

Effect of Cobalt Doping on Gas Sensing Properties of SnO₂ Thick Films Prepared by Chemical Co-Precipitation Method

V.R. BAGUL^{1,*,[®]}, G.R. BHAGURE^{2,[®]} and D.T. TAYDE^{3,[®]}

¹Department of Chemistry, Arts, Science and Commerce College, Surgana-422211, India ²Department of Chemistry, Dnyanasadhana College of Arts, Science and Commerce, Thane-400604, India ³Department of Chemistry, M.J.M. Arts, Commerce and Science College, Karanjali-422208, India

*Corresponding author: E-mail: vrbchem28@gmail.com

Received: 1 July 2023;	Accepted: 11 September 2023;	Published online: 2 December 2023;	AJC-21449

Co-precipitation method was used for the preparation of undoped SnO_2 and n-type semiconductor nanomaterials of cobalt-doped SnO_2 . To identify the crystalline phase and morphology of the nanomaterials were characterized by X-ray powder diffraction and scanning electron microscopy. To focus and study on the gas sensing behaviour of undoped SnO_2 and modified Co-doped SnO_2 thick films. To study there sensitivity among the toxic, flammable and hazardous ethanol, hydrogen sulphide, nitrogen dioxide and ammonia gases. The optimum working temperature for the nanomaterial is same as per the variable gas sensitivity.

Keywords: Co-precipitation, Cobalt-doped, SnO₂, Gas sensor, Sensitivity.

INTRODUCTION

As per the safety environment and to maintain the concentration of toxic and flammable gases those are potentially create the problem in industrial era and their employees health issue not only them but also the peoples those are live near to them [1]. However, the gas sensor given guarantee to healthy environment, safe production and have ability to identify the specific gas from the type of chemical gases even the concentration of the gas is very small [2]. Metal oxides especially doped metal oxides has been utilized as gas sensing material because this dopant controlling the electrical, optical and constructive properties of material and which act as charge carrier to help an enhance the electricity supply due to the demand of industrial era those are having the huge potential applications in daily life [3].

The sensitivity property of metal oxides has been improved with the help of additive in the metal oxides by reducing the particle size or by changing the functioning temperature, here humidity also effect on the metal oxide sensitivity [4,5]. The gas molecule oxidation and reduction nature also show valuable effect on gas sensing material [6]. For the development of highly sensible gas sensing material the dimension of the material is

very important or considerable because of specific geometry with small grain size to generate the large surface area which help to develop the good interconnection between the gas and metal oxides hence the nanotechnology is a significant role in the field of gas sensors [7]. The sensors are having numerous advantages such as small size, high reliability, low budget and low power consumption [8]. SnO₂ has exceptional chemical stability, optical stability, electrical conductivity, and a wide band gap of 3.6 eV at ambient temperature [9,10]. There have been numerous methods investigated to improve the sensing capability of pure SnO₂, including coating with a noble metal such as (Au, Pt and Pd) to act as a sensitizer [11-13]. Due to the high cost of noble metals, it raises the price of making sensors. To overcome this problem, another flexible method to enhance the gas sensing capabilities of pure SnO₂ is to either load or dope it with another metal oxide to create a SnO₂ nanocomposite [14,15].

The sensor's mechanism is an oxidation-reduction reaction between the target gas and the SnO₂ surface, resulting in a change in SnO₂ resistance with gas concentration [16]. In comparison to other metal ions, cobalt has inhibitory effects on crystalline development and assumes a crucial part in the detecting capabilities of sensors. Furthermore, cobalt demonstrates inherent

This is an open access journal, and articles are distributed under the terms of the Attribution 4.0 International (CC BY 4.0) License. This license lets others distribute, remix, tweak, and build upon your work, even commercially, as long as they credit the author for the original creation. You must give appropriate credit, provide a link to the license, and indicate if changes were made.

attributes of excellent corrosion resistance, ferromagnetism and adequate thermal and electrical conductivity. The SnO₂ has ionic radii of Co₂ (0.58 Å), and Sn₄ (0.64 Å) the ionic radius of Co₂ is less than that of Sn₄ [17]. Consequently, it is possible to anticipate the substitution of Co ions at the Sn⁴⁺ site within the SnO₂ system. Consequently, there is an elevation in oxygen deficit and a reduction in the grain size of SnO₂, both of which are anticipated to impact the characteristics of pure SnO₂. In this study, a Co dopant has been used to alter the electrical characteristics of SnO₂ and enhance its gas sensing capabilities.

