

MgAl₂O₄:Ho³⁺ Nanophosphors: Electrochemical Sensor, Photoluminescence and Photocatalytic Applications

S.N. MANJULA^{1,2,10}, M. CHANDRASEKHAR^{2,*,10}, M.R. ANIL KUMAR^{3,10}, N. RAGHAVENDRA^{2,10}, C.R. RAVIKUMAR^{2,*,10}, H.C. ANANDA MURTHY^{4,5,10} and H. NAGABHUSHANA^{6,10}

¹Department of Physics, SJR College for Women, Rajajinagar, Bengaluru-560010, India

²Research Center, Department of Science, East West Institute of Technology, (Affiliated to Visvesvaraya Technological University), Bangalore-560091, India

³Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montreal, Canada, H3G 2W1

⁴Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, PO Box 1888, Adama, Ethiopia

⁵Department of Prosthodontics, Saveetha Dental College & Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai-600077, India

⁶Prof. C.N.R. Rao Center for Advanced Materials, Tumkur University, Tumkur-572103, India

*Corresponding authors: E-mail: mcshekar7@gmail.com; ravicr128@gmail.com

<i>Receivea</i> : 15 July 20.	123
-------------------------------	-----

Accepted: 26 August 2023;

AJC-21420

Ho³⁺-doped MgAl₂O₄ nanophosphors (1-11 mol%) was synthesised *via* solution combustion method using oxalyl dihydrazide (ODH) as fuel. The findings revealed a range of band gap energies (E_g) between 4.86 and 5.42 eV. It was confirmed that these values correspond extremely well with the experimental data using the DFT approach. The Ho³⁺ ions in the host undergo *f*-*f* transitions that are triggered at 406 nm and as a result, exhibit discrete photoluminescence emission peaks between 406 and 605 nm. Enhanced MgAl₂O₄ have CIE coordinates from orange-red to yellow region and 97% colour purity. Photocatalytic properties of nanophosphors under UV light led to the discovery that a rapid orange-red dye is activated at 493 nm. Removal of fast orange red (F-OR) dye using the new photocatalysts and MgAl₂O₄:Ho³⁺ nanophosphors has been demonstrated. The investigation showed that 89.02% of the dye lost its colour after being exposed to radiation for 120 min. The modified MgAl₂O₄:Ho³⁺ carbon paste electrode used in the cyclic voltametric (CV) technique for lead pollution detection. Based on their electrochemical performance, it is concluded that MgAl₂O₄:Ho³⁺ nanophosphors are a viable material for lead detecting electrodes.

Keywords: Nanophosphors, MgAl₂O₄:Ho³⁺, Solution combustion, Fast orange red dye, Photocatalysis, Electrochemical sensor.

INTRODUCTION

In last several periods, hosts doped with lanthanide ions have allowed scientists to discover new types of brilliant materials. Solid-state lasers, lamps, solar cells, white lightemitting diodes (LEDs) and other technologies all make use of these materials [1-5]. In recent years, there has been significant studies conducted on aluminate materials as phosphors for application in advanced displays and lighting systems. Due to their high dielectric constant, high optical transparency, high thermal stability and resistance to chemical attack, magnesiumaluminum oxide (MgAl₂O₄) spinel crystals have been studied as one of these materials [6,7]. Optical, thermal, chemical, mechanical and dielectric characteristics of MgAl₂O₄ spinel, a binary compound composed of MgO and Al₂O₃, were found to be exceptional [8]. Powder phosphor containing Dy³⁺, Eu³⁺, and Tb³⁺ was synthesized by Omkaram *et al.* [9,10] by a high temperature solid-state chemical method. These creators have investigated the powder phosphors' structure, morphology, and optical properties. Since then, several researchers have worked to perfect the synthesis of MgAl₂O₄ nanophosphors using several methods that vary in their starting materials, calcination temper-

Published online: 31 October 2023;

This is an open access journal, and articles are distributed under the terms of the Attribution 4.0 International (CC BY 4.0) License. This license lets others distribute, remix, tweak, and build upon your work, even commercially, as long as they credit the author for the original creation. You must give appropriate credit, provide a link to the license, and indicate if changes were made.

atures and other parameters [11]. MgAl₂O₄:Mn²⁺, Cr³⁺ phosphor materials were synthesized *via* solid-state and calcined at 1400 °C (12 h) [12]. The MgAl₂O₄:Cr³⁺ phosphors were synthesized by Pechini method after being heated to temperatures between 700 and 1200 °C [13]. The MgAl₂O₄:Cr³⁺ nanophosphor was prepared at 450 °C using low temperature and high pressure method [14].

