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INTRODUCTION

The unavoidable environmental restrictions for consuming
hazardous and toxic solvents or chemicals shifting the synthetic
chemists towards the development of ecofriendly and sustain-
able synthesis for small organic molecules. This situation is
creating an urgent need for designing new types of methodo-
logies to be adopted by synthetic chemists. To avoid the use of
toxic chemicals and solvents a number of alternative method
are reported in literature among them ultrasonic irradiation
mediated method, ball milling method, surfactant mediated
synthesis, solid phase reactions, reactions in water as solvents,
using supercritical fluids as solvents, ionic liquids as solvents
for the reactions, glycerol as solvents, using carbohydrate based
catalysts, organocatalyzed reactions are some frontline examples
[1-8]. Although all these reported procedures are following
principals to perform sustainable chemistry but there are certain
restrictions associated with them, which renders them from
using as a green alternative for conventional ways of synthesis.
Scale up issues, tedious work up procedures, high temperature,
low selectivity, narrow substrate scope, poor yields, toxic by-
products after reaction are the main hurdles behind the use of
various reported protocols [9-13]. Therefore, the need to search
for better sustainable process is very important.

Quinazolinones and spiroquinazolinones constitute a class of
heterocyclic molecules which is quite fascinating and interesting
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due to the broad range of biological properties associated with it
[14-17]. The molecules showing in Fig. 1 exhibits the structure
of certain quinazolinone based molecules with special biological
potential. These molecules are associated with them the diverse
range of biological properties like antibacterial, antifungal,
antimycobacterial, anti-inflammatory, antidiabetic, anticancer,
antimalarial, antileishmanial and anticonvulsant activities,
which make them crucial in medicinal chemistry and drug
discovery programs [18-23]. A number of synthetic protocols
are reported in literature to construct the quinazolinone nucleus
among them the multicomponent reactions are prominent [24,
25]. Transition metal catalyzed coupling reactions are also the
most frequently used methodology for the synthesis of quinazo-
linones [26-28]. Apart from these, several other methods are
reported with lot of limitations in terms of substrate scope and
feasibility of the reactions. Very few reports are present involving
employment of multicomponent reactions for synthesis of quina-
zolinone nucleus, which are not suitable from green chemistry
perspective due to use of toxic metals, microwave reaction condi-
tion, high pressure conditions, high temperature, use of toxic
solvents, large reaction time and problem of purification [29,30].

In this direction, the application of green organic solvents
for synthesis is an attractive choice for chemists and chemical
industries also. Among various solvents used for green synthesis
the water, glycerol, polyethylene glycol, ionic liquids, super-
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critical fluids and ethanol are of maximum used solvents [31,
32]. The poor aqueous solubility of non-polar organic mole-
cules is one of the major restriction behind the use of water as
solvents. Usage of surfactant in water may overcome this issue
but surfactant is hazardous for aquatic environment. Use of
ionic liquids suffers with the tedious work up procedures and
toxic byproducts after the product isolation [33]. Use of super-
critical fluids has scale up issues, expensive and not energy
efficient process [34]. The glycerol proves to be one of the best
use as a green alternative over these options due to the better
solubility of organic molecules, low-cost and non-toxic nature
[35]. The prime hurdle in using glycerol as solvent is the viscous
nature of the liquid which might be overcome by increasing
the temperature of reaction mixture. It is reported in the litera-
ture that the using glycerol as solvent to perform a reaction
can be considered as organic water reaction medium [36]. The
polar nature due to presence of three hydroxyl groups and strong
hydrogen bonding ability make glycerol as potentially good
substitute to perform organic of small heterocyclic molecules.
Additionally, in comparison to water glycerol is preferred due
to high boiling point and better solubility for organic molecules.
Due to these benefits the glycerol has been used in the synthesis
of many types of organic heterocycles like selanylpyridines,
disulfides, arylbenzothiazoles, pyrazolines, imidazoles, tetra-
zoles, etc. [37]. However, quinazolinones are still not synthe-
sized using glycerol based solvents.