EXPERIMENTAL

Synthesis of Co doped SnO₂ nanomaterials: Sample with normal composition of Co doped SnO₂ were synthesized by using the co-precipitation method. First colloidal solution was prepared with SnCl₄·5H₂O with deionized water stirring for 1 h at room temperature. After the preparation of colloidal solution, added CoCl₂·2H₂O with constant stirring for 1 h and then required amount of NH₄OH were added dropwise with constant stirring to maintain the pH9 of mixture. For chemical homogeneity, the dropping rate was regulated as 5 drops per second. The solution was then mixed under constant stirring for 2 h until the precipitate were formed. The mixture was filtered on simple filter paper and then washed with three or five times with deionized water. Then resulting mixture was again washed with deionized water followed by the drying the mixture in oven for 2 h at 80 °C in order to remove the excess chlorine. The obtained material was grounded into fine powder in mortal and piston and annealed at 500 °C for 2 h in muffle furnace under air.

Fabrication of Co-doped SnO₂: Screen printing is a cost effective technique where the mesh was used to prepare the thick film of the material on the substrate [18]. Here, a ratio

30:70 of organic to inorganic materials was used. The organic material acts as a binder which was made up from butyl carbitol acetate (BCA) and ethyl cellulose and used to fix the particle doped nanomaterial onto the glass surface. To prepare the fine nanoparticles of Co-doped SnO₂, 0.7g of Co doped SnO₂ was grinded with the pinch of ethyl cellulose for 30 min followed by the addition of BCA dropwise in order to obtain a smooth paste. Then this pseudo-plastic paste was spread over 20 thick layers were made over a cut piece glass having 3 cm × 1.5 cm. After that dry this film for 45 min in infrared lamp and then heated for 2 h at 500 °C in a muffle furnace. After room temperature cooling at next day, thick film sensors materials were used for exciting gas sensing properties.

Characterization: The elemental analysis and surface morphology of the synthesized material were investigated by JEOL-JEM 2300 (LA) scanning electron microscope instrument having an electron dispersion spectroscope (SEM-EDS) facility. The X-ray powder diffraction analysis were carried out by Phillips X-ray diffractometer in a diffraction angle range $2\theta = 10$ to 80° using CuK α radiation with a wavelength of 1.540598 Å.

RESULTS AND DISCUSSION

SEM and EDS analysis: The scanning electron microscopy (SEM) images exhibit a high degree of nanoparticle aggregation, characterized by a closely packed arrangement, together with a micro-surface that displays roughness and porosity (Fig. 1). Furthermore, it was observed that both undoped SnO_2 and Co-doped SnO_2 exhibit the presence of minute gaps or cavities on their respective surfaces, which are distributed throughout the material. These voids can serve as highly effective adsorbents in the context of gas sensing research. The gas sensing capacity of specific sensors can

Fig. 1. SEM images of (a) undoped SnO₂, (b) Co-doped SnO₂, (c) EDS spectra of undoped SnO₂, (d) EDS spectra of Co-doped SnO₂, EDS report of mapped data and (e) Co-doped SnO₂ nanoparticles

be enhanced by the occlusion of smaller adsorbate gas molecules across the surface through chemisorption or physisorption [19].

The effective confirmation of doping of cobalt in SnO_2 was achieved by the utilization of elemental mapping analysis. Fig. 1e illustrates the observation of the presence of dopant on the SnO_2 matrix.

XRD studies: The structural arrangements of Co-doped SnO₂ were studied using PXRD at the angle of 2 θ between 10° to 80°. The Co doped SnO₂ shows several Bragg's reflection peak at different 2 θ angle of 26.70°, 34.00°, 38.11°, 51.97° (Fig. 2), which can be indexed to (110), (101), (020) and (121) planes, respectively. The observed diffraction peak were observed as orthorhombic structure [20]. Here, the grain size of the synthesized material Co-doped SnO₂ was calculated by using Debye-Scherrer's equation T = 0.94 λ/β Cos θ , where T = average particle size, λ = wavelength, θ = Diffraction angels, β = full-width half maximum. The obtained average particle size (T) was found to be 17.9 nm.

Gas sensing properties of undoped and Co-doped SnO_2 thick films: The gas sensors employed in this study were screen printed thick films consist of undoped SnO_2 and Codoped SnO_2 . These films were specifically designed to detect

hazardous gases like H_2S , NH_3 , C_2H_5OH and NO_2 under optimum conditions.