Additionally, MgAl₂O₄:Mn²⁺, MgAl₂O₄:Bi and MgAl₂O₄: Ni²⁺ may be produced synthetically [15-17]. In addition, ⁵D_o \rightarrow ⁷F_J (*J* = 0, 1, 2, 3 and 4) transitions [18] show that MgAl₂O₄ doped with rare-earth metals are highly promising material. MgAl₂O₄:Tb³⁺ are produced using solid-state reaction technology at a temperature of 1220 °C [19].

MgAl₂O₄:Eu³⁺ and Dy³⁺ phosphors were developed by solgel method and they were calcined for 5 h between 600 and 900 °C [20]. Using a variety of techniques, doped MgAl₂O₄ phosphors containing Dy³⁺, Tb³⁺ and Eu³⁺ have also been synthesized [21-24]. Recent study has demonstrated that red emission of Eu-doped phosphors caused by ⁵D₀ → ⁷F_J transitions. Recently, the solution combustion synthesis (SCS) technique was used to synthesize a MgAl₂O₄ nanophosphor in range of 1 :1mol% doped with Sm³⁺ [25]. The photocatalytic, photoluminescent, and electrochemical sensor capabilities of MgAl₂O₄: Ho³⁺ nanopowders are thoroughly covered in this study.

EXPERIMENTAL

Synthesis of MgAl₂O₄: Synthesis of MgAl₂O₄ using oxydihydrazide (ODH) as fuel required the use of a redox mixture consisting of magnesium nitrate (Mg(NO₃)₂·6H₂O) and aluminium nitrate (Al(NO₃)₃·9H₂O) in stoichiometric proportions. The reactants and double distilled water are mixed in a petri dish and agitated at 400 rpm by magnetic stirrer for 15 min. After preheating muffle furnace to 270 °C, the mixture was poured inside with the door left open so that oxygen could be introduced to the combustion process. After being ignited, the solution burnt completely for a short while and agate mortar was used to grind the product into powder [26]. This method has been used to develop new nanocrystalline powders because it can make a homogeneous product without the use of hightemperature furnaces.

Preparation of Mg_{1,x}**Al**₂**O**₄**:Ho**³⁺**:** Synthesis of Ho³⁺ (1-11 mol%) doped with MgAl₂O₄ nanophosphors using Ho(NO₃)₃. 6H₂O, Mg(NO₃)₂·6H₂O and Al(NO₃)₃·9H₂O. The ODH was used as fuel in the synthesis process. After that, all the precursors on a petri dish were placed containing little deionized water as possible and heated it to 270 °C. Combustion byproducts were collected and milled into a powder. Assuming full combustion of redox mixture, the synthesis of MgAl₂O₄ were presented as follows:

 $\begin{array}{c} Mg(NO_3)_3 \cdot 6H_2O + 2Al(NO_3)_3 \cdot 9H_2O + xHo(NO_3)_3 \cdot 6H_2O + \\ 4C_2H_6N_4O_2 \longrightarrow Mg_{1-x}Al_2O_4 : xHo^{3+} + 13N_2 + \\ 33H_2O + 8CO_2 + O_2 \end{array} \tag{1}$

RESULTS AND DISCUSSION

PXRD studies: Both pure and Ho³⁺-doped MgAl₂O₄ nanophosphors were subjected to PXRD analysis (Fig. 1). Without

any other impurity peaks, each pattern was an ideal fit for the pure cubic phase with the space group Fd3m [27] and the JCPDS card no. 21-1152. Since, the structure of MgAl₂O₄ was not changed by the limited amount of Ho³⁺ doping and since pure MgAl₂O₄ can be produced even at the comparatively low furnace temperature of 270 ± 10 °C [28]. In the host lattice, Ho³⁺ ions were effectively doped at Mg²⁺ sites rather than interstitial areas. According to calculations, the cubic MgAl₂O₄ lattice properties and unit cell volume are, respectively, 8.067 cm³ and 525.095, respectively. The average crystallite size (eqn. 2) was determined to be between 25 and 42 nm based on the FWHM of the diffraction peaks [20,28].

$$D = \frac{0.9\lambda}{\beta\cos\theta}$$
(2)

where D = average crystallite size, $\lambda = X$ -ray radiation wavelength; $\beta =$ full-width half-maximum.