EXPERIMENTAL

Unless otherwise specified all the reagents were purchased
from Sigma-Aldrich and used without further any purification.
The common organic solvents were purchased from Ranchem.
Organic solutions were concentrated under reduced pressure
on a Büchi rotary evaporator. Chromatographic purification
of products was accomplished using flash chromatography
on 230-400 mesh silica gel. Reactions were monitored by thin-
layer chromatography (TLC) on 0.25 mm silica gel plates
visualized under UV light, iodine or KMnO4 staining. 1H &
13C NMR spectra were recorded on a Brucker DRX-300 spectro-
meter. Mass spectra (ESI MS) were obtained by Micromass
Quattro II instrument. Melting points were obtained on a
COMPLAB melting point apparatus and are uncorrected.

Synthesis of quinazolinone and spiroquinazolinone
derivatives: Isatoic anhydride (1 mmol), primary amine (1 mmol)
and benzaldehyde analogue or isatin derivative (1 mmol) were
mixed in 100 mL round bottom flask and 10 mL glycerol was
added. Reaction mixture was heated upto 80 ºC and stirred at
the same temperature upto completion of reaction. The reaction
progress was monitored using thin layer chromatography in
ethyl acetae and hexane mixture. After the completion reaction
mixture was poured in ice cold water under stirring and filtered
off to get the solid residue. The solid residue was further crystal-
lized using ethanol to afford the desired product in quantitative
yield (Scheme-I).
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Fig. 1. Structure of some bioactive molecules based on quinazolinone core
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1-Methyl-3′′′′′-phenyl-1′′′′′H-spiro[indoline-3,2′′′′′-quinazoline]-
2,4′′′′′(3′′′′′H)-dione (5a): Orange powder; yield: 82%; Time: 5 h,
m.p.: 224 ºC; IR (KBr, νmax, cm–1): 3361, 3254, 2946, 1712, 1650,
1503; 1H NMR (300 MHz, DMSO-d6) δ ppm: 3.42 (s, 3H),
7.26-7.10 (m, 4H), 7.74-7.65 (m, 3H), 7.91-7.87 (m, 3H), 8.26-
7.91 (m, 2H), 11.70 (s, 2H); 13C NMR (75 MHz, DMSO-d6) δ
ppm: 86.87, 112.66, 113.06, 114.54, 114.68, 121.34, 127.94,
129.68, 129.81, 130.15, 134.03, 134.21, 135.69, 137.61, 141.44,
146.27, 163.91, 175.64; MS (ESI) m/z = 347 (M+H)+; Anal.
calcd. (found) % for C22H17N3O2: C, 74.35 (74.33); H, 4.82 (4.85);
N, 11.82 (11.80).

3′′′′′-Phenyl-1′′′′′H-spiro[indoline-3,2′′′′′-quinazoline]-2,4′′′′′-
(3'H)-dione (5b): Orange powder; yield: 87%; Time: 5 h, m.p.:
208 ºC; IR (KBr, νmax, cm–1): 3361, 3254, 2946, 1712, 1650,
1503; 1H NMR (300 MHz, DMSO-d6) δ ppm: 7.26-7.11 (m,
5H), 7.75-7.66 (m, 3H), 7.91-7.87 (m, 3H), 8.26-7.91 (m, 2H),
11.70 (s, 2H); 13C NMR (75 MHz, DMSO-d6): δ ppm: 86.87,
112.66, 113.06, 114.54, 114.68, 121.34, 127.94, 129.68, 129.81,
130.15, 134.03, 134.21, 135.69, 137.61, 141.44, 146.27, 163.91,
175.64; MS (ESI) m/z = 347 (M+H)+; Anal. calcd. (found) %
for C21H15N3O2: C, 73.89 (73.80); H, 4.43 (4.31); N, 12.31 (15.23).