Optimum operating temperature condition: The most important property of prepared gas sensor material is the operating temperature because it gives information about the gas sensing process of the gas towards the surface of the material [21]. Fig. 3 shows the optimum gas response at the temperature ranged from 200 to 40 °C cooling cycle. The response curves show the gas response for undoped SnO₂ for tested gases like H₂S, NH₃, C₂H₅OH and NO₂. The undoped SnO₂ sensor exhibited a significant response to hydrogen sulphide (H₂S) vapours at 120 °C with a recorded response rate of 64.20%. Similarly at 160 °C, the sensor also give a response rate of 48.40% to NH₃ gas, 20% to C₂H₅OH gas vapours and 10% to NO₂ vapours (Fig. 3a). These findings highlighted the sensitivity of undoped SnO₂ sensor towards various gases at different operating temperatures. Simultaneously Fig. 3b shows the Co-doped SnO₂ sensor response for the same gases, out of which the highest the response was recorded for C₂H₅OH vapours at 120 °C with 68.30% response, then 35.20% response was recorded for H₂S gas at 120 °C, NO2 gas vapours showed a 12.20% response at 120 °C and NH₃ vapours showed 7.20% at 120 °C for Co-doped SnO₂ sensor.

Fig. 4 shows the maximum response in undoped and Co doped gas sensors have been given by H_2S and ethanol vapours, respectively. The selectivity of other gases was calculated in ratio with respect to H_2S for undoped SnO₂ sensor and C_2H_5OH for Co-doped SnO₂ sensor. Thus, H_2S is highly selective for undoped SnO₂, while C_2H_5OH is selective for Co-doped SnO₂ gas sensors.

The concentration of gas variation and response recorded for undoped SnO_2 and Co-doped SnO_2 are shown in Fig. 5. A linear relationship for tested gas H_2S for undoped SnO_2 sensor and C_2H_5OH for Co-doped SnO_2 was found upto 300 ppm gas concentrations for both the sensors. It can be seen that there is gradual increase in the gas response for 100 ppm to 300 ppm for undoped SnO_2 and Co-doped SnO_2 sensors. However, a sharp decline in the sensitivity from 300 ppm to 500 ppm gas concentration in both sensor was also observed.

Another two properties of gas sensor are the response time and recovery time. Fig. 6 shows the response and recovery time

Fig. 3. Gas response of tested gases at a specific temperature for (a) undoped SnO_2 and (b) Co-doped SnO_2 thick film sensor

Fig. 4. Graphical representation of response of (a) undoped SnO2 and (b) Co doped SnO2 sensors for various gases

Fig. 5. Gas concentration in ppm variation for (a) undoped SnO₂ and (b) Co-doped SnO₂ sensor

of the both gas sensors working at the optimum temperature, with gas concentration of 50 μ g/L at 40 °C and humidity 20%. The transient response characteristics of undoped SnO₂ thick film towards 300 ppm of H₂S at the optimum temperature of 160 °C shows the fast response of 35 s and recovery time 70 s. Whereas the transient response characteristics of Co-doped SnO₂ sensor towards 300 ppm of C₂H₅OH at 120 °C exhibited the response time of 30 s and a recovery time of 40 s. The enhanced response and recovery time in Co-doped SnO₂ can potentially be attributed to due the heightened reactivity of C₂H₅OH vapour with adsorbed oxygen in the presence of Co sites on the surface as well as the high porous structure of the sensor. Enhanced gas diffusion through the grain boundaries would facilitate prompt oxidation of gas, resulting in a rapid response. The response and recovery durations of sensors are the crucial characteristics in determining their suitability for various applications.

In order to evaluate the stability and reproducibility of the undoped and Co-doped SnO₂ sensors, we conducted measurements of its response to an H₂S concentration of 300 ppm at 160 °C for undoped SnO₂ sensor. For Co-doped SnO₂ sensor, we measured their response to a C₂H₅OH concentration of 300 ppm at 120 °C on the 5th, 10th, 15th, 20th, 25th and 30th day following the initial measurement. Fig. 7 demonstrates that both undoped SnO₂ and Co-doped SnO₂ sensors had a response rate of around 95% of their initial performance on the 30th day. This result demonstrates the stability and reproducibility of the sensor material, which favours its use in the industrial settings [22].

In the comparative study of undoped SnO_2 and Co-doped SnO_2 , it was observed that as undoped SnO_2 have less response

than Co-doped SnO₂ for NH₃, H₂S, NO₂ and C₂H₅OH vapours. In literature, different methods has been reported for the preparation of Co-doped SnO₂ having different sensing properties for different gases as well as volatile vapours (Table-1).