Fig. 1. PXRD of MgAl₂O₄:Ho³⁺ (1-11 mol %) nanophosphors

Addition of Ho³⁺ ions increases peak intensity, suggesting that the sample becomes more crystalline and that the unit cell expands (d value increases). As seen in Fig. 1, this results in PXRD peaks gradually shifting to the side with lower angles. This demonstrates crystal structure of the host matrix isn't random, but rather significantly influenced *via* lattice parameters [20].

DRS studies: Fig. 2a shows the DRS of MgAl₂O₄:Ho³⁺ nanomaterials with concentrations ranging from 1-11 mol%. Spin-allowed 3d-3d transitions of Ho³⁺ ions, ${}^{5}I_{8} \rightarrow {}^{5}G_{5}$ and ${}^{5}I^{8} \rightarrow {}^{5}F_{5}$, generates broad absorption bands at 450 and 646 nm, respectively. Energy gap (E_g) in the optical spectrum was determined using the Kubelka-Munk formula (eqn. 3) [29,30].

$$F(R) = \frac{(1-R)2}{2R}$$
 (3)

where F(R) = Kubelka-Munk function, R = sample's absolute reflectance.

Increase in Ho^{3+} concentrations may be due to Burstein-Moss effect, action of Ho^{3+} ions on the renormalization of the band gap or the regular drop in E_{g} values from 3.72 to 3.89 eV (Fig. 2b). This result is consistent with other results [31,32] and due to effect of [Ho-O] clusters on electronic structure of

Fig. 2. DRS (a) and energy-gap (b) analysis of MgAl₂O₄:Ho³⁺ (1-11 mol%) nanophosphors

host materials or production of non-bridging oxygens (NBO) brought on by doping.

FTIR studies: Fig. 3 exhibits the FTIR spectra of MgAl₂O₄ :Ho³⁺ nanophosphors with concentrations ranging from 1 to 11 mol%. A peak at 532 cm⁻¹ assigned for AlO₆ octahedral (v₄) coordination state, whereas peak at 696 cm⁻¹ ascribed to Mg-O band, where 4-asymmetric deformation vibrations [33]. The stretching of Al-O (v₃) was asymmetrical, which caused the peak at 1018 cm⁻¹. The 1748 and 3453 cm⁻¹ peaks were previously ascribed to H-O-H bending vibration and O-H stretching vibration may cause by adsorbate water molecules. Stretching modes C=O and -C=C- was found to be source of the bands between 1500 and 1400 cm⁻¹. Another peak at 2368 cm⁻¹ formed when ambient CO₂ was absorbed by the metallic cations, while peaks at 2920 and 2845 cm⁻¹ are due to the C-H stretching modes.

Fig. 3. FT-IR spectra (1-11 mol%) of MgAl₂O₄:Ho³⁺ nanophosphors

Photoluminescence (PL) studies: Excitation spectra for nanophosphor MgAl₂O₄:Ho³⁺ (3 mol%) are shown in Fig. 4. Ho³⁺ ions in cubic symmetry exhibit the spin-allowed transitions ${}^{5}I_{8} \rightarrow {}^{5}G_{5}$, ${}^{5}I_{8} \rightarrow {}^{5}F_{6}$ and ${}^{5}I_{8} \rightarrow F_{3}$ which are corresponding

to the peaks seen at 416, 450 and 480 nm. It is a possibility that energy radiation in the NUV range can drive the phosphor, making it suitable for use in solid-state displays.

After 450 nm excitation, the PL spectra show a yellow emission band (Fig. 4), which is due to f-f transitions of Ho³⁺ from its excited state, ${}^{5}I_{8} \rightarrow {}_{5}G_{5}$. The intense R band at 654 nm results from hypersensitive ${}^{5}I_{8} \rightarrow {}^{5}F_{3}$ forced electric dipole transition of a single Ho³⁺ ion an inversion octahedron (Mg (I) site). The Mg₂SiO₄:Ho³⁺ was also found to have the same emission characteristic [34]. Al³⁺ ions in position 16 are coordinated by a trigonally deformed octahedron (D_{3d} symmetry), whereas Mg²⁺ ions in position 8a are coordinated by a tetrahedron. Octahedral Ho³⁺ are doped into trigonally distorted CrO₆ octahedron, which surrounded by 6 Al³⁺ and 6 Mg²⁺ ions. Weaker lines nearby R band, known as N-lines, may be caused by a pair of Ho³⁺ ions that are strongly connected to one another. The R band is linked to the conventional spinel 16d location. However, Mg²⁺ and Al³⁺ switching positions in the first two coordination spheres may have messed up the Ho³⁺ ions, which may be responsible for the N lines [35].

