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INTRODUCTION

Heterocycles are crucial in the development of new physio-
logically and pharmacologically active medicinal molecules.
Many medications contain mostly vitamins, many natural
products, biomolecules and physiologically active chemicals.
In synthetic pharmaceuticals and agrochemicals, they are typi-
cally found as significant structural units. Solvatochromic, photo-
chromic and biochemi-luminescence characteristics are also
present in some of these substances. Chromones are a type of
heterocycle that can be found in abundance in plants. Plants
create a variety of secondary metabolites, which make up these
chemicals. They have colouration in the majority of cases. The
flavonoid family includes chromones. They are heterocyclic
compounds that contain oxygen and have a benzo-annelated
γ-pyrone ring. From algae to conifers, these chemicals and
their derivatives have been discovered. They play various roles
in plants, including growth maintenance, dormancy inhibition
and oxygen uptake stimulation. The most naturally occurring
chromone derivatives are eucryphin (rhamnoside of chromone)
and 6,7-dimethoxy-2,3-dihydrochromone, both obtained from
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the bark of Eucryphia cordifolia and Sarcolobus globosus, respec-
tively. Flavones and isoflavonoids are made up of chromone
rings, which are the central structural unit. They are classified
as simple chromones and fused chromones, respectively, because
of the chromone family’s great diversity [1-6]. Chalcones,
flavones, flavanones, flavanols and anthocyanidins are among
various flavonoids based on their molecular structures (Fig. 1).
These natural chemicals are found in ferns, conifers and flower-
ing plants [7-9] and numerous prolific plant secondary metabo-
lites. Many flavonoids have been seen as powerful pigments in
flowers, fruits and leaves, offering a spectrum of blue, yellow
and red colours [10-13]. Besides having numerous pharmaco-
logical advantages, e.g., anticancer, antiallergic, anti-inflammatory,
antiviral, etc. flavonoids are effective metal chelators, anti-
oxidants and radical scavengers [14-17]. Flavonoids are widely
dispersed in the human diet [8,10]. They are thought to be harm-
less, attracting a lot of interest in developing new therapeutic
agents for various disorders.

Chalcones: Chalcones, also known as 1,3-diphenylprope-
nones (Fig. 2), are among the most common flavonoids found
in fruits, soy, tea and vegetables [8,18]. Since ancient times,
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Fig. 2. Numbering and general structure of chalcones moiety

chalcones have been used for medicinal purposes [19] and are
connected to the thousands-year-old use of herbs, plants and
shrubs to treat various medical ailments. Recent researches
have found that chalcones have a broad range of pharmacolo-
gical activities such as antiproliferative, anticancer, antioxidant
and anti-inflammatory [19-22].

The synthesis of flavanones and flavones requires the use
of chalcones as a precursor. They are often made from acetoph-
enones and benzaldehydes, employing a polar solvent base
(Fig. 3) [23-25]. More unusual synthesis procedures, such as
the palladium-arbitrate Suzuki coupling of phenylboronic acids
and cinnamoyl chloride or the carbonylative Heck coupling
of styrenes and aryl halide or alkyl halides in the presence of
CO gas, have also been described [26,27].

Chromone 4-ones and chromones as bioactive chemical
scaffolds: The chromone ring system, i.e. chromen-4-one, is

a crucial component in diverse flavonoids, including flavonols,
isoflavones, flavan-3-ols, flavones and flavanones [28]. Chromone
is an essential family of oxygen-containing alkaloids having a
benzoannelated pyrone ring, such as chromen-4-one or benzo-
pyran-4-one [29]. The word chromone comes from the Greek
word “chroma,” which means “colour,” suggesting that nume-
rous chromone analogs are available in various pigments. From
algae to conifers, chromone and similar chemicals are found
across the plant world.

Compounds with a chromone moiety are synthetically
flexible compounds with a reactive carbonyl group important
for their nucleophile reactivity, allowing for creating a diverse
range of heterocycles. The substitution pattern determines the
biological effects of chromone scaffolds. Chromones are
involved in various processes, including dormancy inhibition,
growth control, indole ethanoic acid oxidation, cytokinin-like
activity and oxygen uptake stimulation in plant tissue [30]. As
a result, chromones and chromone-4-ones are regarded as
favoured structures, defined as “a single molecular framework
able to provide ligands for diverse receptors”.

Chromones’ natural occurrence and medicinal action:
Antiviral, antimicrobial, anti-inflammatory, anticonvulsant,
antioxidant and anticancer activities are among the pharmaco-
logical effects of natural and synthetic chromone derivatives.
In medicinal chemistry, the chromone nucleus is a fundamental
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structural unit. The chromone units have been widely used to
synthesize numerous medicines with varying pharmacological
actions due to their significance [31-37]. Cromolyn, nedo-
cromil, diosmin, apigenin, flavoxate and khellin are common
chromone medicated compounds (Fig. 4) available in the market.