1-Ethyl-3′′′′′-phenyl-1′′′′′H-spiro[indoline-3,2′′′′′-quinazoline]-
2,4′′′′′(3′′′′′H)-dione (5c): Yellow powder; yield: 80%; Time: 5 h,
m.p.: 234 ºC; IR (KBr, νmax, cm–1): 3372, 3268, 2970, 1710, 1648,
1505; 1H NMR (300 MHz, DMSO-d6) δ ppm: 1.40 (t, J = 6.47
Hz, 3H); 4.36 (q, J = 6.3 Hz, 2H); 6.74-6.63 (m, 5H); 7.17-
7.10 (m, 4H); 7.29-7.24 (m, 2H); 7.48-7.41 (m, 1H); 7.94 (d,
J = 8.3 Hz, 1H); 10.23 (s, 1H); 13C NMR (75 MHz, DMSO-d6)
δ ppm: 13.71, 41.33, 93.11, 110.36, 113.37, 114.26, 115.17,
118.34, 128.44, 129.88, 129.91, 132.16, 134.15, 135.21, 135.69,
138.81, 141.44, 145.93, 163.81, 175.64; MS (ESI) m/z = 370
(M+H)+; Anal. calcd. (found) % for C23H19N3O2: C, 74.78 (74.80);
H, 5.18 (5.21); N, 11.37 (11.34).

3′′′′′-Phenyl-1-propyl-1′′′′′H-spiro[indoline-3,2′′′′′-quinazoline]-
2,4′′′′′(3′′′′′H)-dione (5d): Cream powder; yield: 78%; Time: 5 h,
m.p.: 242 ºC; IR (KBr, νmax, cm–1): 3380, 3298, 2972, 1721,
1650, 1503; 1H NMR (300 MHz, DMSO-d6): δ ppm; 0.79 (t, J
= Hz, 3H), 1.45-1.40 (m, 2H), 3.36-3.27 (m, 1H), 3.72-3.59
(m, 1H), 6.96 (t, J = 8.22 Hz, 2H), 7.04-6.97 (m, 4H), 7.18-
7.03 (m, 3H), 7.32 (t, J = Hz, 1H), 7.35-7.19 (m, 2H), 7.49 (d,
J = 10.2 Hz, 1H), 8.21 (d, 1H, J = 8.9 Hz); 13C NMR (75 MHz,
DMSO-d6): δ ppm: 11.51, 20.4, 42.47, 109.66, 114.14, 114.24,
114.96, 117.34, 123.84, 129.44, 130.81, 130.15, 134.13, 134.21,
136.69, 137.61, 141.44, 146.27, 163.91, 175.64; MS (ESI) m/z
= 384 (M+H)+; Anal. calcd. (found) % for C24H21N3O2: C, 75.18
(75.14); H, 5.52 (5.49); N, 10.96 (10.97).

3′′′′′-(2-Cyclohexylethyl)-1′′′′′H-spiro[indoline-3,2′′′′′-quina-
zoline]-2,4′′′′′(3′′′′′H)-dione (5e): Yellow powder; yield: 75%; Time:
6 h, m.p.: 226 ºC; IR (KBr, νmax, cm–1): 3372, 3268, 2970, 1710,
1648, 1505; 1H NMR (300 MHz, DMSO-d6): δ ppm: 1.38-1.62
(m, 13H), 3.28 (t, 2H); 6.75 (t, 1H), 7.00 (d, 1H); 7.17-7.44
(m, 5H), 7.67 (d, 1H), 8.28 (s, 1H); 13C NMR (75 MHz, DMSO-d6)
δ ppm: 167.8, 141.1, 106.2, 130.7, 162.0, 147.3, 115.2, 122.8,
116.1, 113.3, 127.8, 137.2, 128.2, 130.5, 116.9, 33.6, 33.3, 33.1,
25.8, 25.6, 26.2, 39.2, 32.3, MS (ESI) m/z = 376 (M+H)+; Anal.
calcd. (found) % for C23H25N3O2: C, 73.57 (73.60); H, 6.71 (6.73);
N, 11.19 (11.15).

2-(4-Chlorophenyl)-3-phenyl-2,3-dihydroquinazolin-
4(1H)-one (6a): Light yellow solid, yield: 82%; Time: 6 h,
m.p.: 179 ºC; IR (KBr, νmax, cm–1): 3411, 1635, 1608, 1585,
1508, 1485, 1390, 1298, 1245, 1159, 1068, 1029, 956, 835,
601; 1H NMR (300 MHz, CDCl3) δ ppm: 4.81 (s, 1H), 6.02 (s,
1H), 6.60 (d, J = 8.0 Hz, 1H), 6.76 (d, J = 8.0 Hz, 2H), 6.87 (t,
J = 7.0 Hz, 1H), 7.03 (d, J = 8.5 Hz, 2H), 7.06 (d, J = 8.5 Hz,
2H), 7.25-7.31 (m, 4H), 8.01 (dd, J = 7.5, 1.5 Hz, 1H); 13C NMR
(75 MHz, CDCl3) δ ppm: 74.3, 114.1, 114.5, 114.6, 116.9, 119.4,
120.6, 126.9, 128.1, 129.0, 129.5, 132.0, 133.7, 136.5, 137.9,
145.4, 159.9, 163.2; Anal. calcd. (found) % for C20H15N2OCl:
C, 71.75 (71.72); H, 4.52 (4.54); N, 8.37 (8.35).