Fig. 4. Excitation spectra of MgAl₂O₄:Sm³⁺ 5 mol% nanophosphors NPs

Emission intensity is clearly affected by Ho^{3+} concentration (9 mol%), and then increases to reach maximum value at 3 mol% concentrations. The luminescence intensity then gradually decreases as a result of concentration quenching due to a variety of defects. By doping MgAl₂O₄ with Ho³⁺ ions in place of Mg²⁺, numerous oxygen vacancies (Vo), single ionized Mg interstitial (Mg^a), and ionized Mg (V'_{Mg}) defects were formed.

A negatively charged cation vacancy defect (V'_{Mg}) would balance out positive defects, which correspond to red emission, in order to maintain electroneutrality for the replacement of Ho³⁺ on Mg²⁺ in MgAl₂O₄:Ho³⁺. Additionally, one Mg vacancy (V_{Mg}) would be formed by the negatively charged, singly ionized Mg interstitial (Mg¹).

In order to maintain electroneutrality for replacement of Ho^{3+} on Mg^{2+} in $MgAl_2O_4$: Ho^{3+} , a cation vacancy defect (V'_{Mg}) with a negative charge would balance out the created positive defects which correspond to red emission. Additionally, one Mg vacancy (V'_{Mg}) would be formed by the negatively charged, single ionized Mg interstitial (Mg_1^{\bullet}). Eqns. 4 and 5 may be used to represent the full process.

$$3Mg^{2+} \longrightarrow 2Ho^{3+} + 2Ho^{\mathbf{M}}_{Mg} + 2V'_{Mg}$$
 (4)

$$V'_{Mg} + Mg_{i}^{\bullet} \longrightarrow V_{Mg}$$
(5)

Doping $MgAl_2O_4$ with Ho^{3+} ions generate defects because it introduces a new defect level by exchanging Mg^{2+} ions for Ho^{3+} ions. When there were temperature fluctuations, the defect's electrons went through a transition to the ground state and emitted red light.

Number of defects is more than the number of filled defects at low concentrations, but when Ho^{3+} concentration increases, the quantity of Mg²⁺ ions falls and the number of defects decreases. Consequently, red emission intensity decreases as doping concentrations increase [36]. Energy transfer contact types were determined using the Van-Uitert hypothesis [26]. A linear fitting yielded a value of 3 mol%, suggesting that an exchange interaction was responsible for concentration quenching of MgAl₂O₄:Ho³⁺ phosphor (Fig. 5).

Fig. 5. Emission spectra of MgAl₂O₄:Ho³⁺ (1-11 mol %) nanophosphors

Colour perception of light-emitting MgAl₂O₄:Ho³⁺ nanostructures were determined using the CIE's 1931 chromaticity coordinate diagram [37]. By analyzing the 406 nm-stimulated emission spectra, we were able to identify that $MgAl_2O_4:Ho^{3+}$ nanostructures fall within the CIE chromaticity coordinates for orange-red to yellow (Fig. 6). This hints to a prospective user for all-purpose light sources [38,39] (orange-red to yellow light). This discovery suggests the phosphor has great potential usage for white LEDs and other solid-state display usage to provide artificial white light.

Fig. 6. CIE graph of MgAl₂O₄:Ho³⁺ (1-11 mol %) nanophosphors (406 nm)

Photocatalytic analysis: Fast orange red (FOR) dye degradation was examined after ODH utilized as fuel in UV light irradiation method to produce MgAl₂O₄:Ho³⁺ nanophosphors. The reaction mixture contained 60 mg of photocatalyst and 20 ppm of dye. At predetermined times throughout the reaction, 5 mL dye solution was removed, centrifuged to separate photocatalyst [40] and absorbance of the resulting dye samples was measured at 493 nm. Using MgAl₂O₄:Ho³⁺, the photocatalytic decolorization of dye at 120 min reveals greater percentage (89%) among all mol% of MgAl₂O₄:Ho³⁺ 9 mol%. As photocatalyst, MgAl₂O₄ doped with 9 mol% Ho³⁺ efficiently degrades FOR dye. The breakdown of MgAl₂O₄:Ho³⁺ dye by ultraviolet light (1-11 mol%) is observed in the UV absorption spectrum (Fig. 7). The percentage of deterioration was calculated using eqn. 6:

D (%) =
$$\frac{C_{o} - C}{C_{o}} \times 100$$
 (6)

where % D = photo decolorization efficiency, C_o and C = the initial and final dye solution concentration, respectively.

