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INTRODUCTION

Advancement of illumination profoundly overcome the
restrictions of limited natural light source and lead the immense
growth in human civilization in past few years. Worldwide tren-
ding innovations are based on the improvement of energy saving
technologies as humanity is more worried than ever before about
environmental security and resource conservations. In past few
years, fourth-generation solid-state illumination sources, white
light emitting diodes (WLEDs) became the most energy efficient
and speedily growing lighting technologies, with the potential
to fundamentally revolutionize the lighting in the future [1-3].
Owing to distinguishing features such as eco-friendliness, pro-
longed life, low power consumption, excellent luminous, high
reliability, good fidelity, long life-span and prompt response,
white-LEDs have now gained a prominent position in the illum-
ination industry. As a result, they are widely used in a variety
of illuminating applications, such as panel manufacturing, solar
panels, entertainment world, advertising, branding, timer knobs,
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vehicular illuminating, telecommunication, scanning, horticul-
tural, forensic inks, projectors, bar-coding, food storage, kitchen
equipment, civic and ambient illumination, etc. For the afore-
mentioned reasons, W-LEDs have acquired a prominent stance
in scientific investigations in recent years. White-LEDs are
often made by integrating red, green and blue monochromatic
luminescent materials in a certain way or activating yellow
luminescent material with near UV lights. Regrettably, the
asymmetry of brightness and higher reabsorption constitute a
stumbling block to their monetization. As a result, it drives
material researchers to checkout some innovative, environmen-
tally friendly and cost-effective promising pure-phased nano-
phosphors [4-11].

Rare-earth zirconate compounds, Y2Zr2O7 are pretty inter-
esting host matrices for the lanthanide ions owing to their
excellent optical, thermal, physical, mechanical characteristics
and numerous uses in illumination, display field, finger printing,
thermal barrier coating, photocatalysis, etc. [12-24]. The easy
assimilation of various proportions of Ln3+ dopants ions as
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well as codopants into the large unit cell of Y2Zr2O7 owing to
similarity in ionic sizes and valency of Y3+and doped Ln3+ ions
makes this lattice to act as an excellent host with dazzling
luminescent properties. In past few years, numerous synthesis
techniques such as solid state, hydrothermal, coprecipitation,
sol-gel, vacuum sintering, etc. have been adopted for the synth-
esis of Ln3+ (Gd3+, Er3+, Eu3+, Sm3+, Dy3+, Ho3+, Tb3+) doped
Y2Zr2O7 compounds [25-35]. As far as the literature studies
related to doping of Dy3+ ions in Y2Zr2O7 host, the urea supported
solution combustion synthesis of Y2(1-x)Dy2xZr2O7 nanophos-
phors at 650 ºC does not prevail up to now. Two studies related
to codoping of Eu3+/Dy3+ and Dy3+/Li+ in Y2Zr2O7 are reported
by using complex sol-gel process at relatively higher temperature
[36,37]. In the current work, trivalent dysprosium white light
emanating Y2(1-x)Dy2xZr2O7 have been effectually developed
using a single step propitious and robust solution combustion
synthesis at low-temperature. In this quest, Dy3+ ion has been
selected to fabricate the desired Y2(1-x)Dy2xZr2O7 nanophosphors
as emission bands resided in blue range (4F9/2 → 6H15/2) and
yellow range(4F9/2 → 6H13/2) of this dopant ion well accomplished
the requirement of white light displays [38,39]. All the outcomes
of this innovating work signified the importance of low cost
synthesis of nanophosphors for advanced display purpose like
white-LEDs.

EXPERIMENTAL

White light emitting Y2(1-x)Dy2xZr2O7 (x = 0. 5 to 5 mol%)
nanopowders were synthesized using highly pure usher nitrates
of yttrium, zirconium, dysprosium i.e. Y(NO3)3·6H2O, ZrN2O7,
Dy(NO3)3·6H2O and CH4N2O urea (fuel) by adopting solution
combustion methodology. The pictorial illustration of complete
solution combustion methodology is presented in Fig. 1.

