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INTRODUCTION

For mosquito control, chemical insecticides are utilized,
however they are toxic to non-target species and causing hum-
anoid health issues [1]. Efficient and environmentally sustain-
able management mechanisms must therefore be targeted in
order to efficiently manage this issue. Biopesticides may be
developed in order to successfully track mosquitoes via several
mechanisms [2]. Mosquitos spread awful illnesses and patho-
gens globally, like malaria, dengue, filariasis, hemorrhagic
fever,  etc. Mosquitoes are widespread and trigger almost two
million lives annually [3]. Most of the mosquito diseases,
including disruption to socio-economic and manual work in
countries with subtropical and tropical areas, absorb financial
power, but no earth’s ecosystems environment is safe of vector-
borne diseases [4]. Anopheles stephensi is India’s main malaria
vector. Malaria has become one of the largest significant infec-
tious illnesses with an occurrence measured at 300-500 million
under health manifestations though with a past squeak of approx-
imately 1.1 and 2.7 million. Still, almost 40% of people residing
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in the biosphere live in tropical malaria places [5]. The lymphatic
filariasis vector of Culex quinquefasciatus, which is commonly
distributed by rainfall, is a recurrent phenomenon in the world
for between 120 million and 44 million people [6].

Metal oxide nanocrystals are of particular interest due to
their unique characteristics that set them apart from bulk
materials, including a greater surface area to volume ratio,
enhanced chemical reactivity, specialized electronic properties,
and remarkable optical properties [7-9]. The synthesis of copper
monoxide at the nanoscale earned surprise little coverage
relative to other transition metal oxides. CuO is, however, a
p-type semi-conductive with a tight bandwidth, the scale of
the bandwidth depends significantly on the material’s morp-
hology and particle size [10]. For superconductors and antiferro-
magnetic semiconducteurs, CuO has become important [11].
Other uses include solar cells [12], gas sensors [13] and magnetic
storage media [14-16] and as a heterogeneous catalyst [17].
Different synthetic routes have been used to manufacture CuO
nanoparticles, including sol-gel processing [18], solid-state
synthesis at low temperature [19,20], co-implantation tech-
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niques [21], electrochemical lines [22], microwave irradiation
[23,24], hydrothermal [25] and thermal degradation [26,27].
In the meantime, the formation mechanism via Cu(OH)2 was
already identified very well [28-32]. When the reagents were
heated in an autoclave at 140 ºC for 20 h [33], copper oxide
nanoplatelets were collected from a combination of ionic liquid
([C4mim]Cl) and water.

Sonochemistry has been a strong tool for the synthesis of
nanoparticles in recent years [34-37] and used in the fabrication
of CuO nanoparticles [38]. There has been detailed analysis
into the sonochemical synthesis of nanocrystalline CuO in
poly(vinyl alcohol) (PVA) and the impact of PVA on CuO
development [39]. While a substance is exposed to ultrasound
bubbles, they implode and grow. This results in extraordinarily
high temperatures, stresses and cooling speeds locally [40].
Recently, ZnO nanorods were also synthesized with simple
way to access by incorporating the benefits of both room-
temperature ionic fluids (RTILs) and ultrasound synthesis [41].
A highly selective, simple route is described here for the
development of CuO nanoparticles from copper(II) chloride
dihydrate in ethanol by ultrasound-assisted synthesis.

EXPERIMENTAL

All materials were purchased from Nice and Loba chemicals.
Solvents used during the reactions were of high purity and
utilized without further purification.

Synthesis of copper oxide nanoparticles: Copper(II)
chloride dihydrate (0.05 g) was dissolved in 30 mL of ethanol
and stirred using a magnetic stirrer. After 10 min of stirring,
0.05 g of polyvinyl pyrrolidine (PVP) was added to the reaction
mixture and stirred continuously. After 20 min stirring, 0.5 M
NaOH solution was added dropwise. Then, the reaction mixture
was subjected to sonication (32 kHz@100 W) for 2 h. Finally,
the obtained precipitate was centrifuged at 6000 rpm with
repeated washing of water and ethanol to eliminate NaCl from
the final product. The powder obtained was crushed using
pestle mortar into fine powder. The synthesis sequence is
illustrated in Scheme-I.