Cromolyn is a sodium salt which is the disodium salt of cromo-
glycic acid, a bis-chromone acid derivative used to treat masto-
cytosis. Nedocromil is a pyranoquinoline acid derivative chemi-
cally called nedocromilo, used as an inhaled anti-inflammatory
medication to prevent asthma.
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Fig. 3. Various pathways to synthesize chalcones analogs
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Diosmin is a sugar substituted chromone derivative extracted
mostly from citrus fruits but may also be synthesized. Diosmin
is most often used for hemorrhoids and leg sores caused by
poor blood flow and is used to treat various blood vessel prob-
lems, including hemorrhoids, varicose veins, venous stasis and
eye or gum bleeding. Apigenin (4′,5,7-trihydroxyflavone), also
known as chamomile or versulin, is a plant extracted chromone
derivative utilized in cancer treatment. Flavoxate, called anti-
muscarinics, is a muscle relaxant used to treat the bladder and
urinary system. Khellin was a furan annulated chromone deriva-
tive called furanochrome that has the primary effect of being a
vasodilator. Chromen-5-one is a herbal folk medicine used to
cure various ailments, including kidney stones, psoriasis, vitiligo,
bronchial asthma, coronary artery disease and renal colic [38-42].

Anticancer drugs: Currently, cancer is the leading cause
of death. Different types of cancers have been identified which
are responsible for the death of patients. All types of cancer
involve the uncontrolled proliferation of cells. This results in
excess growth and formation of tumors which have the capacity
to metastasize. Different cancer therapies include chemothe-
rapy, immunotherapy, radiotherapy and monoclonal antibody
based treatment; various drugs used for cancer target different
cellular molecules. Chromone scaffold-based drug targets
(Fig. 5) have been developed and successfully utilized in cancer
therapy [43]. Some of the distinct areas in which chromone
based cancer therapy has been applied are summarized below.
Phosphatidylinositol 3 kinase inhibitors (PI3K) are key proteins
involved in cell signaling pathways. The inhibition of this
protein results in cell death. LY-294002 is a reversible chromone-
based PI3K inhibitor used in prostate cancer treatment [44].
Cyclin dependent kinases (CDK) are involved in DNA prolife-
ration and cell division. Targeting CDK thus would help in the
killing of cancer cells. Flavopiridol is a chromone based deriva-
tive used as a CDK-based drug to target cancer cells [45].
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Fig. 5. Chromone derivatives used as CDK inhibitors in cancer-based therapy

Similarly, chromone based scaffold drugs have been deve-
loped for targeting DNA-dependent protein kinase inhibitors
[46], topoisomerase inhibitors [47] and drug transport inhibitors
[48], respectively. Liu et al. [49] reported a chromone analogs
with a heterocyclic thioether group and tested their anticancer
efficacy. The IC50 of compound 3-(benzothiazole-2-ylsulfanyl)-
chromen-4-one over the MDA-MB-435S cell line was deter-
mined and output to be 17.2 M out of these. They led to the
realization that adding cyclic tertiary amine or heterocyclic
thioether to chromone anticancer action would be beneficial.

Yuan et al. [50] produced three methylated quercetin and
a series of 3-substituted,3,4-dimethyl substituted quercetin,
tetramethylated quercetin moiety and investigated their anti-
cancer potential. Huang et al. [51] created a novel class of
quercetin derivatives with great success. As inhibitors of Src
tyrosine kinase, the new drugs have a better selectivity. IC50

cell line values range from 3.2 to 9.9 mM better selectivity than
the EGFR tyrosine kinase. Selectivity requires both hydrogen
bonding and hydrophobic interactions, according to molecular
docking. Liu et al. [52] produced ester derivatives of chromone,
including chromone family isoflavonequinone and tested their
cytotoxicity in LPS-activated murine macrophage cell culture
systems using the MTT assay method.

Liu et al. [53] investigated ten novel 3-(2-(3-methyl-5-
substituted-phenyl-4,5-dihydropyrazol-1-yl)-2-oxo-ethoxy)-2-
substituted-phenyl-4H-chromen-4-one variants for pharmaco-
logical activities such as anticancer activity. Compounds showed
high potential activity against the human gastric cancer cell
line (SGC-7901) apoptosis in bioassay experiments. Ishar et al.
[54] investigated new 6-fluoro/chlorochromone compounds
as anticancer topoisomerase inhibitors that function in DNA
replication (6).
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The anticancer activity of a flavonoid moiety containing
synthetic compounds and (6-chloro-4-oxo-4H-chromen-3-yl)-
methyl piperidine-1-carbodithioate (7a) and (3-chloro-4-oxo-
4H-chromen-2-yl)methyl piperidine-1-carbodithioate (7b)
against the MDA-MB-435 and SW-480 cell line was the best
results [55]. When compared to the conventional medication
doxorubicin, compound 8 showed cytotoxic activity against a
human neuroblastoma cell line (SH-SY5Y) [56].