The uniform solution of all starting reagents was kept in
a preheated muffle furnace maintained at 550 ºC. The self-
reliant exothermic type reaction undergoing in furnace gene-
rated the voluminous fluffy product within few minutes. The
product was further sintered at 650 ºC for 1 h to get the product

of fine crystallinity, which was utilized for further studies. The
whole reaction occurring inside the muffle furnace that yields
Y2(1-x)Dy2xZr2O7 (x = 0. 5 to 5 mol%) can be represented by
chemical equation as:

2(1-x)Y(NO3)3·6H2O + 2xDy(NO3)3·6H2O +
2ZrN2O7 + 8.5NH2CONH2 → Y2(1-x)Dy2xZr2O7 +
gaseous products (mixture of CO2, H2O and N2)

Structural analysis of the synthesized Y2(1-x)Dy2xZr2O7

nanophosphors were performed by utilizing Smart lab 3kw
(Rigaku) multipurpose versatile XRD system, at a scan speed
of 2º/min in the 2θ ranging from 10º to 80º. Microscopic images
of prepared nanopowders to study the surface morphology
were obtained by field emission scanning electron microscopy
(FESEM) using Jeol JSM-IT 800 and elemental identification
was analyzed by the energy dispersive X-ray technique (EDAX)
using AZTEC software. The photoluminescence spectra in
ultraviolet-visible range were examined on Hitachi F-7000
spectrofluorimeter having Xenon lamp as an excitation source.
The CIE colour coordinates of Y2(1-x)Dy2xZr2O7 nanophosphors
were calculated using MATLAB software.

RESULTS AND DISCUSSION

The literature reveals that Y2Zr2O7 crystallize in two
structural forms one is an ordered pyrochlore with space group
Fd3m and other is disordered fluorite structure having space
group Fm3m. The YZO lattice shows a gradual transition from
pyrochlore to anion-deficient fluorite structure if r(RE3+)/r(Zr4+)
become less than 1.46. In YZO compound, there is a unique
seven-fold cationic coordination, that forms a stable defective
fluorite structure as r(Y3+)/r(Zr4+) < 1.46. The PXRD patterns
of Y2(1-x)Dy2xZr2O7 nanophosphors doped with 1.5 mol% and
5 mol% amount of Dy3+ sintered at 650 ºC for 1 h are displayed
in Fig. 2. The pattern clearly shows the formation of highly
crystalline single-phased defected fluorite structure with space
group Fm3m as characterized by its four distinct peaks (222),
(400), (440) and (622). The existence of two diffraction peaks

Homogeneous solution 
of raw material

Fluffy solid
Sintering at 
650 °C (1 h)

Y Dy Zr O2(1- ) 2 2 7x x
(x = 0.5-5 mol%)

Muffle furnacePre-heated muffle furnace
(550 °C)

Y(NO ) ·6H O + 3 3 2

Dy(NO ) ·6H O + ZrN O  3 3 2 2 7
+ urea (fuel)

Fig. 1. Schematic illustration of solution combustion synthesis of Y2(1-x)Dy2xZr2O7 (x = 0. 5 to 5 mol%) nanophosphors at 650 °C
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(331) and (511) at 2θ = 36.31º and 2θ = 43.61º, respectively,
indexed to the reflections of pyrochlore phase was not observed
in the recorded XRD patterns. The closeness of ionic radii of
Y3+ and Dy3+ lead to the successful incorporation of Dy3+ within
the YZO host lattice as no impurity peaks were observed,
although no JCPDS data corresponding to Y2Zr2O7 phase is
available yet for comparative studies [18,34]. Furthermore, a
steady defective fluorite phase of Y2Zr2O7 was retained at
different mol% of Dy3+ suggesting that YZO can afford a large
value of Dy3+ ions with the permissible r(RE3+)/r(Zr4+) range
of fluorite phase i.e. < 1.46. Compared with other methods,
the reaction time was relatively short and pure phase formation
started at relatively low temperature i.e. 550 ºC by SCS, this
may be due to the highly exothermic nature of urea supported
combustion process. The nanocrystalline aspect of synthesized
Y2(1-x)Dy2xZr2O7 samples was evaluated by their average crystal-
lite size (D), calculated as per the Scherrer’s equation:

