanoparticles and another broad peak between 480 to 500 nm, which might be due to defects present in the nanosystem. The PL emission is caused by the recombination of photoinduced charge carriers and shown a significant correlation between the intensity of PL emissions and photocatalytic activity. The photoluminescence spectra of prepared $CdFe₂O₄$ (a) and 5 wt.% sepiolite/CdFe₂O₄ (b) are shown in Fig. 5 (exi $= 315$ nm). In comparison to CdFe₂O₄, the reduced PL intensity of 5 wt.% sepiolite/CdFe₂O₄ indicates that the incorporation of sepiolite clay hinders the recombination of photogenerated electron-hole pairs.

BET surface area: Using nitrogen adsorption-desorption isotherms, the pore structure of sepiolite/ $CdFe₂O₄$ composite sample was examined and the Barrett-Joyner-Halenda (BJH) method was utilized to compute the pore size distribution. There is a significant rise in the N_2 adsorption volume, which is found

Fig. 5. Photoluminescence spectra of (a) prepared CdFe₂O₄ and (b) 5 wt% sepiolite/ CdFe₂O₄.

in the 0.50 -0.98 P/P₀ range (Fig. 6). Since, the pore size is related to the $P/P₀$ position of inflection point, this abrupt increase can be attributed to the capillary condensation, showing strong homogeneity of the sample and mesopore size. The pore size distribution curve in the inset figure illustrates the average pore radius of sepiolite/CdFe₂O₄ as 126 Å. The mesoporous structure is thus confirmed by the pore size distribution of sepiolite/ $CdFe₂O₄$ sample. The BET measurements of $CdFe₂O₄$ yield a specific surface area of 18.94 $m^2 g^{-1}$, which is greater than the prepared sepiolite/CdFe₂O₄'s 36.48 m² g⁻¹.

Fig. 6. BET surface analysis of sepiolite/CdFe₂O₄ N₂ adsorption-desorption isotherm and (inset) Pore radius distribution

Photodegradation of rhodamine-B (Rh-B) dye under solar light

Fig. 7 illustrates the photocatalytic breakdown of Rh-B dye under various conditions and increasing irradiation times. Since the dye is resistant to self-photolysis, a slight (10%) drop in dye concentration was observed in the same experiment with sepiolite/CdFe₂O₄ in dark. At 45 min exposure of sunlight,

dye, (b) Rh-B + CdO, (c) Rh-B + sepiolite, (d) Rh-B + CdFe₂O₄, (e) Rh-B + 3 wt.% of sepiolite/CdFe₂O₄ and (f) Rh-B + 5 wt.% of sepiolite/CdFe₂O₄

sepiolite/CdFe₂O₄ cause 99% degradation of Rh-B dye. There are no specific changes in dark (curve a) or without a catalyst (curve b). But at 45 min, sepiolite clay (curve c), $CdFe₂O₄$ (curve d) and 3 wt.% sepiolite/CdFe₂O₄ (curve e) generated degradations of 37.7%, 60.2% and 78.3%, respectively. When it combined with 5 wt.% of sepiolite/CdFe₂O₄ the dye was completely degraded (curve f).The results clearly demonstrate that the loaded sepiolite clay is responsible for the increased photocatalytic activity.

Photodegradation efficiency with solar light: The photodegradation efficiencies of sepiolite/ $CdFe₂O₄$ catalysts with 3, 5 and 9 wt.% sepiolite were also evaluated under solar light. Catalysts containing 5 wt.% sepiolite demonstrated the highest degradation percentage, while higher sepiolite concentrations resulted in decreased degradation efficiency (Table-1). Therefore, 5 wt.% sepiolite was identified as the optimal concentration for sepiolite/CdFe₂O₄. Since 5 wt.% of sepiolite/CdFe₂O₄ was found to be most efficient in solar light for the degradation of Rh-B dye.