Fig. 8a displays a proportion of decolorization of MgAl₂O₄: Ho³⁺ (1-11 mol%) nanophosphors during UV light irradiation for FOR dye. When compared to other mol% of nanophosphors, 9 mol% Ho³⁺-doped MgAl₂O₄ nanophosphor sample clearly demonstrates the best photodecolorization efficiency. After 120 min of irradiation, the percentage decolorization rate for the FOR dye reaches as high as 89%, and this rate rises in tandem with the Ho³⁺ concentration. It has been observed that Langmuir-Hinshelwood model (eqn. 7) can be used to quantitatively learn response kinetics of FOR dye decolorization:

$$\ln\left(\frac{C}{C_{o}}\right) = kt + a \tag{7}$$

Fig. 7. UV-Vis absorption spectra of $MgAl_2O_4$:Ho³⁺ (1-11 mol %) for FOR dye under UV light

Fig. 8. (a) log C/C_o and (b) % Degradation of MgAl₂O₄:Ho³⁺ (1-11 mol %) FOR dye under UV light

where k = reaction rate constant, $C_o = initial$ concentration of dye, and C = concentration of dye at time t.

Absorption studies have shown that an increase in charge carrier separation and an increase in the generation of hydroxyl radicals are the primary causes of dye decolorization.

A plot of log (C/C_o) against mol% (Fig. 8b) reveals the degradation rate increased with increasing mol% for 120-min. The log C/C_o values was computed using eqn. 7, which was utilized in the process.

$$\log \frac{C}{C_o} = -Kt \tag{7}$$

where, C_o and C are the initial and final concentration of dye at time t = 0 min; and k is the first order rate constant.

Results of the kinetics study and % decolorization are shown in Table-1. This suggests that $MgAl_2O_4$ doped with 9 mol% of Ho³⁺ is the most effective photocatalyst degradation of FOR dye followed by 7, 11, 5, 3 and 1 mol%.

TABLE-1								
RATE CONSTANTS AND KINETIC STUDIES OF FAST ORANGE								
KED (FOK) DIE DECOLOKIZATION UNDER UV LIGHT								
20 ppm FOR dye + 60 mg MgAl ₂ O ₄ :Ho ³⁺ (1-11 mol %) + UV								
Mol %	с	c/c _o	$\log c/c_o$	$-\log c/c_o$	D (%)			
0	20	1	0	0	0			
1	2.511	0.2511	-0.60015	0.6001	74.89			
3	2.523	0.2523	-0.59808	0.5980	74.77			
5	1.422	0.1422	-0.8471	0.8471	85.78			
7	1.314	0.1314	-0.8814	0.8814	86.86			
9	1.104	0.1121	-0.9586	0.9586	89.02			
11	1.352	0.1351	-0.8690	0.8690	86.48			
			Slope	0.00262				
			Rate	0.00604				

Cyclic voltammetry studies: Fig. 9 displays the CV results of $MgAl_2O_4$ with different extramol concentrations of Ho^{3+} along with electrode's charge-discharge cycle, reaction reversibility, oxygen evolution property, charge efficiency and other factors were presented. The difference between oxidation and reduction

potential $(E_0 - E_R)$ may be used to gauge how reversible an electrode reaction is; a lower difference indicates a greater reversible electrode reaction [41].

Table-2 displays the MgAl₂O₄ electrode with a 9 mol% concentration. The electrochemical reaction of Ho³⁺ exhibits a limited degree of reversibility and a prolonged oxidation-reduction peak separation. But it is evident that adding Ho³⁺ as a dopant changes the CV curve of MgAl₂O₄ electrode.