0.941
D

cos

λ=
β θ

where λ is the wavelength of CuKα radiation (0.15406 nm), β
is the full width in radians at half-maximum (FWHM) and θ
is the Bragg’s angle of an observed X-ray diffraction peak.
Taking into account the XRD data, FWHM of the strongest
observed peak at (222) was selected to compute the average
crystalline size for Y2(1-x)Dy2xZr2O7 powder, sintered at 650 ºC
for 1 h. The size obtained owing to strongest peak (2θ = 20.68º)
for 1.5 mol% Dy3+ ions doped Y2(1-x)Dy2xZr2O7 was 20.68 nm
while for 5 mol% Dy3+ ions contents, it came out to be 20.72
nm corresponding to peak (2θ = 20.691). The result clearly
confirmed that with Dy3+ ions contents there is no change in
XRD patterns of Y2(1-x)Dy2xZr2O7 host lattice.
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Fig. 2. Recorded PXRD patterns of Y2(1-x)Dy2xZr2O7 nanophosphors doped
with 1.5 mol % and 5 mol % of Dy3+ ions, sintered at 650°C for 1 h

The surface texture, composition and the elemental disper-
sion of Y2(1-x)Dy2xZr2O7 (1.5 mol%) sample were investigated
using FESEM and EDAX measurements. The SEM scans
endorsed the uniform distribution of interconnected nearly
spherical shaped particles with well-defined boundaries as
depicted in Fig. 3. It is clearly seen that these crystallized particles

and smooth surface morphology with some voids and porosity
and these observed fissures verified the exothermic SCS of
the prepared nanophosphors. The EDX spectrum and mapping
analysis of Y1.97Dy0.03Zr2O7 powder i.e. YZO with 1.5 Dy3+ mol%
has been shown in Fig. 4, which disclosed the persistence of
homogeneous dispersion of all the elements i.e. Y, Dy, Zr and
O present in Y1.97Dy0.03Zr2O7 powder and confirmed the effectual
doping of Dy3+ ions in Y2DyZr2O7 matrix at relatively low tem-
perature in a short span by SCS (elemental peaks are depicted
in Fig. 5). Thus, the above mentioned outstanding topographical
traits of the prepared nanopowders enhanced their luminescence
output for display field.

Fig. 3. SEM micrograph of Y2(1-x)Dy2xZr2O7 (1.5 mol%) nanopowders
sintered at 650 °C for 1 h, depicting the spherical morphology of
the particles with some voids

The luminescence excitation spectrum of Y2(1-x)Dy2xZr2O7

(1.5 mol%) nanophosphors was recorded at the emission wave-
length (λem) of 574 nm as depicted in Fig. 6. Various sharp peaks
observed in the resultant spectrum are mainly due to the 4f-4f
transitions of Dy3+ ions in the range 300-500 nm that reside in
the emission range of commercially available blue and nUV-
chips of light emitting diodes. The spectrum displayed several
prominent peaks at 310 nm, 329 nm, 354 nm, 389 nm, 429 nm
and 470 nm attributed to the transitions 6H15/2 → 4K13/2 + 4H13/2,
6H15/2 → 6P3/2, 6H15/2 → 6P7/2, 6H15/2 → 4I13/2 6H15/2 → 4G11/2 and
6H15/2 → 4F9/2 from ground state to the excited state, respectively.
The nanocrystalline phosphors, Y2(1-x)Dy2xZr2O7 (x = 0.5 to 5
mol%) were stimulated using near ultraviolet excitation wave-
length (λex) of 354 nm to record the luminescence emission
spectra as shown Fig. 7. The shape and locations of the emission
peaks remained same with the varying x value of Dy3+ ions in
Y2(1-x)Dy2xZr2O7 lattice, hence no distinctive traits in the emission
profiles with the changing dopant concentration were identified.
The emission spectra of all samples of Y2(1-x)Dy2xZr2O7 revealed
two prominent spikes in the blue and yellow domains at 485
and 574 nm, correspondingly, driven by the 4F9/2 → 6H15/2 and
4F9/2 → 6H13/2 transitions. It is magnetic dipole transition i.e.
4F9/2 → 6H15/2 in blue domain that is independent of the crystal
field symmetry around trivalent dysprosium ions while the
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Fig. 4. EDAX spectrum showing the elemental mapping of Y2(1-x)Dy2xZr2O7 (1.5 mol%) nanophosphors, sintered at 650 °C for 1 h
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Fig. 7. Emission spectra of Y2(1-x)Dy2xZr2O7 (x = 0. 5 to 5 mol%) nano-
phosphors, sintered at 650 °C for 1 h using λex of 354 nm

