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INTRODUCTION

Benzofuranones and their derivatives are widely acknow-
ledged as ‘privileged’ structures due to their prevalence in a
diverse range of naturally occurring and biologically active
compounds. Their versatile biological properties across multiple
therapeutic domains have garnered significant interest from
both synthetic and medicinal chemists. Several compounds
with 2,2-disubstituted benzofuranone core have been identified
in nature [1-5] and are being developed by researchers [6-8].
It has also been proved that these substances can be used for a
wide range of medicinal purposes [9-11]. Geodin [12], rifamycin
[13,14], griseofulvin [15], armeniaspiroles [16] and maesopsin
[17] are a few examples of antibacterial compounds having
2,2-disubstituted benzofuranone core (Fig. 1).

On the other hand, 1,2,3-triazole and its analogues are
attractive scaffolds in pharmaceutical chemistry [18-21] owing
to their substantial biological efficacy, which includes anti-
microbial [22,23], antituberculor [24,25], antimalarial [26], anti-
cancer [27] and anti-HIV [28] properties. However, geminal-
, bis- and tris-triazoles are a relatively rare and neglected group
of triazole compounds that have received little attention from
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researchers [29-35]. Despite this, their biological functions
have not been extensively studied and remain poorly under-
stood.

In contemporary medicinal chemistry, chemists use the
strategy of pharmacophore hybridization to create new chemical
entities that are pertinent to biological systems [36,37]. Mole-
cular hybridization is the method of amalgamating two or more
established bioactive pharmacophoric fragments into a unified
hybrid molecule that exhibits enhanced affinity and efficacy
compared to the original medications. Hybrid molecules, in
contrast to their parent drugs, possess the capacity to overcome
drug resistance, expand their biological spectrum, reduce toxicity
and enhance overall effectiveness [38,39].

Recently, several molecules possessing 1,2,3-triazole and
benzofuranone fragments with promising biological activity
have been reported. In particular, Lipeeva et al. [40,41], Liang
et al. [42], Rama Kant et al. [43] synthesized 1,2,3-triazole
tethered benzofuranone hybrids and evaluated their antibacterial
and other biological activities. Inspired by the aforementioned
findings and driven by our continuous investigation into the
development of new heterocycles as potential bioactive comp-
ounds [44-48], we designed and synthesized a series of novel
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compounds that incorporate benzofuranone, coupled with bis
1,2,3-triazole structural motifs, with the goal of creating potent
antimicrobial agents.

EXPERIMENTAL

All chemicals were procured from the reputed commercial
suppliers and employed them without additional purification.
Thin-layer chromatography (TLC) was conducted using silica
F254-coated aluminum plates and visualization was achieved
using UV light and iodine. The NMR spectrum was acquired
on a Bruker NMR spectrometer operating at 400 MHz for 1H
NMR and 100 MHz for 13C NMR, with chemical shift (δ) values
reported in parts per million (ppm). CDCl3 served as the solvent
and TMS was utilized as the internal standard.

Synthesis of 2,2-diazido-7-iodo-5-methylbenzofuran-
3(2H)-one (2): Compound 2 was synthesized by following a
previously reported procedure [49]. In a 100 mL round bottom
flask, 5-methyl-2-hydroxy acetophenone (1) (1 equiv.), iodine
(6 equiv.), sodium azide (7 equiv.), sodium bicarbonate (10 equiv.)
and 5 mL of water were refluxed for 2 h. The reaction was then
quenched with sodium thiosulfate solution. Subsequently, the
compound was extracted with ethyl acetate and concentrated.
Finally, the obtained crude product was purified through column
chromatography using a hexane and ethyl acetate mixture.

2,2-Diazido-7-iodo-5-methylbenzofuran-3(2H)-one (2):
White solid; yield: 60%; 1H NMR (400 MHz, CDCl3) δ ppm:
7.93 (t, 1H, J = 0.3 Hz), 7.47 (t, 1H, J = 0.6 Hz), 2.36 (s, 3h);
13C NMR (75 MHz, CDCl3) δ ppm: 189.22, 167.25, 149.44,
136.13, 125.40, 117.94, 99.47, 77.48, 20.35; FT-IR (KBr, νmax,
cm–1): 3371, 3220, 3021, 2925, 2402, 1765, 1620, 1490, 1461,
1307, 1261, 1215, 1172, 1105, 1040, 995, 930, 760, 669, 594.