TABLE-2							
OXIDATION POTENTIAL, REDUCTION POTENTIAL AND							
THE DIFFERENCE b/w OXIDATION & REDUCTION							
POTENTIAL OF DIFFERENT ELECTRODES							
Name of the electrode	EO (V)	ER (V)	EO-ER (V)				
$MgAl_2O_4$ (1 mol%)	-0.1117	-0.4049	0.2932				
$MgAl_2O_4$ (3 mol%)	-0.1108	-0.3706	0.2598				
$MgAl_2O_4$ (5 mol%)	-0.2209	-0.4627	0.2418				
$MgAl_2O_4$ (7 mol%)	-0.2442	-0.4622	0.2380				
$MgAl_2O_4$ (9 mol%)	0.1904	-0.3667	0.1763				
$MgAl_2O_4$ (11 mol%)	-0.2198	-0.4611	0.2413				

Steady-state electrochemical impedance spectra (EIS) of MgAl₂O₄:Ho³⁺ electrodes (1-11 mol%) after activation during CV measurement (Fig. 9). The impedance spectra of these six electrodes exhibit low-frequency slope associated with the Warburg impedance [42] and a high-frequency depressed semicircle associated with charge transfer resistance (R_{ct}). As seen in Fig. 10, MgAl₂O₄ linked with a (9 mol%) Ho³⁺ electrode displays much bigger capacitive arches than other electrodes. Ho³⁺ (9 mol%) may entirely reduce the R_{ct} value and electrochemical process in MgAl₂O₄ electrodes, in contrast to Ho³⁺ doped MgAl₂O₄ electrode concentrations of 1-11 mol%.

Lead was discovered using a modified carbon paste electrode and CV of $MgAl_2O_4$:Ho³⁺ (9 mol%, 10 mV/s scan rate) nanophosphors (Fig. 11a-e). The sensing performance of $MgAl_2O_4$: Ho³⁺ was evaluated using lead concentrations ranging from 1 to 5 mM. In absence of lead, oxidation and reduction maxima occurred at -0.225 V and -0.412 V, respectively. In presence of lead, oxidation peak changes from -0.225 V to -0.524 V while

Fig. 9. CV of MgAl₂O₄:Ho³⁺ electrodes (1-11%) at various scan rates in 0.1 N HCl electrolyte vs. Ag/AgCl electrode

Fig. 10. Electrochemical impedance spectra of MgAl₂O₄:Ho³⁺ electrodes (1-11 mol%) and equivalent circuit

reduction peak shifts from -0.412V to -0.649V and -0.973 V. It is confirmed that the synthetic MgAl₂O₄:Ho³⁺ oxidized the lead at -0.412 V and lowered it at -0.649 and -0.973 V. Using a calibration curve, Fig. 12 shows peak current as function of lead concentration. Low detection limit of MgAl₂O₄:Ho³⁺ electrode was established to be 1×10^{-3} mol/L. Linear nature of calibration curve indicates that the activity is diffusion controlled in specified concentration range [42]. This demonstrates the improved electrochemical sensitivity of MgAl₂O₄:Ho³⁺-modified electrodes.

Conclusion

 $MgAl_2O_4$:Ho³⁺ nanophosphors were synthesized by burning oxalyl dihydrazide (ODH) at low temperatures as a convincing fuel. These nanophosphors contain 20 nm sized crystallites on average with band gaps that range from 3.72 to 3.89 eV.

Fig. 11. CV of MgAl₂O₄:Ho³⁺ (9 mol%, scan rate - 10 mV/s) for sensing of lead concentration range (1-5 mM)

Due to specific transitions from ${}^{4}F_{7/2} \rightarrow {}^{6}P_{3/2}$, which were brought on by *f-f* transitions of Ho³⁺ ions in the host and the distinctive photoluminescence emission peaks of Ho³⁺ ions were found in the range of 406 and 605 nm. The ideal MgAl₂O₄ phosphors were found to have a 97% colour purity and CIE coordinates, which are in the orange-red-yellow zone. After 120 min of radiation, the experiment revealed 89% dye decolorization. A modified carbon paste electrode and the CV technique were used to detect lead in 0.1 N HCl solution (MCPE). According to electrochemical performance, $MgAl_2O_4$:Ho³⁺ nanophosphors are effective sensing electrode materials for elements like lead.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interests regarding the publication of this article.