electric dipole transition (4F9/2 → 6H13/2) lying in yellow region
obeys selection rule ∆L = 2 and ∆J = 2, get greatly influenced
by the surroundings of dopant ions in the host lattice. Moreover,
the presence of dopant dysprosium ions at high symmetry
positions in Y2(1-x)Dy2xZr2O7 lattice is justified by the dominating
magnetic dipole shift associated with the magnetic dipole trans-
ition 4F9/2 → 6H15/2. The changes in luminous emission intensities
owing to blue and yellow transitions with concentration of
dysprosium ions are demonstrated in Fig. 8. It is clearly visible
that the emission intensity of both transitions drops after 1.5
mol% because of concentration quenching, which takes place
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as a consequence of non-radiative transfer of energy within
Dy3+ ions, when their doping amount reached above 1.5 mol%.
Using the MATLAB software, the CIE coordinates of the synthe-
sized samples of Y2(1-x)Dy2xZr2O7 for 0.5,1,1.5,2,3 and 5 mol%
nanophosphors were determined as (0.236272, 0.287216),
(0.253853, 0.306076), (0.260591, 0.260591), (0.256428,
0.310221), (0.256278, 0.309796) and (0.254795, 0.318181),
respectively. These values have been asserted to be in the close
range of NTSC colour coordinates for the white light [40-45].
A graphic investi-gation of the performance of an optimized
luminous Y2(1-x)Dy2xZr2O7 (1.5 mol%) phosphor using Comm-
ission International De I’Eclairage (CIE) 1931 chromaticity
coordinates is well displayed in Fig. 9. The CIE illustration
revealed that a careful doping of these materials could result
in an effective white light generating source for displays. One
crucial feature that demonstrates the readiness of phosphors
for the use in WLEDs is its colour coordinates. Display devices
and WLED applications could be derived from this unique
attribute of producing white light from a unified system.
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Fig. 9. CIE colour coordinate diagram of Y2(1-x)Dy2xZr2O7 (1.5 mol%)
nanophosphors, sintered at 650 °C for 1 h

Conclusion

A fast and extremely effective urea supported solution
combustion methodology was employed to synthesize a series
of Dy3+ doped fluorite type Y2(1-x)Dy2xZr2O7 (x = 0.5 to 5 mol%)
nanocrystalline phosphors, which emanate peculiar white light.
An assortment of techniques, including PXRD, EDAX, SEM,
PL and CIE analyses have been utilized to scrutinize the distin-
ctive morphological and photonic traits of the synthesized nano-
phosphors. The PXRD of the synthesized Y2(1-x)Dy2xZr2O7 nano-
crystalline phosphors revealed the presence of fluorite structure
with cubic symmetry and the Fm3m space group. The SEM
image of the tailored material Y2(1-x)Dy2xZr2O7 (1.5 mol%)
revealed the spherical morphology of the nanophosphors. By
using EDAX spectra and mapping of nanophosphors, the exis-
tence of Y, Dy, Zr and O elements in the synthesized sample
was demonstrated. The stunning white emission was seen due
to the flawless alignment of the blue and yellow bands. The
optimized amount of trivalent dysprosium ions was found to
be 1.5 mol%, after this concentration quenching phenomenon
happened. It was observed that Y1.97Dy0.03Zr2O7 nanopowder
samples CIE coordinates (0.2605, 0.3145) evenly resembled
the NTSC coordinates for white emission. This validated the
synthesized Dy3+ doped Y2Zr2O7 nanocrystalline phosphors
emission of white light and significantly helped in expanding
its applications in pure phase phosphor converted WLEDs.
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