General procedure for the synthesis of benzofuran-3(2H)-
one linked geminal-bis-1,2,3-triazole hybrid derivatives
(3a-n): A mixture containing 1-(2-hydroxy-5-methylphenyl)-
ethan-1-one (1 equiv.), iodine (6 equiv.), sodium azide (7 equiv.),

sodium bicarbonate (10 equiv.) and 5 mL of water was subje-
cted to reflux for a duration of 2 h. Subsequently, the reaction
mixture was allowed to cool to room temperature and the pH of
the solution was adjusted to 7 by adding dilute HCl. Following
this, two equivalents of 4-methyl phenyl acetylene were intro-
duced, along with sodium ascorbate (15 mol%) and CuSO4 (5
mol%) and the resulting mixture was stirred for 12-24 h at
room temperature. The reaction was quenched using sodium
thiosulphate (Na2S2O3) solution. Ice-cold water was added in
a small amount and the mixture was extracted with ethyl
acetate. After evaporating ethyl acetate, the crude product was
subjected to purification using column chromatography with
a hexane and ethyl acetate mixture.

7-Iodo-5-methyl-2,2-bis(4-(p-tolyl)-1H-1,2,3-triazol-1-
yl)benzofuran-3(2H)-one (3a): Light yellow solid; yield:
61%; m.p.: 192-193 ºC; 1H NMR (400 MHz, CDCl3) δ, ppm:
7.99 (s, 2H, triazole-H), 7.75 (d, 1H, Ar-H, J = 7.2 Hz), 7.41-
7.43 (d, 4H, Ar-H), 7.29 (d, 1H, Ar-H, J = 6.8 Hz), 6.98-7.00
(d, 4H, Ar-H), 2.26 (s, 6H, 2-CH3), 2.22 (s, 3H, -CH3); 13C
NMR (100 MHz, CDCl3) δ, ppm: 192.71, 168.99, 149.53, 146.10
(2C), 134.52 (4C), 129.53 (4C), 124.72 (2C), 124.38 (2C),
123.95 (2C), 117.52, 115.25, 112.69 (2C), 99.02, 21.60, 20.29
(2C); MS (ESI): m/z 588 [M+H]+.

7-Iodo-2,2-bis(4-(4-methoxyphenyl)-1H-1,2,3-triazol-
1-yl)-5-methylbenzofuran-3(2H)-one (3b): Light yellow solid;
yield: 63%; m.p.: 202-203 ºC; 1H NMR (400 MHz, CDCl3) δ,
ppm: 8.33 (d, 1H, Ar-H), 8.23 (d, 1H, Ar-H), 7.89 (s, 2H,
triazole-H), 7.53 (d, 4H, Ar-H), 7.45 (d, 4H, Ar-H), 3.72 (s,
6H, 2-OCH3), 2.26 (s, 3H, -CH3); 13C NMR (100 MHz, CDCl3)
δ, ppm: 192.71, 168.99, 149.53, 146.10 (2C), 134.52 (4C),
129.53 (4C), 124.72 (2C), 124.38 (2C), 123.95 (2C), 117.52,
115.25, 112.69 (2C), 99.02, 21.60, 20.29 (2C); MS (ESI): m/z
588 [M+H]+.

2,2-Bis(4-(4-bromophenyl)-1H-1,2,3-triazol-1-yl)-7-
iodo-5-methylbenzofuran-3(2H)-one (3c): light yellow solid;
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Fig. 1. Compounds with a 2,2-di-substituted benzofuranone core exhibiting antibacterial properties
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yield: 61%; m.p.: 198-199 ºC; 1H NMR (400 MHz, CDCl3) δ,
ppm: 7.92 s (2H, triazole-H), 7.34-7.4 m (9H, Ar-H), 7.33 (s,
1H, Ar-H), 2.26 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ,
ppm: 193.69, 167.69, 140.98 (2C), 140.0 (2C),137.93 (4C),
132.82, 132.03 (4C), 126.93 (2C), 124.16, 122, 121.43, 116.33,
112.29 (2C), 98.92, 20.62.

5,7-Dimethyl-2,2-bis(4-(p-tolyl)-1H-1,2,3-triazol-1-
yl)benzofuran-3(2H)-one (3d): Light yellow solid; yield: 65%;
m.p.: 208-209 ºC; 1H NMR (400 MHz, CDCl3) δ, ppm: 7.81
(s, 2H, triazole-H), 7.40 (d, 4H, Ar-H), 7.80 (d, 1H, Ar-H),
6.99 (m, 5H, Ar-H), 2.25 (s, 6H, 2-CH3), 2.18 (s, 3H, CH3),
2.17 (s, 3H, CH3). 13C NMR (100 MHz, CDCl3) δ, ppm: 194.97,
165.57, 140.06 (2C), 136.43 (6C), 131.78, 129.4 (6C), 124.89
(2C), 122.17, 121.29 (2C), 119.17, 99.36, 21.27 (2C), 20.54,
14.03.