Fig. 12. Calibration plot of peak current against lead concentration (1-5 mM)

REFERENCES

- J. Wrzyszcz, W. Miœta, D. Hreniak, W. Strek, M. Zawadzki and H. Grabowska, J. Alloys Compd., 341, 358 (2002); https://doi.org/10.1016/S0925-8388(02)00037-3
- L.H. Brixner and P.A. Flournoy, J. Electrochem. Soc., 112, 303 (1965); https://doi.org/10.1149/1.2423528
- L.D. Merkle, A. Pinto, H.R. Verdún and B. McIntosh, *Appl. Phys. Lett.*, 61, 2386 (1992);
- <u>https://doi.org/10.1063/1.108172</u>
 H.Y. Lin, W.F. Chang and S.Y. Chu, *J. Lumin.*, **133**, 194 (2013); <u>https://doi.org/10.1016/j.jlumin.2011.12.034</u>
- J. Zhao, C. Guo, J. Yu and R. Yu, *Opt. Laser Technol.*, 45, 62 (2013); https://doi.org/10.1016/j.optlastec.2012.07.032
- V. Singh, M.D.M. Haque and D.-K. Kim, Bull. Korean Chem. Soc., 28, 2477 (2007);
- https://doi.org/10.5012/bkcs.2007.28.12.2477 7. O. Padmaraj, M. Venkateswarlu and N. Satyanarayana, *Ceram. Int.*,
- 41, 3178 (2015); https://doi.org/10.1016/j.ceramint.2014.10.169
- S.M. Hosseini, *Phys. Stat. Sol.* (b), **245**, 2800 (2008); https://doi.org/10.1002/pssb.200844142
- I. Omkaram and S. Buddhudu, Opt. Mater., 32, 8 (2009); https://doi.org/10.1016/j.optmat.2009.05.010
- I. Omkaram, B. Vengala Rao and S. Buddhudu, J. Alloys Compd., 474, 565 (2009);
- https://doi.org/10.1016/j.jallcom.2008.06.140 11. I. Ganesh, *Int. Mater. Rev.*, **58**, 63 (2013);
- https://doi.org/10.1179/1743280412Y.0000000001 12. Q. Sai, C. Xia, H. Rao, X. Xu, G. Zhou and P. Xu, *J. Lumin.*, **131**, 2359
- (2011); https://doi.org/10.1016/j.jlumin.2011.05.046
- 13. P. Gluchowski, R. Pazik, D. Hreniak and W. Strêk, *Chem. Phys.*, **358**, 52 (2009);
- https://doi.org/10.1016/j.chemphys.2008.12.018
- 14. P. Gluchowski and W. Strek, *Mater. Chem. Phys.*, **140**, 222 (2013); https://doi.org/10.1016/j.matchemphys.2013.03.025
- W.A.I. Tabaza, H.C. Swart and R.E. Kroon, J. Lumin., 148, 192 (2014); https://doi.org/10.1016/j.jlumin.2013.12.018
- V. Singh, R.P.S. Chakradhar, J.L. Rao and D.K. Kim, *J. Solid State Chem.*, **180**, 2067 (2007);
- https://doi.org/10.1016/j.jssc.2007.04.030
- A. Jouini, A. Yoshikawa, Y. Guyot, A. Brenier, T. Fukuda and G. Boulon, *Opt. Mater.*, **30**, 47 (2007); <u>https://doi.org/10.1016/j.optmat.2006.11.027</u>
- R. Sakai, T. Katsumata, S. Komuro and T. Morikawa, J. Lumin., 85, 149 (1999); <u>https://doi.org/10.1016/S0022-2313(99)00061-7</u>