Characterization: Copper oxide nanoparticles synthe-
sized by using the ultrasonic assisted chemical precipitation
technique. UV-Visible spectra was recorded with V-730 UV-
visible spectrophotometer at a wavelength ranges between 200-
800 nm. FT-IR spectrum was recorded with Fourier transform
infrared spectrometer (FT/IR-6600) (CHI 1000C) in the range
4000-400 cm-1, Powder XRD was assessed with X’Pert Pro
by PANalytical, FE-SEM with EDX and Mapping were done
with FESEM sigma essential by Zeiss microscopy.

Larvicidal activity: The synthesized CuO nanoparticle
was further assessed for larvicidal activity against south urban
mosquito larvae Aedes aegypti. Appraisals were made on a
dead/alive premise. Assessments depend on a rate size of 0-100,
which 0 equivalents no action and 100 equivalents complete
murder. The bioassay was rehashed multiple times and the
consequence of bioactivity was the normal of these reproduces.
The qualities are contrasted and the positive control permethrin.
The LD50 values of some dynamic title mixtures were assessed
utilizing probit investigation and the outcomes were dissected
utilizing the SPSS v16 programming.

Larvicidal activity against mosquito (Aedes aegypti):
The precursor copper chloride dihydrate and combined CuO
nanoparticle were assessed for larvicidal activity against south
urban mosquito larvae Aedes aegypti. The assessment of larvi-
cidal activity at the starter test convergence of 100 µg/mL in
contrast to the 4th instar south-urban mosquito larvae Aedes
aegypti through water immersion strategy beneath relative
stickiness 50-70%, photoperiod of 10:14 (light:dark) and
temperature of 27 ± 2 ºC. The tests were set up at the conver-
gences of 100, 75, 50, 25 µg/mL by utilizing DMSO. All the
test measuring glasses comprising 20 Aedes aegypti were
assessed for 24 h later handling. The outcomes were docum-
ented by average percent mortality.

RESULTS AND DISCUSSION

Optical studies: The reduction of Cu2+ ions to Cu0 nano-
particles was visually observed by colour variation in the reaction
mixture. The gradual colour change in solution from light green

0.05 g of  CuCl2·2H2O +
0.05 g of PVP

CuCl2·2H2O + PVP Copper
nanoparticles

CuO nanoparticles

)))))))

32 kHz@100 W
2 h

Centrifuge
6000 rpm

Scheme-I: Ultrasonic assisted synthesis of CuO nanoparticle
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to sky blue. This indicates that the metal chlorides were reduces
to form its respective nanoparticles.

UV-visible studies: The UV-visible absorption peak arises
from 200-400 nm denote the development of CuO nano-
particles. In present study, the extreme absorption peak seemed
at 390 nm directs the individual SPR peak for CuO NPs with
lesser particle size. Fig. 1 displays the UV-vis spectra of CuO
nanoparticles synthesized by sonication protocol.
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Fig. 1. UV-visible spectra of CuO nanoparticle

FTIR studies: FT-IR spectrum of the synthesized CuO
nanoparticles is shown in Fig. 2. The O-H group has a broad
rise at 3239.95 cm-1, which may have been caused by the appea-
rance of the hydroxyl moiety [42]. The bands at 3000-2800
cm-1 signify the existence of C-H functional group of alkanes
[43]. The peak at 1626.66 cm-1 showed the incidence of carbonyl
moiety (C=O) due to atmospheric CO2 [44], while the band at
567.00 cm-1 approves the existence of Cu-O vibrations [42].
FT-IR analysis confirmed the existence of functional groups
in the capping agent and also the formation of CuO NPs.
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Fig. 2. FT-IR spectra of CuO nanoparticle

SEM and mapping studies: SEM image shown in Fig. 3
confirmed that the obtained CuO nanoparticles were sponge
like morphology. The CuO nanoparticles were dispersed as
distinct particles and monodispersivity in nature. The SEM
mapping (Fig. 4) studies also conforms the synthesized nano-
particle was CuO. The blue dots corresponds to copper atom
and rose dots represents oxygen atom.