2,2-Bis(4-(4-chlorophenyl)-1H-1,2,3-triazol-1-yl)-5,7-
dimethylbenzofuran-3(2H)-one (3e): Light yellow solid;
yield: 60%; m.p.: 210-211 ºC; 1H NMR (400 MHz, CDCl3) δ,
ppm: 8.14 (s, 2H, triazole-H), 7.44 (d, 4H, Ar-H), 7.23 (d, 4H,
Ar-H), 7.12 (d, 1H, Ar-H), 7.01 (d, 1H, Ar-H), 2.21 (s, 3H, CH3),
2.17 (s, 3H, CH3). 13C NMR (100 MHz, CDCl3) δ, ppm: 194.26,
166.33, 140.67 (2C), 137.68 (6C), 136.54 (2C), 132.55, 128.97
(4C), 126.68 (2C), 122.17, 121.50 (2C), 118.85, 98.73, 20.57,
13.98.

7-Iodo-5-methoxy-2,2-bis(4-(p-tolyl)-1H-1,2,3-triazol-
1-yl)benzofuran-3(2H)-one (3f): Light yellow solid; yield:
62%; m.p.: 199-201 ºC; 1H NMR (400 MHz, CDCl3) δ, ppm:
8.06 (d, 1H, Ar-H), 7.92 (s, 2H, triazole-H), 7.73 (d, 1H, Ar-H),
7.43 (d, 4H, Ar-H), 7.00 (d, 4H, Ar-H), 3.81 (s, 3H, CH3), 2.26
(s, 6H, 2-CH3). 13C NMR (100 MHz, CDCl3) δ, ppm: 191.96,
171.95, 168.52, 140.09 (2C), 136.49 (4C), 129.59 (4C), 125.9
(2C), 124.73 (2C), 123.49, 112.98, 111.72 (2C), 100.89, 95.63
(2C), 55.92, 21.92 (2C).

5-Chloro-7-iodo-2,2-bis(4-(p-tolyl)-1H-1,2,3-triazol-1-
yl)benzofuran-3(2H)-one (3g): Light Yellow solid; yield:
65%; m.p.: 203-204 ºC; 1H NMR (400 MHz, CDCl3) δ, ppm:
8.09 (s, 2H, triazole-H), 7.28 (d, 4H, Ar-H), 7.27 (d, 1H, Ar-H),
7.16 (d, 1H, Ar-H), 7.00 (d, 4H, Ar-H). 13C NMR (100 MHz,
CDCl3) δ, ppm: 193.09, 169.58, 144.46, 140.48 (2C), 136.62
(6C), 129.69 (4C), 125.41 (2C), 124.17 (2C), 123.30 (2C),
118.56, 113.08, 100.79, 21.30 (2C).

5-Bromo-7-iodo-2,2-bis(4-(p-tolyl)-1H-1,2,3-triazol-1-
yl)benzofuran-3(2H)-one (3h): Light yellow solid; yield:
62%; m.p.: 212-213 ºC; 1H NMR (400 MHz, CDCl3) δ, ppm:
7.89 (s, 2H, triazole-H), 7.43 (d, 4H, Ar-H), 7.29 (d, 1H, Ar-H),
7.00 (d, 4H, Ar-H), 6.74 (d, 1H, Ar-H), 2.26 (s, 6H, 2-CH3).
13C NMR (100 MHz, CDCl3) δ, ppm: 193.29, 169.45, 140.49
(2C), 136.62 (6C), 133.09, 129.67 (4C), 126.10 (2C), 125.46
(2C), 124.17, 118.95, 116.13 (2C), 100.6, 21.31 (2C).

7-Iodo-5-nitro-2,2-bis(4-(p-tolyl)-1H-1,2,3-triazol-1-yl)-
benzofuran-3(2H)-one (3i): Yellow solid; yield: 60%; m.p.:
206-207 ºC; 1H NMR (400 MHz, CDCl3) δ, ppm: 8.26 d (1H,
Ar-H), 8.22 d (1H, Ar-H), 8.09 s (2H, triazole-H), 7.44 d (4H,
Ar-H), 2.25 s (6H, 2-CH3). 13C NMR (100 MHz, CDCl3) δ, ppm:
192.76, 172.15, 142.70, 140.96 (2C), 136.74 (2C), 132.98 (2C),
129.86 (6C), 123.45 (2C), 121.18 (2C), 120.26, 113.23, 102.49,
21.32 (2C).