3-(4-Chlorophenyl)-2-(4-methoxyphenyl)-2,3-
dihydroquinazolin-4(1H)-one (6b): Light yellow solid; yield:
80%; Time: 5 h, m.p.: 186 ºC; IR IR (KBr, νmax, cm–1): 3411,
1635, 1608, 1585, 1508, 1485, 1390, 1298, 1245, 1159, 1068,
1029, 956, 835, 601; 1H NMR (300 MHz, CDCl3) δ ppm: 3.74
(s, 3H), 4.81 (s, 1H), 6.02 (s, 1H), 6.60 (d, J = 8.0 Hz, 1H),
6.76 (d, J = 8.0 Hz, 2H), 6.87 (t, J = 7.0 Hz, 1H), 7.03 (d, J =
8.5 Hz, 2H), 7.06 (d, J = 8.5 Hz, 2H), 7.25-7.31 (m, 2H), 8.01
(dd, J = 7.5, 1.5 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ ppm:
55.2, 74.4, 113.9, 114.3, 114.6, 116.9, 119.4, 120.6, 126.9,
128.1, 129.0, 129.5, 132.0, 133.7, 136.5, 137.9, 145.4, 159.9,
163.2; Anal. calcd. (found) % for C21H17N2O2Cl: C, 69.14
(69.19); H, 4.70 (4.74); N, 7.61 (7.65).

2-(4-Nitrophenyl)-3-phenyl-2,3-dihydroquinazolin-
4(1H)-one (6c): Light yellow solid; yield: 72%; Time: 10 h,
m.p.: 216 ºC; IR (KBr, νmax, cm–1): 3411, 1635, 1608, 1585,
1551, 1485, 1365, 1298, 1245, 1159, 1068, 1029, 956, 835,
601; 1H NMR (300 MHz, CDCl3) δ ppm: 4.81 (s, 1H), 6.02 (s,
1H), 6.60 (d, J = 8.0 Hz, 2H), 6.76 (d, J = 8.0 Hz, 2H), 6.87
(t, J = 7.0 Hz, 1H), 7.03 (d, J = 8.5 Hz, 2H), 7.06 (d, J = 8.5
Hz, 2H), 7.25-7.31 (m, 3H), 8.01 (dd, J = 7.5, 1.5 Hz, 1H);
13C NMR (75 MHz, CDCl3) δ ppm: 74.4, 113.9, 114.5, 114.8,
116.2, 119.6, 120.2, 126.4, 128.6, 129.2, 129.8, 132.2, 133.3,
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136.1, 137.9, 145.6, 159.4, 163.1; Anal. calcd. (found) % for
C20H15N3O3: C, 69.56 (69.54); H, 4.38 (4.40); N, 12.17 (12.15).

2,3-Diphenyl-2,3-dihydroquinazolin-4(1H)-one (6d):
Light yellow solid; yield: 76%; Time: 6 h, m.p.: 174 ºC; IR
(KBr, νmax, cm–1): 3411, 1635, 1608, 1585, 1508, 1485, 1390,
1298, 1245, 1159, 1068, 1029, 956, 835, 601; 1H NMR (300
MHz, CDCl3) δ ppm: 4.81 (s, 1H), 6.02 (s, 1H), 6.61-6.72 (m,
3H), 6.87 (t, J = 7.0 Hz, 1H), 7.03 (d, J = 8.5 Hz, 2H), 7.06 (d,
J = 8.5 Hz, 2H), 7.25-7.31 (m, 4H), 8.01 (dd, J = 7.5, 1.5 Hz,
2H); 13C NMR (75 MHz, CDCl3) δ ppm: 74.4, 113.6, 114.7,
114.9, 116.5, 119.8, 121.4, 126.1, 128.6, 129.4, 130.2, 132.2,
133.4, 136.7, 138.2, 144.1, 159.3, 163.8; Anal. calcd. (found) %
for C20H16N2O: C, 79.98 (79.96); H, 5.37 (5.39); N, 9.33 (9.31).