Investigation of chromones as a valuable scaffold for cancer
drug development has mainly focused on finding new kinase
inhibitors. Other targets, such as carbonic anhydrase [57], NF-B
[58], sirtuins [59], topoisomerase [60] and A3 adenosine rece-
ptors, have been investigated [61,62]. Other research lines have
focused on the creation of chromone based apoptosis modul-
ators, Keap1-Nrf-2 [63-65] and hedgehog signaling pathways
[66-68]. Finally, it’s essential to emphasize recent research into
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the development of cytotoxic metal-chromone and ferrocenyl-
chromone complexes, as well as the screening of a range of
chromone based compounds against a variety of cancer cell
lines [69-72]. Even though these investigations are still in their
early stages, several of them were backed up by strong DNA
binding and apoptotic results.

Antibacterial and antifungal drugs: A variety of naturally
occurring and synthetic chromones have been shown to exhibit
potent antifungal and antibacterial activity. Chromone deriva-
tives containing indolyl, chloroquinolyl and phenyl glycine
derivatives are potent antimicrobial agents [73,74].

Bingi et al. [75] studied the biological activity of a variety
of 3-hydroxy-6-(hydroxymethyl)-2-(2-phenyl-4H-chromen-4-
yl)-4H-pyran-4-ones synthesized inside a one-pot catalyst-free
process of 2-hydroxy chalcone with 5-hydroxy-2-(hydroxy-
methyl)pyran-4-one in methylbenzene under reflux tempera-
ture. The compounds were shown to have intense antibacterial
action against a variety of bacteria types. Hatzade et al. [76]
tried to synthesize 7-O-D-glucopyranosyloxy-3-(3-oxo-3-aryl-
prop-1-enyl)-4H-chromene-4-one in a simple way. The anti-
fungal and antibacterial properties of these compounds were
investigated. 7-hydroxy-3-(1-phenyl-3-aryl-1H-pyrazol-5-yl)
and related O-D-glucopyranosides were computationally
assessed and investigated experimentally by Sheikh et al. [77].
For their antibacterial and antioxidant activity, 4H-chromen-
4-ones and related O-D-glucopyranosides analogs. Palakuri
&  Reddy [78] developed tridentate 3-formyl chromone Schiff
bases of Zn(II) and Ni(II), such as 3-((3-hydroxypyridin-2-

ylimino)methyl), for Zn(II) and Ni(II). 3-((2-Hydroxyphenyl-
imino)methyl)-4H-chromen-4-one, 3-((2-mercaptophenyl-
imino)methyl)chromen-4-one and 3-((3-mercaptophenylimino)-
methyl)chromen-4-one are all derivatives of 4H-chromen-4-
one. Compared to the ligands, 4H-chromen-4-one significantly
affected the bacteria and fungal strains were examined. Some
chromone derivatives (9) were produced and described as anti-
bacterial agents by Kale & Karale [79].

Disk-diffusion assays were used to screen for antibacterial
and antifungal activity of chromene crosslinked dithiazoles
and 4-oxo-4H-chromene-3-carbothioic-N-phenylamides.
Compared to fluconazole, dithiazole hybrids (10a) containing
electron withdrawing (-Cl, -F) groups at C-7 and C-6 positions
have potent antifungal activity. The highest growth inhibition
for Gram-positive bacteria, e.g. S. aureus, was found to be
92.72% (10b) [80]. Under microwave irradiation, Musthafa
et al. [81] synthesized chromone based hybrid of pyrazoles,
pyrazolines, dibromo derivatives and dihydropyridines, which
were tested for in vitro antibacterial activity over an assortment
of two Gram-positive bacteria, B. subtilis, S. aureus, as well
as two Gram-negative bacteria, Salmonella typhimurium, E.
coli and in vitro antifungal and antimicrobial activity of different
substances suggest that they are strong antimicrobial agents
(11a and 11b). Nawrot-Modranka et al. [82] also synthesized
chromone derivatives (12) and investigated their antibacterial
activity in vitro.

Cano et al. [83] used a multicomponent process to create
new 3-tetraazolylmethyl-4H-chromen-4-one analogs and tested
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them biologically against Entamoeba histolytica, Trichomonas
vaginalis and Giardia lamblia. Through an azomethine
linkage, Ibrahim & El-Mahdy [84] synthesized novel nitrogen
heterocyclic systems by connecting the chromone analogs with
1,2,4-triazine or 1,2,4-triazole in one molecular structure. They
tested their antibacterial properties in vitro against S. pyogenes
and S. aureus as Gram-positive bacteria and Pseudomonas
phaseolicola, Pseudomonas fluorescens, act as a Gram-negative
bacteria and A. fumigatus and F. oxysporum as fungi using the
technique called disc-agar diffusion. Compounds have a high
level of efficacy against the fungi (13a and 13b).
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Antiviral drugs: Human rhinoviruses are the agent of
cold and respiratory tract infections. 2-Styryl chromones and
their derivatives have been used as effective antiviral comp-
ounds [85]. In addition, 5-hydroxy chromones are effective
against HCV. Several chromones (Fig. 6) are effective against
HIV as well [86]. Benzyloxy substituted chromones have been
used as monoamine oxidize inhibitors [87]. Alzheimer’s disease
has been treated using oxychromone inhibitors. In addition,
they have been used successfully as antiobesity drugs and as
receptor antagonists, respectively [88].