 $9 \t\t\t 59.5$ Rh-B dye concentration = 3×10^{-4} M, catalyst suspended = 3 g L^{-1} , pH $= 7$ airflow rate $= 8.1$ mL s⁻¹, irradiation time $= 45$ min, I_{solar} $= 1250$ $\times100 \pm 100$ lx

Effect of solution pH: In the pH range of 3 to 11, the impact of pH on Rh-B dye photodegradation was investigated. At pH 3, 5, 7, 9 and 11, respectively, the percentages of Rh-B degradation after 45 min of irradiation are 42.1, 58.5, 99.5, 76.6 and 63.5% (Fig. 8). As the pH attains the neutral range

Fig. 8. Effect of solution pH on Rh-B degradation: dye concentration = 3 \times 10⁻⁴ M, catalyst suspended = 3 g L⁻¹, airflow rate = 8.1 mL s⁻¹ irradiation time = 45 min, $I_{solar} = 1250 \times 100 \pm 100$ lx

(pH 7), the degradation efficiency decreases. Thus, at pH 7, there is elevated absorption and enhanced photocatalytic activity in the breakdown of Rh-B dye molecules.

Effect of nanocomposite loading: The effectiveness of sepiolite/ $CdFe₂O₄$ as catalyst in varying quantities is shown in Fig. 9. Consequently, it suggests that in comparison to other concentrations, nanocomposite with 3 g L^{-1} exhibits the highest photodegradation under solar light energy. The amount of molecules adsorbed onto the surface of nanocomposite is generally believed to have a relationship with the efficiency of a photocatalyst. Lower activity over 3 g $L¹$ photocatalysis is caused by the agglomeration of catalyst.

Fig. 9. Effect of catalyst loading on Rh-B degradation: dye concentration $= 3 \times 10^{-4}$ M, pH = 7, catalyst suspended = 3 g L⁻¹, airflow rate = 8.1 mL s⁻¹, irradiation time = 45 min, I_{solar} = $1250 \times 100 \pm 100$ lx

Reusability of catalyst: Reusability studies could confirm the strength and activity efficiency of photocatalysts. As the Rh-B dye molecule breaks down, Fig. 10 displays the reusability result of sepiolite/CdFe₂O₄. The catalyst was repeatedly purified using ethanol and water after it had been filtered and isolated from the dye solution after the degradation process was finished. After drying at 100 °C, the catalyst was put to further analysis. The photocatalytic activity was stable with the Rh-B dye in solution completely decomposed during 45 min irradiation for each cycle, though a small decline $(< 8\%)$ can be detected after four cycles.

Fig. 10. Reusability of sepiolite/CdFe₂O₄ nanocomposite on Rh-B degradation: dye concentration = 3×10^{-4} M, pH = 7, catalyst suspended = 3 g L⁻¹, airflow rate = 8.1 mL s⁻¹, irradiation time = 45 min, $I_{solar} = 1250 \times 100 \pm 100$ lx

Mechanism of degradation: As mentioned, the heterostructures consist of well-interacted CdO and $Fe₂O₃$ nanoparticles deposited as $CdFe₂O₄$ on the surface of sepiolite clay material. **Scheme-I** proposes the separation and transportation of electron-hole pairs at the interface between the CdO and $Fe₂O₃$ photocatalysts. The electron-hole pairs are produced by photogenerated CdO. Since CdO has a higher CB position than

Scheme-I: Photodegradation mechanism of sepiolite/CdFe₂O₄

 $Fe₂O₃$, photogenerated electrons on CdO can directly inject into $Fe₂O₃$'s CB band. This increases the efficiency of charge separation and lowers the likelihood of recombination, which boosts photocatalytic activity. Loaded sepiolite clay also contains a large number of metal and non-metal oxides in addition to this electron transfer. Metal ions function as electron sinks to lessen electron-hole recombination and can create sporadic energy levels to lower band gap energy.