2-(3,4-Dimethoxyphenyl)-3-phenyl-2,3-dihydroquina-
zolin-4(1H)-one (6e): White solid; yield: 82%; Time: 5 h, m.p.:
192 ºC; IR (KBr, νmax, cm–1): 3411, 2932, 1635, 1616, 1508,
1485, 1463, 1390, 1267, 1236, 1137, 1120, 1068, 1029, 997,
952, 862, 694, 617; 1H NMR (300 MHz, CDCl3) δ ppm: 3.85
(s, 3H), 3.88 (s, 3H), 5.22 (s, 1H), 6.30 (s, 1H), 6.52 (d, J =
8.0 Hz, 1H), 6.81 (t, J = 7.5 Hz, 1H), 6.88 (d, J = 7.5 Hz, 1H),
6.96 (t, J = 8.0 Hz, 1H), 7.05 (d, J = 7.5 Hz, 1H), 7.18-7.22
(m, 2H), 7.30-7.34 (m, 4H), 8.01 (d, J = 7.0 Hz, 1H); Anal.
calcd. (found) % for C22H20N2O3: C, 73.32 (73.18); H, 5.59
(5.38); N, 7.77 (7.88).

3-Phenyl-2-m-tolyl-2,3-dihydroquinazolin-4(1H)-one
(6f): White solid; yield: 80%; Time: 5 h, m.p.: 158 ºC; IR (KBr,
νmax, cm–1): 3303, 2927, 1635, 1616, 1512, 1487, 1446, 1400,
1346, 1317, 1298, 1176, 1114, 1068, 950, 864, 619; 1H NMR
(300 MHz, CDCl3) δ ppm: 2.27 (s, 3H), 4.74 (s, 1H), 6.06 (s,
1H), 6.62 (d, J = 7.5 Hz, 1H), 6.89 (t, J = 7.5 Hz, 1H), 7.13-
7.20 (m, 6H), 7.27-7.31 (m, 3H), 8.03 (dd, J = 8.0, 1.5 Hz,
1H); 13C NMR (75 MHz, CDCl3) δ ppm: 21.4, 74.6, 114.8,
116.9, 119.5, 123.8, 126.7, 126.8, 127.3, 128.6, 129.0, 129.7,
133.8, 138.5, 139.8, 140.6, 145.2, 163.1; Anal. calcd. (found)
% for C21H18N2O: C, 80.23 (79.99); H, 5.77 (5.90); N, 8.91
(8.79).

3-(2-Cyclohexylethyl)-2-phenyl-2,3-dihydroquinazo-
lin-4(1H)-one (6g): Creamy white solid; yield: 83%; Time: 6 h,
m.p.: 142 ºC; IR (KBr, νmax, cm–1): 3303, 2927, 1635, 1616,
1512, 1487, 1446, 1400, 1346, 1317, 1298, 1176, 1114, 1068,
950, 864, 619; 1H NMR (300 MHz, CDCl3) δ ppm: 1.61-1.38
(m, 13H); 3.18 (t, J = 8 Hz, 2H); 6.01 (s, 1H); 6.29 (s, 1H);
6.75 (t, 1H); 7.019 (d, 1H); 7.31-7.44 (m, 6H); 7.61 (d, 1H);
13C NMR (75 MHz, CDCl3) δ ppm: 162.0, 145.3, 139.2, 83.2,
116.1, 113.3, 128.0, 126.9, 124.4, 128.5, 130.5, 116.9, 128.5,
127.1, 33.6, 33.3, 32.9, 25.8, 26.0, 42.4, 32.7 Anal. calcd. (found)
% for C22H26N2O: C, 79.00 (79.08); H, 7.84 (7.04); N, 8.38 (8.34).