Anti-inflammatory activity: Hasan et al. [89] synthesized
6-aminomethyl-2-aryl-1-benzopyran-4-one analogs (14) and
tested them for analgesic, anti-inflammatory, lipid peroxidation
and ulcerogenic activities. Two of the substances examined
had a higher level of anti-inflammatory action than the others.
Khan et al. [90] effectively synthesized 3-formyl-chromone
analogs (15) and also investigated for their anti-inflammatory
properties. The chromones allegedly inhibited multiple
processes, including mast cell stabilizers, intercellular adhesion,
molecule inhibitors, cyclooxygenase inhibitors and molecule
inhibitors, to have an anti-inflammatory effect [91-93], interl-
eukin-5 inhibitors, leukotriene receptor antagonists [94-97],
lipoxygenase inhibitors activity [98,99] and nitric oxide (NO)
production inhibitors [100-107].
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degenerative disorders [105-110]. 2-(2-Phenylethyl)chromone
dimers obtained from Chinese agarwood, Aquilaria sinensis,
was shown to suppress NO production with IC50 values ranging
from 0.6 to 37.1 µM. Furthermore, 5-O methylcneorum chromone
K was isolated from Dictyoloma vandellianum root bark and
shown to have anti-inflammatory properties via activating the
glucocorticoid receptor RU486 [111]. Singh et al. [112] reported
the COX inhibitor activity for compounds synthesized by com-
bining chrysin, indole and pyrazole moieties.

Anti-HIV activity: Casano et al. [113] designed and synth-
esized various methoxy flavones and investigated their anti-
proliferative and anti-HIV activities in Plasmodium falciparum
parasites. Compounds 16a and 16c were selective inhibitors
of HIV-2 growth, but methoxy flavone (16b) was active in both
HIV-1 and P. falciparum. The para-substitution on compound
16b containing B ring was required to boost antiplasmodial
action and improve HIV-2 potency. Ungwitayatorn et al. [114]
synthesized a series of benzopyran-4-one scaffolds using a
one-pot cyclization process and 7,8-dihydroxy-2-(30-trifluoro-
methylphenyl)-3-(300-trifluoromethylbenzoyl)chromone
analogs (17) inhibited HIV-1 protease in vitro as well that shows
antioxidant activity.
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pounds were also assessed utilizing the ferric reducing anti-
oxidant power (FRAP) assay and their capacity to scavenge
the stable radical DPPH assay. Some compounds that shows
antioxidant activity were given below structurally (Fig. 7).

Antimalarial activity: Isaka et al. [116] isolated a novel
chromone derivative (18) from the wood-decay fungus Rhizina
species and investigated for the antimalarial efficacy against
P. falciparum K1. With an IC50 having conc. 5.1 mg/mL, this
derivative showed the better antimalarial efficacy.

Anticonvulsant activity: In the scPTZ test, chromones
(19a and 19b) provided 100% protection at 300 mg/kg. All of
the substances studied were inert in the MES test, not protect
against seizures even at doses of 300 mg/kg body weight, which
showed anticonvulsant efficacy [117].

Antiplatelet activity: The activity was highest when 2-
amino substituent of the studied chromones (20) was diethyl-
amino group [118]. The activity increased when electron relea-
sing substituents like -OH, -CH3 or -OCH3 were present at
position 7 but reduced when an electron-withdrawing substi-
tuent like 3-NO2, 6-NO2 or 6-Cl was present at position 3, 6 or 7.

Gastroprotective activity: The 9- and 6-alkylaminomethyl
furochromones (21) derived from the naturally occurring chro-
mones khellin and visnagin were tested for gastroprotective
effectiveness using the rat ethanol-induced injury model. The

furochromones containing a methoxy group at 4, 9 or methoxy-
phenyl group at 7-position and an alkylaminomethyl group at
position-6 showed excellent gastroprotective action an ethanol
injury model [119].

H1 Antihistaminic activity: The antihistaminic activity
of 2-phenyl-4H-chromen-4-one moiety (22) and evaluated using
the H1 antihistaminic activity as a computational technique.
The compounds show the most robust antihistaminic properties
[120].