- I. Omkaram, G. Seeta Rama Raju and S. Buddhudu, J. Phys. Chem. Solids, 69, 2066 (2008); https://doi.org/10.1016/j.jpcs.2008.03.005
- A.S. Maia, R. Stefani, C.A. Kodaira, C.F.C. Felinto, E.E.S. Teotonio and H.F. Brito, *Opt. Mater.*, **31**, 440 (2008); https://doi.org/10.1016/j.optmat.2008.06.017
- 21. Y. Lu, J. Wang, L. He, C. Hao, F. Wang and J. Zhang, *Mater. Res. Express*, **9**, 065009 (2022);
- https://doi.org/10.1088/2053-1591/ac7b72 22. R.J. Wiglusz and T. Grzyb, *Opt. Mater.*, **33**, 1506 (2011); https://doi.org/10.1016/j.optmat.2011.04.020
- Y. Lu, J. Wang, Z.X. Shi, L.J. Dai, H.M. Zhang, Z.T. Sun and Y.F. Liu, *Chinese J. Inorg. Chem.*, 36, 688 (2020).
- Q.U. Ain, B. Ismail, A.M. Khan, R.A. Khan, F. Shah, Hafiz-Ur Rehman and F. Shahid, *Semicond. Sci. Technol.*, 36, 125010 (2021); https://doi.org/10.1088/1361-6641/ac2750
- S. Ashwini, S.C. Prashantha, R. Naik, Y.V. Naik, H. Nagabhushana and K.N. Narasimhamurthy, J. Sci. Adv. Mater. Devices, 4, 531 (2019); <u>https://doi.org/10.1016/j.jsamd.2019.09.001</u>
- C. Pratapkumar, S.C. Prashantha, H. Nagabhushana, M.R. Anilkumar, C.R. Ravikumar, H.P. Nagaswarupa and D.M. Jnaneshwara, *J. Alloys Compd.*, **728**, 1124 (2017); <u>https://doi.org/10.1016/j.jallcom.2017.09.058</u>
- Z. Wang, S. jiao, Y. Xu, Q. Zhang, Y. Chen, G. Pang and S. Feng, J. Lumin., 211, 108 (2019); https://doi.org/10.1016/j.jlumin.2019.03.008
- Z.G. Lei, D.W. Meng, Z.X. Gao, X.L. Zhang, Q.X. Yang and Y.Q. Wang, J. Mater. Sci. Mater. Electron., 27, 1840 (2016); https://doi.org/10.1007/s10854-015-3962-7
- 29. S. Cizauskaite, G. Spakauskaite, A. Beganskiene and A. Kareiva, *Chemija*, **17**, 40 (2006).
- G.H. Du, Z.L. Liu, X. Xia, Q. Chu and S.M. Zhang, J. Sol-Gel. Sci., 39, 285 (2006); <u>https://doi.org/10.1007/s10971-006-7780-5</u>
- M. Chroma, J. Pinkas, I. Pakutinskiene, A. Beganskiene and A. Kareiva, *Ceram. Int.*, **31**, 1123 (2005); https://doi.org/10.1016/j.ceramint.2004.11.012
- B. Schrader, Infrared and Raman Spectroscopy. Methods and Applications, VCH, Weinheim (1995).
- H. Shahbazi, H. Shokrollahi and A. Alhaji, J. Alloys Compd., 712, 732 (2017);

https://doi.org/10.1016/j.jallcom.2017.04.042

W. Nantharak, W. Wattanathana, W. Klysubun, T. Rimpongpisarn, C. Veranitisagul, N. Koonsaeng and A. Laobuthee, *J. Alloys Compd.*, 701, 1019 (2017);

https://doi.org/10.1016/j.jallcom.2017.01.090

- S. Sanjabi and A. Obeydavi, J. Alloys Compd., 645, 535 (2015); https://doi.org/10.1016/j.jallcom.2015.05.107
- R. Naik, S.C. Prashantha, H. Nagabhushana, S.C. Sharma, H.P. Nagaswarupa and K.M. Girish, J. Alloys Compd., 682, 815 (2016); <u>https://doi.org/10.1016/j.jallcom.2016.05.037</u>
- G. Rani, Powder Technol., 312, 354 (2017); <u>https://doi.org/10.1016/j.powtec.2017.02.040</u>
- S.K. Sampath, D.G. Kanhere and R. Pandey, *J. Phys. Condens. Matter*, 113, 635 (1999);
 - https://doi.org/10.1088/0953-8984/11/18/301
- Q. Bai, P. Li, Z. Wang, S. Xu, T. Li, Z. Yang and Z. Xu, Spectrochim. Acta A Mol. Biomol. Spectrosc., 199, 179 (2018); <u>https://doi.org/10.1016/j.saa.2018.03.065</u>
- M.R.A. Kumar, B. Abebe, H.P. Nagaswarupa, H.C.A. Murthy, C.R. Ravikumar and F.K. Sabir, *Sci. Rep.*, **10**, 1249 (2020); <u>https://doi.org/10.1038/s41598-020-58110-7</u>
- B. Shruthi, B.J. Madhu, V.B. Raju, S. Vynatheya, B.V. Devi, G.V. Jayashree and C.R. Ravikumar, J. Sci. Adv. Mater. Devices, 2, 93 (2017); https://doi.org/10.1016/j.jsamd.2016.12.002
- B. Avinash, C.R. Ravikumar, M.R.A. Kumar, H.P. Nagaswarupa, M.S. Santosh, A.S. Bhatt and D. Kuznetsov, *J. Phys. Chem. Solids*, **134**, 193 (2019); https://doi.org/10.1016/j.jpcs.2019.06.012