Fig. 3. SEM image of CuO nanoparticle

Fig. 4. SEM image mapping of CuO nanopaticle

EDX studies: The EDX spectra showed that the synthe-
sized material was indeed CuO nanoparticles, as expected from
the presence of copper and oxygen peaks (Fig. 5). The weight
percentage of copper and oxygen atoms were 65.87 and 34.13,
respectively. The further peaks extant in the spectra may be as
a result of the existence of bioorganics or impurities in the
solution. The elemental composition of CuO nanoparticle is
shown in Table-1.
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Fig. 5. EDX spectra of CuO nanoparticle
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TABLE-1 
ELEMENTAL COMPOSITION OF CuO NANOPARTICLE 

Element Atomic 
number 

Weight (%) Atom (%) Weight (%) 
error 

O 8 34.13 67.94 7.4 
Cu 29 65.87 32.06 5.2 

Total – 100.00 100.00 – 
 

XRD studies: The XRD pattern of the sonicated derived
CuO nanoparticles is shown in Fig. 6. The diffraction peaks at
2θ = 32.5º, 35.5º, 38.7º, 44.2º, 48.8º, 53.5º, 58.3º, 61.6º, 66.2º,
68.0º, 72.4º and 75.1º are respectively indexed to (110), (111),
(111), (112), (202), (020), (202), (113), (310), (220), (311)
and (310) planes of monoclinic structure of CuO nanoparticle.
The obtained diffraction peaks were matched with of standard
CuO NPs. All the diffraction peaks were in good agreement
with the standard pattern for pure monoclinic phase of copper
oxide nanoparticles (JCPDS No. 80-0076) and no contaminant
peaks were found. The strong peaks imply that the produced
nanoparticles are very crystalline. The Debye-Scherrer
equation (eqn. 1) may be used to compute the average crystallo-
graphic size from the recorded primary diffracted peak.

(hkl)

k
D

cos

λ=
β θ

where D(hkl) is the average crystalline size, β is the full width
half maximum (FWHM), k is the shape constant (0.89), θ is
the X-ray incidence angle and λ is the incident X-ray wave-
length (λ = 0.15405 nm). The synthesized CuO nanoparticles
had an average crystallite size of 13.44 nm.
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Fig. 6. XRD spectra of CuO nanoparticle

Larvicidal activity: The synthesized CuO nanoparticle
was extremely active in contradiction of Aedes aegypti with
the LD50 value of 43.95 µg/mL than precursor copper chloride
dihydrate and control permethrin with the LD50 value of 94.31

and 72.44 µg/mL. Among the test samples, precursor copper
chloride dihydrate displayed less action towards Aedes aegypti
with the LD50 values of 94.31 µg/mL. The synthesized CuO
nanoparticle was highly active and precursor copper chloride
dihydrate was moderately active compared to the positive
control permethrin with the LD50 value of 72.44 µg/mL. The
results are shown in Table-2.

Conclusion

The current study highlights the ultrasonic assisted chemical
precipitation approach for the synthesis of CuO nanoparticles
is reported. Synthesized CuO nanoparticles were confirmed
via UV-vis spectroscopy, Fourier-transform infrared spectro-
scopy, X-ray diffraction, scanning electron microscope, SEM
mapping and EDX studies. In addition, CuO nanoparticle was
further evaluated for the larvicidal activities. The synthesized
CuO particle displayed significant activity against Aedes aegypti
with the LD50 value of 43.95 µg/mL than precursor copper
chloride dihydrate and control permethrin with the LD50 value
of 94.31 and 72.44 µg/mL. Consequently, CuO nanoparticles
might be a probable basis for emerging environmentally friendly
bioactive compound, as well as ecological biopharmaceuticals
and insecticides.
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