Antihypertensive activity: Wu et al. [121] synthesized
3-phenylflavonoxy propanolamines (23a-b) and tested their
antihypertensive efficacy in spontaneously hypertensive rats
as well as indications of α-adrenoceptor antagonism in vivo
and in vitro.

m-Calpain inhibition activity: Lee et al. [122] synthesized
chromone carboxamide compounds and used casein-coomassie
blue microplate assay to investigate for m-calpain inhibition.
Compound 24c, the most potent calpain inhibitor in this series
(IC50 14 0.24 mM), inhibited 14.4% and 22.4% of chromone
derivatives m-calpain, exhibiting excellent selectivity. Regard-
less of amide, including the dioxane ring in the chromone ring
reduced the inhibitory action of parent compound; neverthe-
less, amide substituents were also essential in the activity. The
compounds 24a and 24c with benzyl and phenethyl amide
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exhibited promising inhibition of m-calpain. Still, the potencies
were decreased by ten-fold when these substituents were replaced
with 2-(morpholin-4-yl) ethyl or isopropyl amide.

Human erythrocyte-isolated calpain I was used to synthe-
size and evaluate new chromone carboxamide derivatives. The
4-methoxyphenyl group compounds at the keto-amide position,
i.e.  compounds 25a and 25b had the most potent inhibitory
activities of m-calpain. In comparison, compound 25c had both
potent inhibitory and antioxidant activity of m-calpain [123].

Glutathione reductase activity: As S-nitrosoglutathione
reductase (GSNOR) inhibitors, Sun et al. [124] reported a series
of chromone compounds (26a-d). The GSNOR inhibitors in
any pharmaceutically suitable dose form, including but not
limited to injectables, can be utilized. When compared to GSNOR
inhibitors, certain compounds (26a-c) had IC50 values of less
than 0.5 mM and compounds 26d had IC50 values of less than
0.1 mM.

Antiallergic activity: Abram et al. [125] synthesized 2,3,7-
substituted chromone salts (27) and tested them for antiallergic
action. When given at a dosage of 30 mg/kg, all substances
tested showed antiallergic activity in the mouth.

Antimicrobial activity: Infectious illnesses have lately
grown as a result of improved human pathogen resistance,

creating major medical problems. To address this critical threat,
comprehensive actions are required and novel antimicrobial
drugs can assist. Cano et al. [126] and He et al. [127] developed
medicines against resistant infections based on the chromone
structure. Hiruy et al. [128] extracted an antimicrobial comp-
ounds from the leaf latex of  Aloe monticola Reynolds, inclu-
ding aloesin and 7-O-methyl-60-O-coumaroylaloesin. The
inhibiting action of chromone derivative from the fungus
Chaetomium brasiliense against human lung (Lu04), human
neuroma (N04) and human breast cancer was repored by Li et al.
[129]. Huang et al. [130] found that (20S)-2-(20-hydroxy-
propyl)-5-methyl-7, 8-dihydroxy-chromone from the mangrove
derived fungus penicillium aculeatum has antibacterial activity.

Synthesis of chromone derivatives: The earliest method
for chromone synthesis included decarboxylation of chromone-
2-carboxylic acid [131]. However, the yields were not very high
and several newer methods have been developed to synthesize
chromones. Chromones have been synthesized in both acidic
and basic conditions. Various substituted chromones have been
prepared either by Baker Venkatraman rearrangement (Scheme-
I) [132] or via Claisen ester condensation, respectively [133].
The use of acid is generally harsh and the conditions are extreme.
Acid has been used as catalyst in successful ring closure reactions
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associated with chromones. A few of such chromone synthesis
methods utilizing various acids have been illustrated below.
Polyphosphoric acid has been used in the synthesis of chro-
mones from phenols. The final ring closure of 2-chromone
carboxylic acid derivatives was achieved using polyphosphoric
acid (Scheme-II) [134].

2,6-Dihydroxy acetophenone was used as starting material
for the synthesis of various chromones. Finally, the ring closure
was achieved using HCl as a catalyst (Scheme-III) [135]. POCl3

is the most widely used catalyst for chromone ring closure.
Phenolic ringcontaining compounds and carbonyl compounds
are refluxed in the presence of POCl3 to generate chromone
derivatives (Scheme-IV) [136]. Sulfuric acid was used as

catalyst to synthesize chromone ring closure in the terminal
step of reaction (Scheme-V) [137].

Base catalyzed synthesis methods: Different bases have
been used for chromone biosynthesis, including pyridine,
sodium hydride, sodium methoxide, potassium t-butoxide and
potassium carbonate. Pyridine was used in ring closure and
synthesis of chromone derivatives. In addition, the method
was found to be suitable for the synthesis of chromones from
acyl phenols (Scheme-VI) [138]. The ring closure and synthesis
of chromone derivatives of marine products were successfully
achieved using K2CO3 as catalyst (Scheme-VII) [139].

Microwave irradiation methods: Though acid and base-
catalyzed are the classical methods, they suffer from the harsh
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conditions employed in the whole process. The use of alternative
methods that are safe and environmentally friendly has resulted
in microwave irradiated methods. The green chemical methods
are usually solvent-free and easy to perform with minimal time
required to synthesize chromones. Functionalized flavones
have been synthesized by the microwave irradiation method
(Scheme-VIII). Such methods have produced chromones in
yield ranging from 60-90%, respectively [140].