TABLE-1 COMPARATIVE STUDY OF UNDOPED SnO ₂ AND Co-DOPED SnO ₂ WITH DETECTED GASES						
Sample	Analyzed gas	Operating temp. (°C)	Response (%)			
Undoped SnO ₂	H_2S	120	64.20			
	NH ₃	160	48.40			
	C ₂ H ₅ OH	160	20			
	NO_2	160	10			
Co-doped SnO ₂	H_2S	120	35.20			
	NH ₃	120	7.20			
	C ₂ H ₅ OH	120	68.30			
	NO_2	120	12.20			

Furthermore, a number of researchers have documented the sensing capabilities of Co-doped SnO_2 in relation to NH₃ and C₂H₅OH gases. These studies have explored the impact of varying Co-doped SnO_2 through the utilization of diverse synthesis techniques. However, it is important to emphasize that these investigations necessitated higher concentrations in parts per million (ppm) compared to the reported findings with the present research work. Hence in this work, Co-doped SnO_2 get the good results as compare to earlier reported similar material (Table-2). In literature, the co-doped SnO_2 with other gases such as H₂S and NO₂ has been previously described, specifically in case of Co-doped SnO_2 [26] and In-doped SnO_2 [27]. However, in this study, we present the first report on the

Fig. 7. Gas sensing material response

TABLE-2SENSING PROPERTIES OF Co-DOPED SnO_2 WITH AVAILABLE LITERATURE REPORT								
Samples	Synthesis method	Gas analyte	Opera. temp	Conc. (ppm)	Response	Retention time	Ref.	
0.5-3 wt% Co-doped SnO ₂	Co-precipitation	C ₂ H ₅ OH	250	2000	120	3s/15s	[23]	
Graphine supported Co-doped SnO ₂	Flame spray pyrolysis	C ₂ H ₅ OH	350	1000	2147	1s	[24]	
5 mol %	Solvothermal	NH ₃	28	150	10.7	10s/150s	[25]	
Co-doped SnO ₂	Co-precipitation	H_2S	120	300	35.20	-	Present work	
Co-doped SnO ₂	Co-precipitation	NO_2	120	-	12.20	-	Present work	

modification of SnO_2 with cobalt and observed the encouraging results.

Conclusion

In this work, undoped and Co-doped SnO₂ nanomaterials were synthesized by the chemical co-precipitation method. After annealing at 500 °C, both sensors were investigated for the sensing of four different gases viz. NH₃, H₂S, NO₂ and C₂H₅OH. The thick films of undoped and Co-doped SnO2 were prepared by screen-printing technology. The good responses for H₂S and C2H5OH gases were recorded for undoped SnO2 and Codoped SnO₂. For undoped SnO₂ sensor, the gas response was recorded to be 64.20% at 160 °C for H₂S gas. The gas response of Co-doped SnO₂ shows gas response towards C₂H₅OH to be 68.30% at 120 °C. The enhanced gas response in the Co-doped SnO₂ sensors compared with the undoped SnO₂ is due to decreased band gap energy, more surface area and improved active site. Finally, it can be concluded that Co-doped SnO₂ sensors is an effective sensor at moderately high temperatures for C₂H₅OH vapours.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interests regarding the publication of this article.

REFERENCES

- I. Manisalidis, E. Stavropoulou, A. Stavropoulos and E. Bezirtzoglou, *Front. Public Health*, 8, 14 (2020); <u>https://doi.org/10.3389/fpubh.2020.00014</u>
- X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang and H. Ning, Sensors, 12, 9635 (2012); https://doi.org/10.3390/s120709635
- W. Chen, Q. Zhou, F. Wan and T. Gao, J. Nanomater., 2012, 612420 (2012);
- https://doi.org/10.1155/2012/612420
- W. Chen, Q. Zhou, L. Xu, F. Wan, S. Peng and W. Zeng, *J. Nanomater.*, 2013, 173232 (2013); https://doi.org/10.1155/2013/173232
- B.A. Kuzubasoglu, ACS Appl. Electron. Mater., 10, 4797 (2022); https://doi.org/10.1021/acsaelm.2c00721
- 6. S. Dhall, B.R. Mehta, A.K. Tyagi and K. Sood, *Sensors Int.*, **2**, 100116 (2021);
- https://doi.org/10.1016/j.sintl.2021.100116
- M.A. Franco, P.P. Conti, R.S. Andre and D.S. Correa, Sens. Actuators Rep., 4, 100100 (2022); https://doi.org/10.1016/j.snr.2022.100100
- N. Goel, K. Kunal, A. Kushwaha and M. Kumar, *Eng. Rep.*, 5, e12604 (2023); https://doi.org/10.1002/eng2.12604.