RESULTS AND DISCUSSION

Initially, the suitable conditions for synthesis of quinazo-
line analogues was first work out. To achieve this objective,
the reaction of isatin, isatoic anhydride and bezaldehyde as
model reaction was selected (Scheme-I). The viscous nature
of glycerol requires temperature above 40 ºC for better stirring
and mixing of reactant molecules. In order to compare the
capability of other solvents for the synthesis of heterocycles
over the glycerol, we screened the solvents like, ethanol, water,

methanol, water-ethanol mixture, acetonitrile and glycerol at
room temperature and higher temperatures and the results are
summarized in Table-1.

TABLE-1 
SCREENING OF DIFFERENT SOLVENTS  
FOR SYNTHESIS OF QUINAZOLINONES 

Entry Solvent Temp. (°C) Time (h) Yield (%) 
1 Ethyl acetate Reflux 10 32 
2 Methanol Reflux 10 52 
3 H2O Reflux 10 Trace 
4 Acetonitrile Reflux 10 25 
5 Dichloromethane Reflux 10 Trace 
6 Chloroform Reflux 10 Trace 
7 Glycerol Room temp. 10 39 
7 Glycerol 40 7 58 
8 Glycerol 60 3 77 
9 Glycerol 70 2.5 87 

10 Glycerol 80 2 92 

 
It is demonstrated that water as a solvent does not feasible

for the reaction as only traces of quinazolinone formation was
observed. The results were similar with chloroform and dichloro-
methane as solvent. Ethyl acetate showed 32% product formation
while 25% coversion was observed with acetonitrile at room
temperature. The product yield was 52% with methanol as solvent
which was more superior than water, acetonitrile and ethylacetate.
Glycerol was also tested as solvent and 39% conversion observed
at room temperature. The viscous nature of glycerol was consi-
dered as prime hurdle behind proper stirring. To enhance the
efficacy, the reaction temperature was increased and checked
the product conversion at 40, 60, 70 and 80 ºC. It was found
that 92% product was obtained by performing the synthesis at
80 ºC. Probably increased temperature facilitated the reaction
by effective stirring. Since, the best product formation was
observed at 80 ºC with glycerol, therefore we finalized the
optimum reaction condition to perform the synthesis of quina-
zolinone derivatives.

After finalizing the reaction conditions, efforts were made
for the synthesis of various derivatives of quinazolinones. Also
to prove the utility of present synthetic protocol, we introduced
substrate variation in place of aldehydes by using substitution
on benzene ring. 5-Substituted isatin was used to widen the
substrate scope of designed methodology. As shown in Scheme-
II, 10 quinazolinones were prepared and characterized using
the spectroscopic techniques. To include the substrate variation
differently substituted aldehydes were used for the synthesis
of quinazolines.

Both electron donating and electron withdrawing groups
on benzaldehyde were explored and observed the effect of
substituent on the reaction time. It was found that the electron
withdrawing substitution tends to increase the reaction time
probably due to decreasing the rate of reaction. The reaction
involving benzaldehydes with electron donating substitution
took less time for completion.

In another reaction sequence isatin was used instead of
benzaldehyde derivatives under similar reaction conditions. It
was found that the reaction proceeds very smoothly leading
to the formation of spiro analogues of quinazolinones. Compared

1092  Prakash et al. Asian J. Chem.



to conventional techniques of quinazolinone preparation, our
developed protocol is a highly efficient green option due to
the wide range of substrate variation and presence of glycerol
for the effective synthesis. The presence of quaternary carbon
in the product structure was found to be characteristic feature
for the characterization of synthesized spiro analogues. This
quaternary carbon was confirmed in 13C NMR spectroscopy,
which appear near to 100 ppm in the spectrogram. Further all
the synthesized molecules were fully characterized using mass,
1H NMR, IR and elemental analysis.
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Conclusion

In summary, an ecofriendly and efficient protocol is
developed leading to the preparation of biologically significant
quinazolinones and spiro quinazolinones analogues using isatoic
anhydride, primary amines and benzaldehydes or isatin in
glycerol as solvent. The developed synthetic protocol exhibits
wide range of substrate tolerance and environmentally benign
strategy to get quinazolinones and spiro quinazolinones analo-
gues. All the synthesized molecules were isolated in excellent
yields and characterized. The effect of electron withdrawing
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and electron donating groups on reaction were also established
using different types of substitutions in the reactant molecules.
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