Solid-phase support synthesis: Solid-phase support has
distinct advantages over reactions in the solution phase.
Chromone ring closures have been achieved by solid-phase
support. Phosphomolybdic acid or phosphotungstic acid have
been used bound to silica for chromone ring closure. The method
successfully synthesized flavones and substituted chromones
with silica material being completely regenerated post-reaction
(Scheme-IX) [141]. Oxidation of 2-hydroxy chalcones under
solvent-free conditions generates flavones. This was achieved
by using silica gel supporting Indium salts and the yields were
greater than 80% (Scheme-X) [142].

Other than these traditional methods, various other catalysts
such as trimethylsilyl chloride, sodium and iodine have also
been used to synthesize chromones. Ahmed et al. [143] reported
the synthesis of 4H-chromen-4-one by the treatment of (E)-3-

O
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R1, R2 = Br, Cl, CH3, OH, Ar, alkyl etc.
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H+Ar
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OH

R

Scheme-IX: Synthesis of chromones using phosphomolybdic and tungstic
acids

(dimethylamino)-1-(2-hydroxyphenyl)prop-2-en-1-one with
conc. HCl acid in dichloromethane medium at reflux condition
for 1 h (Scheme-XI). Iaroshenko et al. [144] reported a novel
synthetic method to synthesize various chromone derivatives
from corresponding 2-hydroxy acetophenone enamineones by
treating TMSCl in DMF under argon gas at 90-110 ºC for 4 h
(Scheme-XII). Guo et al. [145] reported a synthesis of 3-
chromone thioaryl derivative by the reaction of (E)-3-(dime-
thylamino)-1-(2-hydroxyphenyl)prop-2-en-1-one and aryl
sulphonyl hydrazine reacts with 50 mol% of KIO3 catalyst in
DMF medium at 130 ºC for 24 h (Scheme-XIII).

Foehlisch [146] reported in early 1970s the synthesis of
4H-chromen-4-one by the cyclization of (E)-3-(dimethylamino)-
1-(2-hydroxyphenyl)prop-2-en-1-one in the presence of dil.
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Scheme-XIII: Synthesis of 3-chromone thioaryl derivative using (E)-3-
(dimethylamino)-1-(2-hydroxyphenyl)prop-2-en-1-one and
aryl sulphonyl hydrazine

H2SO4 at 100 ºC for 75 min (Scheme-XIV). Sorabad & Maddani
[147] developed a synthesis of thioaryl chromone from 2-
hydroxy acetophenone enaminone. The reaction was carried
out under aqueous HBr (47 mol%) in DMSO:CHCl3 at 100 ºC
for 2 h (Scheme-XV). Ibrahim [148] also reported the synthesis
of chromone derivatives. The reaction proceeds by treating
2-hydroxy acetophenone enaminone with 50% HCl at reflux
condition for 2 h (Scheme-XVI). Ali et al. [149] reported the
synthesis of chromone derivatives from corresponding enami-
nones using three different phosphorus halide catalysts. The
reaction proceeds by treating the corresponding enaminone
with phosphorus halide under toluene:triethylamine medium
at reflux condition for 10 h (Scheme-XVII). The synthesis of
chromone derivatives from (E)-3-(dimethylamino)-1-(2-
(methoxymethoxy)phenyl)prop-2-en-1-one by treatment of 3N
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Scheme-XIV: Preparation of 4H-chromen-4-one in acidic medium
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50% hydrochloric acid
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Scheme-XVII: Synthesis of chromone derivatives using the corresponding
enaminone with phosphorus halide under toluene

HCl at reflux condition for 10 h (Scheme-XVIII) is reported
by Sakamoto et al. [150].

An efficient one-pot microwave-assisted propyl phosphonic
anhydride mediated synthesis of chromone derivatives from
various 2-hydroxy acetophenones via corresponding substituted
enaminones at 90 ºC for 10 min (Scheme-XIX) is reported by
Balakrishna et al. [151]. Various chromone derivatives from
corresponding 2-hydroxy acetophenone were obtained by
reacting 2-hydroxy acetophenones with NaH in ethyl formate
at 0 ºC for 2 h (Scheme-XX) [152]. Rodríguez-Ramos et al. [153]
reported the synthesis of 2-substituted chromone derivatives.
The chromone products were synthesized from corresponding
2-acetylphenolic esters using DBU in pyridine medium at 80 ºC
for 6 h (Scheme-XXI). Wang et al. [154] reported the synthesis
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Scheme-XX: Preparation of flavones from 2-hydroxy acetophenones with
sodium hydride at 0 °C

of 7-hydroxy-4H-chromen-4-one directly from 1-(2,4-dihydroxy
phenyl)ethanone by the treatment of ethyl orthoformate under
70% of HClO4 at room temperature for 1 h (Scheme-XXII).