Contact angle measurements: The water contact angle (WCA) reflects the surface non-wettability of prepared catalyst. To assess the hydrophobicity of catalyst, the contact angles of glass slides coated with TEOS, TEOS + CdFe₂O₄, TEOS + sepiolite clay and $TEOS + \text{sepiolite/CdFe}_2O_4$ were measured. Fig. 11 presents the water contact angles for these four different coatings: TEOS + CdFe₂O₄ (b), TEOS + sepiolite clay (c), with a measured angle of 108.3° for TEOS + sepiolite/CdFe₂O₄ (d) and 22.5º for the untreated glass slide (a). The increased fraction of air/water contact on a rough surface can enhance super hydrophobicity, indicating that sepiolite/CdFe₂O₄ coating exhibits greater hydrophobicity. Consequently, this property transforms the catalyst into a self-cleaning material, leading to reduced surface wettability.

Fig. 11. Water contact angle of different samples (a) uncoated glass slide, (b) $TEOS + CdFe₂O₄ coated glass slide, (c) $TEOS +$ sepiolite clay$ coated glass slide and (d) TEOS + sepiolite/CdFe₂O₄ coated glass slide

Conclusion

The hydrothermal co-precipitation approach was used to synthesize $CdFe₂O₄$ supported by sepiolite without the use of organic solvents or surfactants. The FE-SEM images revealed that the synthesized sepiolite/CdFe₂O₄ has a loosely clustered sandwich-like microstructure, whereas the HR-TEM analysis confirmed the presence of numerous regular-shaped, hollow spherical particles, providing additional evidence of uniform coating of CdFe2O4 nanoparticles on the sepiolite clay surface. The photodegradation tests demonstrated that 5 wt.% sepiolite supported $CdFe₂O₄$ is significantly more effective at degrading rhodamine-B dye at neutral pH 7. The reduced fluorescence intensity of sepiolite/CdFe₂O₄ indicates decreased recombination

of electron-hole pairs. Additionally, the BET surface area of sepiolite/CdFe₂O₄ is higher at 36.48 m²/g, compared to 18.94 m²/g for CdFe₂O₄ alone. The water contact angle of 108.3° confirms the excellent hydrophobicity of sepiolite/CdFe₂O₄. This research emphasizes a new utilization of naturally occurring sepiolite in semiconductor oxide materials for energy and environmental applications.

ACKNOWLEDGEMENTS

The authors thank The Principal, Kalaignar Karunanidhi Government Arts College and Department of Chemistry for their support and for providing a facilities for research.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interests regarding the publication of this article.