5-Acetyl-7-iodo-2,2-bis(4-(p-tolyl)-1H-1,2,3-triazol-1-
yl)benzofuran-3(2H)-one (3j): Light yellow solid; yield: 64%;
m.p.: 201-202 ºC; 1H NMR (400 MHz, CDCl3) δ, ppm: 8.33
(d, 1H, Ar-H), 8.24 (d, 1H, Ar-H), 7.89 (s, 2H, triazole-H),
7.39 (d, 4H, Ar-H), 7.02 (d, 4H, Ar-H), 2.89 (s, 3H, COCH3),
2.25 (6H, 2-CH3). 13C NMR (100 MHz, CDCl3) δ, ppm: 194.69,
168.80, 166.16, 140.37 (2C), 136.49 (6C), 133.23, 131.57,
129.66 (4C), 124.43 (2C), 119.65, 114.91 (2C), 113.0 (2C),
100.12, 24.36, 21.31 (2C).

5-Acetyl-2,2-bis(4-(4-chlorophenyl)-1H-1,2,3-triazol-1-
yl)-7-iodobenzofuran-3(2H)-one (3k): Light yellow solid;
yield: 63%; m.p.: 221-222 ºC; 1H NMR (400 MHz, CDCl3) δ,
ppm: 8.09 (d, 1H, Ar-H), 8.05 (d, 4H, Ar-H), 7.86 (s, 2H,
triazole-H), 7.63 (d, 1H, Ar-H), 7.51 (d, 4H, Ar-H). 13C NMR
(100 MHz, CDCl3) δ, ppm: 191.40, 182.52, 158.25, 153.39,
139.89 (2C), 135.07 (2C), 131.01 (6C), 129.10 (4C), 128.98
(2C), 126.83 (2C), 124.99, 124.16, 116.79, 15.22.

5-Acetyl-7-iodo-2,2-bis(4-phenyl-1H-1,2,3-triazol-1-
yl)benzofuran-3(2H)-one (3l): Light yellow solid; yield: 67%;
m.p.: 215-216 ºC; 1H NMR (400 MHz, CDCl3) δ, ppm: 8.05-
8.10 (m, 4H, Ar-H), 7.86 (s, 2H, triazole-H), 7.54-7.69 (m, 8H,
Ar-H). 13C NMR (100 MHz, CDCl3) δ, ppm: 191.47, 183.98,
158.32, 153.63, 136.97, 133.40 (2C), 133.34 (2C), 129.59 (6C),
128.91 (4C), 128.77, 126.98, 124.96, 124.22, 116.84, 100.03,
15.25.

5-Bromo-2,2-bis(4-(4-bromophenyl)-1H-1,2,3-triazol-
1-yl)-7-iodobenzofuran-3(2H)-one (3m): Light yellow solid;
yield: 61%; m.p.: 212-213 ºC; 1H NMR (400 MHz, CDCl3) δ,
ppm: 8.09 (s, 2H, triazole-H), 7.75 (d, 1H, Ar-H), 7.43  (d, 4H,
Ar-H), 7.30 (d, 1H, Ar-H), 7.00 (d, 4H, Ar-H). 13C NMR (100
MHz, CDCl3) δ, ppm: 192.64, 169.46, 164.91, 163.24, 145.01,
138.95 (4C), 125.49 (2C), 123.81 (2C), 122.80, 118.23, 116.26
(4C), 116.12 (2C), 113.00 (2C), 100.34.

5-Bromo-2,2-bis(4-(4-chlorophenyl)-1H-1,2,3-triazol-
1-yl)-7-iodobenzofuran-3(2H)-one (3n): Light yellow solid;
yield: 63%; m.p.: 214-215 ºC; 1H NMR (400 MHz, CDCl3) δ,
ppm: 8.10-8.13 (m, 4H, Ar-H), 7.80 (d, 1H, Ar-H), 7.41-7.45
(m, 5H, Ar-H), 7.75 (s, 2H, triazole-H). 13C NMR (100 MHz,
CDCl3) δ, ppm: 192.64, 169.46, 164.91, 163.24, 145.01, 138.95
(4C), 125.49 (2C), 123.81 (2C), 122.80, 122.78, 118.23 (4C),
116.12 (2C), 113.00 (2C), 100.34.