HO OH
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70% HClO4,
RT, 1 h

O
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CH(OEt)3

Scheme-XXII: Synthesis of hydroxy-substituted chromone using ethyl
orthoformate as a catalyst in an acidic medium

Wen et al. [155] synthesized the chromone derivatives by
the cyclization of 2-hydroxy phenyl 1,3-diketo compounds
by using pyrrolidine as catalyst in a water medium at 55 ºC
for 36 h (Scheme-XXIII). Yoshii et al. [156] also described

the synthesis of various chromone derivatives by the oxidation
of chromenone using heterogeneous reusable gold nanopar-
ticles supported on manganese oxide (Au/OMS-2) catalyst
underwater medium at 50 ºC for 4 h (Scheme-XXIV). A one-
pot synthesis of 3-fluoro chromone derivative from 1-(2-hydroxy-
phenyl)-3-phenylpropane-1,3-dione, which further the treat-
ment with selected fluor in acetonitrile medium at room tempe-
rature for 15 h yields cyclized product, followed the desired
dehydrogenated product obtained by the treatment with conc.
sulfuric acid at room temperature (Scheme-XXV) [157].
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Košmrlj & Šket [158] described a photocycliazation of
2-chloro-2-fluoro-1,3-bis(4-methoxyphenyl)propane-1,3-dione
to 3-fluoro-7-methoxy-2-(4-methoxyphenyl)-4H-chromen-4-
one. The reaction preceded by photochemical irradiation in
acetonitrile medium at the wavelength of 352 nm and 0.002 M
(Scheme-XXVI). Britton et al. [159] reported the synthesis
of 3-fluoro-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one by
the cyclization of 2-fluoro-3-hydroxy-1-(2-hydroxyphenyl)-3-
(4-methoxyphenyl)-prop-2-en-1-one in the presence of acetic
acid and conc. H2SO4 at reflux condition for 10 min (Scheme-
XXVII).

Menichincheri et al. [160] reported the synthesis of 2-(3,4-
dimethoxyphenyl)-3-fluoro-7,8-dimethoxy-4H-chromen-4-
one by 1 h treatment of 1-(3,4-dimethoxyphenyl)-2-fluoro-3-
(2-hydroxy-3,4-dimethoxyphenyl)propane-1,3-dione with acetic

acid and 96% H2SO4 at reflux condition (Scheme-XXVIII).
Bolos et al. [161] described the synthesis of substituted-3-
fluorochromone derivatives. The cyclization of the corresponding
enaminone prepared the product in the presence of 85% 1-fluoro-
2,4,6-trimethylpyridinium triflate in dichloromethane and
acetonitrile medium at reflux condition for 1 h (Scheme-XXIX).

Hydriodic acid as catalyst: The use of hydriodic acid as
catalyst in the ring closure of a combination of 2-methyl-8-
hydroxy-6,7 benzochromone and 2-methyl-8-methoxy-6,7-
benzochromone has been reported (Scheme-XXX) [162]. A
Pd-catalyzed copper-free carbonylative Sonogashira coupling
method was achieved at ambient temperature using water as a
solvent under balloon pressure of CO with Et3N as base [163].
Using the recently reported method, flavones were successfully
synthesized (Scheme-XXXI).
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A straightforward and efficient route to different 3-iodo-
chromones, iodothiochromenones, iodoquinolinones and anal-
ogues in good to outstanding yields was provided by moderate
ICl-induced cyclization of heteroatom-substituted alkynones.
Following palladium-catalyzed reactions, molecule complexity
rapidly increases (Scheme-XXXII) [164]. To easily obtain
structurally diverse 2,3-disubstituted chromones in high yields,
a tandem deprotection-cyclization process of 1,1-diacylcyclo-
propanes has been reported. Awuah & Capretta [165] reported
a successful synthesis of bromophycoic acid E scaffold, a
power-ful antibacterial oceanic natural product, exemplified
the process’s utility (Scheme-XXXIII).
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Scheme-XXXII: Synthesis of heteroatom-substituted flavones by ICl-
induced cyclization process

I

OHR

R1

2 equiv.

OR

O

R1R = H, CO2Me, R1 = Ar, alkyl

5 mol% PdCl2
CO (1 atm),
3 eq NEt3

( H13C6)3P-C14H29Br
110 °C, 24 h

Scheme-XXXIII: Preparation of 2,3-disubstituted chromones by using 5-
substituted-2-iodophenol as a starting material

Under atmospheric CO pressure, an efficient and selective
palladium-catalyzed ligand-free cyclocarbonylation reaction
of o-iodophenol with terminal acetylenes gives a wide range
of chromones in good yields [166]. The cyclocarbonylation
process is more efficient when a phosphonium salt ionic liquid
was used as the reaction media (Scheme-XXXIV). 4-Oxo-2-
aryl-4H-chromene-3-carboxylate (flavone-3-carboxylate)
derivatives result from an unique alcohol-mediated reaction
between 4-hydroxycoumarins and -nitroalkenes. The transition
occurs when Michael adduct is formed in situ, followed by an
alkoxide ion-mediated rearrangement of the intermediate
(Scheme-XXXV). Different media’s impacts on the reaction
were also examined [167].