REFERENCES

- 1. O. Silva and P.C. Morais, *J. Magn. Magn. Mater.*, **289**, 136 (2005); https://doi.org/10.1016/j.jmmm.2004.11.040
- 2. M. Yokoyama, E. Ohta, T. Sato and T. Sato, *J. Magn. Magn. Mater.*, **183**, 173 (1998);
- [https://doi.org/10.1016/S0304-8853\(97\)01073-1](https://doi.org/10.1016/S0304-8853(97)01073-1) 3. P. Singh, K. Sharma, V. Hasija, V. Sharma, S. Sharma, P. Raizada, M.
- Singh, A.K. Saini, A. Hosseini-Bandegharaei and V.K. Thakur, *Mater. Today Chem.*, **14**, 100186 (2019); https://doi.org/10.1016/j.mtchem.2019.08.005
- 4. X. Li, J. Wang, J. Zhang, C. Zhao, Y. Wu and Y. He, *J. Colloid Interface Sci.*, **607**, 412 (2022);
	- https://doi.org/10.1016/j.jcis.2021.09.004
- 5. Z. Li, Q. Zhang, L. Wang, J. Yang, Y. Wu and Y. He, *Ultrason. Sonochem.*, **78**, 105729 (2021); https://doi.org/10.1016/j.ultsonch.2021.105729
- 6. A. Amirnasiri and S.E. Mirsalehi, *Ceram. Int.*, **47**, 34414 (2021); https://doi.org/10.1016/j.ceramint.2021.08.354
- 7. S. Gunes, K.P. Fritz, H. Neugebauer, N.S. Sariciftci, S. Kumar and G.D. Scholes, *Sol. Energy Mater. Sol. Cells*, **91**, 420 (2007); https://doi.org/10.1016/j.solmat.2006.10.016
- 8. C. Rumenapp, B. Gleich and A. Haase, *Pharm. Res.*, **29**, 1165 (2012); https://doi.org/10.1007/s11095-012-0711-y
- 9. R. Viswanath, H.S. Bhojya Naik, G. Arun Kumar, I.K. Suresh Gowda and S. Yallappa, *Luminescence*, **32**, 1212 (2017); https://doi.org/10.1002/bio.3313
- 10. P. Srinoi, Y.-T. Chen, V. Vittur, M.D. Marquez and T.R. Lee, *Appl. Sci.*, **8**, 1106 (2018);
- https://doi.org/10.3390/app8071106 11. J.Z. Msomi, *J. Magn. Magn. Mater.*, **336**, 61 (2013);
- https://doi.org/10.1016/j.jmmm.2013.02.021
- 12. Z. Sun, L. Liu, D. Jia and W. Pan, *Sens. Actuators B Chem.*, **125**, 144 (2007); https://doi.org/10.1016/j.snb.2007.01.050
- 13. A.V. Raut, R.S. Barkule, D.R. Shengule and K.M. Jadhav, *J. Magn. Magn. Mater.*, **358–359**, 87 (2014);
- https://doi.org/10.1016/j.jmmm.2014.01.039 14. E.R. Kumar, R. Jayaprakash, G.S. Devi and P.S.P. Reddy, *J. Magn. Magn. Mater.*, **355**, 87 (2014); https://doi.org/10.1016/j.jmmm.2013.11.051
- 15. E.H. Kim, H.S. Lee, B.K. Kwak and B.-K. Kim, *J. Magn. Magn. Mater.*, **289**, 328 (2004); https://doi.org/10.1016/j.jmmm.2004.11.093
- 16. D. Ramimoghadam, S. Bagheri and S.B.A. Hamid, *J. Magn. Magn. Mater.*, **368**, 207 (2014); https://doi.org/10.1016/j.jmmm.2014.05.015
- 17. O.M. Hemeda, N.Y. Mostafa, O.H.A. Elkader and M.A. Ahmed, *J. Magn. Magn. Mater.*, **364**, 39 (2014); https://doi.org/10.1016/j.jmmm.2014.03.061
- 18. R.M. Mohamed, M.M. Rashad, F.A. Haraz and W. Sigmund, *J. Magn. Magn. Mater.*, **322**, 2058 (2010); https://doi.org/10.1016/j.jmmm.2010.01.034
- 19. M. Houshiar, F. Zebhi, Z.J. Razi, A. Alidoust and Z. Askari, *J. Magn. Magn. Mater.*, **371**, 43 (2014);
- https://doi.org/10.1016/j.jmmm.2014.06.059 20. P. Pulisova, J. Kovac, A. Voigt and P. Raschman, *J. Magn. Magn. Mater.*, **341**, 93 (2013);
- https://doi.org/10.1016/j.jmmm.2013.04.003