- N. Yamazoe and K. Shimanoe, Fundamentals of semiconductor gas sensors, In: Semiconductor Gas Sensors, Woodhead Publishing Series in Electronic and Optical Materials, Chap. 1, pp. 3-34 (2013); https://doi.org/10.1533/9780857098665.1.3
- Y. Masuda, Sens. Actuators B Chem., 364, 131876 (2022); https://doi.org/10.1016/j.snb.2022.131876
- A. Sharma, S. Arya, D. Chauhan, P.R. Solanki, S. Khajuria and A. Khosla, *J. Mater. Res. Technol.*, 9, 14321 (2020); https://doi.org/10.1016/j.jmrt.2020.10.024
- X. Lian, Y. Li, J. Zhu, Y. Zou, D. An and Q. Wang, *Mater. Sci. Semicond.* Process., **101**, 198 (2019); https://doi.org/10.1016/j.mssp.2019.06.008
- 13. J. Kang, J. Park and H. Lee, *Sens. Actuators B Chem.*, **248**, 1011 (2017); https://doi.org/10.1016/j.snb.2017.03.010
- Y. Kong, Y. Li, X. Cui, L. Su, D. Ma, T. Lai, L. Yao, X. Xiao and Y. Wang, *Nano Mater. Sci.*, 4, 339 (2022); <u>https://doi.org/10.1016/j.nanoms.2021.05.006</u>
- W. Liu, D. Gu and X. Li, Sens. Actuators B Chem., 320, 128365 (2020); https://doi.org/10.1016/j.snb.2020.128365
- K. Zheng, L. Gu, D. Sun, X. Mo and G. Chen, *Mater. Sci. Eng. B*, 166, 104 (2010);
- https://doi.org/10.1016/j.mseb.2009.09.029
 Y. Li, X. Kan, X. Liu, S. Feng, Q. Lv, K.M.U. Rehman, W. Wang, C. Liu, X. Wang and Y. Xu, J. Alloys Compd., 852, 156962 (2021);
- https://doi.org/10.1016/j.jallcom.2020.156962 18. S. Singh, J. Wang and S. Cinti, *ECS Sensors Plus*, **1**, 023401 (2022); https://doi.org/10.1149/2754-2726/ac70e2
- C. Li, P.G. Choi, K. Kim and Y. Masuda, Sens. Actuators B Chem., 367, 132143 (2022);
- https://doi.org/10.1016/j.snb.2022.132143
 20. V. Panchal, L. Pampillo, S. Ferrari, V. Bilovol, C. Popescu and D. Errandonea, *Crystals*, 13, 900 (2023); https://doi.org/10.3390/cryst13060900
- 21. C. Wang, L. Yin, L. Zhang, D. Xiang and R. Gao, *Sensors*, **10**, 2088 (2010);
- <u>https://doi.org/10.3390/s100302088</u>
 22. M. Kumar, V. Bhatt, A.C. Abhyankar, J. Kim, A. Kumar, S.H. Patil and J. Yun, *Sci. Rep.*, 8, 8079 (2018);
- https://doi.org/10.1038/s41598-018-26504-3
 23. K.M. Kim, K.I. Choi, H.M. Jeong, H.J. Kim, H.R. Kim and J.-H. Lee, *Sens. Actuators B Chem.*, 166-167, 733 (2012); https://doi.org/10.1016/j.snb.2012.03.049
- V.M. Aroutiounian, V.M. Arakelyan, M.S. Aleksanyan, A.G. Sayunts and G.E. Shahnazaryan, *Armenian J. Phys.*, 10, 122 (2017); https://arar.sci.am/publication/26246
- S. Rane, M. Shinde, S. Arbuj, S. Rane and S. Gosavi, *Arch. Mater. Sci.*, 1, 1 (2022).
- V. Kumar, S. Sen, K. Muthe, N.K. Gaur, S. Gupta and J. Yakhmi, *Sens. Actuators B Chem.*, **138**, 587 (2009); https://doi.org/10.1016/j.snb.2009.02.053
- J. Kaur, R. Kumar and M.C. Bhatnagar, Sens. Actuators B Chem., 126, 478 (2007); https://doi.org/10.1016/j.snb.2007.03.033