O

O

O

O

H3C R

O
Na

O

O

O

R

O

HI

O

O R

O
R = CH3, H

Scheme-XXX: Synthesis of substituted chromone analogs by using Na metal and HI

I

OH

R
R1

1.2 eq

O

R

O

R1

5 mol% PdCl2, 0.1 eq PPh3, 3 eq NEt3

CO (balloon pressure), H2O, 25 °C, 24 h

Scheme-XXXI: Synthesis of flavones by a Pd-catalyzed copper-free carbonylative Sonogashira coupling method
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The chromone ring closure is the most common use for
this catalyst and the chromone ring can be constructed in two
ways. One method is to reflux phenolic and carbonyl comp-
ounds in phosphorus oxychloride, while another approach is
to reflux phenolic compounds with acyl side chains in POCl3.
Baker et al. [168] used POCl3 as catalyst to synthesize the
chromone rings in 2005 (Scheme-XXXVI). Under moderate
conditions, chromone derivatives were synthesized in exce-
llent yields from 2,3-allenoic acids and benzynes. To synthesize
chromone derivatives, the benzyne intermediate undergoes 1,2-
addition with the carbonyl group, followed by ring-opening,
conjugate addition and protonolysis, due to the substituent-
loading capacity 2,3-allenoic acids and benzynes (Scheme-
XXXVII) [169].

There are few methods to synthesize 3-aryl chromones,
which are of vital importance because they possess enhanced
biological activities [170-174]. The palladium-catalyzed Suzuki
and Stille couplings of 3-iodochromones with aryl boronic
acids or aryl stannanes are the commonly used methods for
the synthesis of 3-aryl chromones [175-182]. However, the
synthesis  of nucleophilic coupling partners such as heteroaryl
boronic acids and stannanes is challenging. The oxidative [4+2]
cycloaddition of salicylaldehydes and internal alkynes using
Rh [183], Co [184] and Ru [185] represents an attractive route
to synthesize 2,3-diaryl chromones (Scheme-XXXVIII) [186-
188]. Recently, Wu et al. [189] reported the transition metal-

catalyzed three-component reactions to asse-mble 2,3-diaryl
chromones (Scheme-XXXVIX). However, those synthetic
methods are not transferable to heteroaryl substituted
substrates, probably due to the strong coordinative properties
of heteroarenes.

To synthesize 2-substituted chromones, the intramolecular
O-arylation through transition metal-catalyzed Ullmann reaction
[190] or base promoted nucleophilic aromatic substitution
(SNAr) [191-200] has been successfully explored (Scheme-
XL). Transition metals or strong bases, on the other hand, are
frequently required. As a result, developing a new transition
metal-free and additive-free synthesis technique to overcome
the aforementioned deficiency would provide unique chances
to integrate heteroaryl chromones into therapeutic candidates.

To synthesize 1,2,3-trisubstituted 4-quinolones from ortho-
holagenphenyl ynones, a base-promoted Michael addition/
Smiles rearrangement/N-arylation cascade process is reported
[201]. As part of continuation interest in ynones chemistry
[202-213], a unique and effective technique for synthesizing
3-heteroaryl chromones by tandem [3+2] cycloaddition/ring-
opening/O-arylation reaction from readily available ynones
and heteroarene N-oxides is also reported (Scheme-XLI) [214-
223]. Wang et al. [224] presented an excellent study in which
3-(2-quinolyl) chromones were produced through an acid-
mediated cascade reaction of quinoline N-oxides with ortho-
hydroxyphenyl ynones while this work was being reviewed.
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Conclusion

It is apparent from the literature survey that researchers
are still keen to isolate and synthesize chromone compounds
in order to evaluate their biological properties. The synthetic
techniques utilized to synthesize the chromone core were iden-
tified a long time ago and usually entailed harsh temperature
and pH conditions. Although these technologies are still in use
owing to their effectiveness, they urgently need to be replaced
by creative, environmentally friendly and long-term solutions.
Overall, developing pharmacologically active molecules based
on legitimate scaffolds, such as chromone core and developing
new and better druglike libraries, are critical for accelerating
the identification of novel medicines. Research on chromone-
based derivatives is likely to yield favourable results in the
domains covered in this review article in future. This review
goes through the methods used to make chromones and several
of their derivatives in great detail. Due to its use in a wide range
of pharmacologically active compounds, stiff bicyclic chromone
fragment has been described as a preferred structure in drug
development, with few instances as therapeutic agents. Due
to their photochemical characteristics, chromones are also used
as scaffolds for generating bioactive compounds and their use
in medicinal chemistry, such as creating fluorescence probes.
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