- 21. I. Sharifi, H. Shokrollahi, M. Doroodmand and R. Safi, *J. Magn. Magn. Mater.*, **324**, 1854 (2012); https://doi.org/10.1016/j.jmmm.2012.01.015
- 22. M. Zhang, Z. Zi, Q. Liu, X. Zhu, C. Liang, Y. Sun and J. Dai, *J. Magn. Magn. Mater.*, **369**, 23 (2014); https://doi.org/10.1016/j.jmmm.2014.06.019
- 23. M.E. Arani, M.J.N. Isfahani and M.A. Kashi, *J. Magn. Magn. Mater.*, **322**, 2944 (2010);
- https://doi.org/10.1016/j.jmmm.2010.05.010 24. Z. Karcioglu Karakas, R. Boncukcuoglu, I.H. Karakas and M. Ertugrul, *J. Magn. Magn. Mater.*, **374**, 298 (2015); https://doi.org/10.1016/j.jmmm.2014.08.045
- 25. W. Liu, C. Zhao, S. Wang, L. Niu, Y. Wang, S. Liang and Z. Cui, *Res. Chem. Intermed.*, **44**, 1441 (2018); https://doi.org/10.1007/s11164-017-3178-y
- 26. A. Heydari and H. Sheibani, *RSC Adv.*, **5**, 82438 (2015); https://doi.org/10.1039/C5RA12423A
- 27. A. Heydari, H. Khoshnood, H. Sheibani and F. Doostan, *Polym. Adv. Technol.*, **28**, 524 (2017); https://doi.org/10.1002/pat.3951
- 28. L.X. Zhu, J.S. Guo, P. Liu and S.B. Zhao, *Appl. Clay Sci.*, **121-122**, 29 (2016);
- https://doi.org/10.1016/j.clay.2015.12.020
- 29. T.P.A. Shabeer, A. Saha, V.T. Gajbhiye, S. Gupta, K.M. Manjaiah and E. Varghese, *Water Air Soil Pollut.*, **226**, 41 (2015); https://doi.org/10.1007/s11270-015-2331-8
- 30. V. Marjanovic, S. Lazarevic, I. Jankovic-Castvan, D. Janackovic, B. Jokic and R. Petrovic, *Appl. Clay Sci.*, **80-81**, 202 (2013); https://doi.org/10.1016/j.clay.2013.04.008
- 31. E.I. Unuabonah, K.O. Adebowale and B.I. Olu-Owolabi, *J. Hazard. Mater.*, **144**, 386 (2007);
- https://doi.org/10.1016/j.jhazmat.2006.10.046 32. Z.H. Siahpoosh and M. Soleimani, *Bioanal. Chem. Res.*, **3**, 195 (2016); https://doi.org/10.22036/abcr.2016.16482
- 33. R. Donat, *J. Chem. Thermodyn.*, **41**, 829 (2009); https://doi.org/10.1016/j.jct.2009.01.009
- 34. M. Suárez and E. García-Romero, *Appl. Clay Sci.*, **67–68**, 72 (2012); https://doi.org/10.1016/j.clay.2012.06.003
- 35. Y. Yu, S. Qi, J. Zhan, Z. Wu, X. Yang and D. Wu, *Mater. Res. Bull.*, **46**, 1593 (2011);
	- https://doi.org/10.1016/j.materresbull.2011.06.009
- 36. Y. Zheng and Y. Zheng, *J. Appl. Polym. Sci.*, **99**, 2163 (2006); https://doi.org/10.1002/app.22337
- 37. O. Ozdemir, M. Cinar, E. Sabah, F. Arslan and M.S. Celik, *J. Hazard. Mater.*, **147**, 625 (2007); https://doi.org/10.1016/j.jhazmat.2007.01.059
- 38. S. Hojati and H. Khademi, *J. Cent. South Univ.*, **20**, 3627 (2013); https://doi.org/10.1007/s11771-013-1889-9
- 39. S. Sagadevan, K. Pal, Z.Z. Chowdhury and M.E. Hoque, *Mater. Res. Express*, **4**, 075025 (2017); https://doi.org/10.1088/2053-1591/aa77b5
- 40. C. Reitz, C. Suchomski, V.S.K. Chakravadhanula, I. Djerdj, Z. Jaglièic and T. Brezesinski, *Inorg. Chem.*, **52**, 3744 (2013); https://doi.org/10.1021/ic302283q
- 41. K. Brezesinski, J. Haetge, J. Wang, S. Mascotto, C. Reitz, A. Rein, S.H. Tolbert, J. Perlich, B. Dunn and T. Brezesinski, *Small*, **7**, 407 (2011); https://doi.org/10.1002/smll.201001333