Antimicrobial activity: All the newly synthesized comp-
ounds 3a-n were screened for their in vitro antimicrobial activity
against a panel of microorganisms, including four bacterial
strains viz. Staphylococcus aureus (MTCC 121), Bacillus subtilis
(MTCC 96), Escherichia coli (MTCC 40) and Pseudomonas
aeruginosa (MTCC 2453), as well as two fungal strains, Candida
albicans and Aspergillus niger. Positive control drugs, namely
streptomycin and clotrimazole, were used as references, respe-
ctively. The agar well diffusion method [49,50] was employed
for in vitro screening in triplicates for accuracy. To prepare
wells for sample loading, sterile cork borers with a diameter
of 6 mm were used. The test compounds were prepared at a
concentration of 100 µg/mL, while the positive control consisted
of streptomycin and clotrimazole at 30 µg/mL, with DMSO
serving as the negative control. Incubation was carried out at
37 ºC for 24 h for bacteria and at 28 ºC for 48 h for fungi.
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Following the appropriate incubation periods, the diameter of
the zone of inhibition (ZOI) around each well was measured
in millimeters.

The minimum inhibitory concentration (MIC) for both
the tested compounds and standard substances was determined
in µg/mL using the Broth dilution test [51]. To conduct this
test, the bacterial strains S. aureus, B. subtilis, P. aeruginosa
and E. coli as well as the fungi C. albicans and A. niger were
diluted 100-fold in nutrient broth (with 100 µL of bacterial
cultures in 10 mL of nutrient broth). Various concentrations
of the test samples (1.25, 2.5, 5, 10, 20 and 40 µL of the stock
solution, equivalent to 6.25, 12.5, 25, 50, 100 and 200 µg/
well of the compounds) were added to the test tubes containing
the bacterial and fungal cultures. All tubes were then incubated
for 24 h at 37 ºC for bacteria and 48 h at 28 ºC for fungi. The
tubes were examined for visible turbidity, with nutrient broth
used as a control. Additionally, simultaneous testing was
performed using controls with and without test samples.
Compounds exhi-biting notable antibacterial and antifungal
activities underwent further assessment for minimum
bactericidal concentration (MBC) [52] and minimum
fungicidal concentration (MFC) [53].

RESULTS AND DISCUSSION

A synthetic approach was employed to synthesize novel
1,2,3-triazole derivatives linked with benzofuranone as illus-
trated in Schemes I and II. The initial step involved the synthesis
of 2,2-diazido-7-iodo-5-methylbenzofuran-3(2H)-one by
refluxing 1-(2-hydroxy-5-methylphenyl)ethan-1-one with
iodine, sodium azide and Na(HCO3)2 in water, following the
method [54]. Subsequently, compound 2,2-diazido-7-iodo-5-
methylbenzofuran-3(2H)-one was subjected to a reaction with
two equivalents of 4-methyl-phenyl acetylene in the presence
of sodium ascorbate (15 mol%) and CuSO4 (5 mol%) in an
aqueous medium, resulting in the production of compound 3a
with a high yield of 87%.

Despite their inherent dangers and explosive character-
istics, the production and isolation of organic gem-diazides
have not been widely promoted [32]. Consequently, it is strongly
recommended to generate organic azides in situ. Various
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of inhibition at 21 mm. Additionally, compounds 3f and 3h
exhibited 18 mm zone of inhibition against E. coli, closely
resembling streptomycin’s zone of inhibition at 20 mm.

To delve into the structure-activity relationship (SAR),
we explored the impact of various substituents attached to the
benzofuranone ring and the benzene ring linked to the triazole
on in vitro antibacterial activities. Present findings revealed
that the compounds 3b, 3f, 3h and 3n, which contained groups
such as -OCH3 and Br on the benzofuranone ring, exhibited
greater activity compared to the other compounds. Further
investigations involved assaying the compounds with higher
antibacterial and antifungal activities for minimum bactericidal
concentration (MBC) [52] and minimum fungicidal concen-
tration (MFC) [53], with the corresponding values are listed
in Table-2.

Conclusion

In summary, novel geminal bis-triazoles linked to benzo-
furan-3(2H)-one compounds were synthesized successfully
in one pot reaction. This synthesis was achieved using Cu(I)-
catalyzed azide-alkyne cycloaddition (CuAAC) starting from
various o-hydroxyacetophenones and terminal alkynes in an
aqueous environment, without the need to isolate the gem-

diazides. Notably, four of the synthesized compounds demon-
strated in vitro antimicrobial activity comparable to that of
standard drugs. These results suggest that further modifications
to these molecules could yield promising lead compounds with
enhanced antimicrobial properties.
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