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INTRODUCTION

The field of transition metal-catalyzed or -mediated direct
C-H functionalization has grown rapidly and powerful protocol
in organic synthesis due to its efficiency in converting the
ubiquitous inert C–H bonds to valuable carbon-carbon bonds
as well as carbon–heteroatom bonds [1-3]. At the current stage,
to make the C–H functionalization more convenient, chemists
have been keen to develop a single synthetic operation that
avoids the tedious prefunctionalization [4-6].

In the context of a growing demand for cleaner, shorter
and even more regioselective reaction sequences, the direct
formation of carbon-carbon or carbon-heteroatom bonds through
C-H activation has emerged as a unique methodology [7-9].
Even a moderately simple organic molecule incorporates several
types of unique C-H bonds. So, the fundamental challenge in
this chemistry consists of the mild and selective activation of
such robust C–H bonds (particularly unactivated C(sp3)–H and
C(sp2)–H bonds).

Recently, one powerful and robust strategy to improve
the efficiency and control the selectivity of C-H activation is
to introduce a directing group [10] Lewis basic motif present
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in the substrate that can form a relatively stable metallacycle
intermediate, which can promote both the C-H activation and
the subsequent functionalization.

In addition, Daugulis and co-workers [11] first reported
palladium-catalyzed C-H bond functionalization by 8-amino-
quinoline and picolinamide directing groups in 2005. After
that, this specific field has been developed N, O- or N, N- and
N,S-based bidentate groups, which provided good regioselec-
tivities and greatly enriched the scope of C–H activation reactions
(Scheme-I) [12,13]. These directing groups are readily attach-
able to the substrate and easily removable from the C-H funct-
ionalized products, which greatly enhance the synthetic value
of the developed methodologies.

Over the past decades, extensive research efforts have been
devoted to these bidentate auxiliaries-assisted metal-catalyzed
functionalization of C(sp3)–H/C(sp2)–H bonds using like Pd
[14-17], Co [18-20], Ni [21-24], Cu [25-27], Rh [28-30], Ru
[31] and Fe [32-34]. Many transition-metal catalysis used to
promote C–H functionalization, palladium catalyst showed out-
standing for the functionalization of organic molecules due to
strong coordination, especially with bidentate amide directing
groups. Herein, this review highlights the recent developments
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of palladium-catalyzed direct C(sp3)/C(sp2)–H bond function-
alizations promoted by only an 8-aminoquinoline bidentate
directing group.

A general mechanism proposed in Scheme-II followed
by numerous bidentate directing groups mediated Pd catalyzed

Csp3/sp2-H bond functionalization. Initially, palladacycle
intermediate formed via the C-H activation process. After that,
functionalization occurs through oxidative addition. Finally,
reductive elimination generate desired product and released
Pd catalyst into a catalytic path.
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C(sp3)-H functionalization: Chen et al. [35] employed
the bidentate auxilliary 8-aminoquinoline coupled phthaloyl
alanine which underwent β-Csp3-H functionalization via Pd
catalyst with α-iodoacetate. The same group in 2014, using
PhI38 with N-phthaloyl-protected alanine, undergoes β-Csp3-
H arylation [36,37]. After that, the same group introduced
olefination at the same moiety N-phthaloyl-protected alanine,
leading to the formation of β-olefinated amino acids [38]. Next,
Shi et al. [39], used N-phthaloyl-protected alanine for the stereo-
selective formation of β-silyl-α-amino acids (Scheme-III).

A flexible route to β-Csp3-H arylation of N-protected β-
alanine precursors at unactivated β-methylene position to
furnished β-aryl-β-amino acids was described by Haq et al.
[40] in 2019. Herein, 8-aminoquinoline plays a vital role in
the regioselectivity of synthesized products in good to excellent
yields. Furthermore, they proposed that the mechanistic path
followed Pd(II)/Pd(IV) catalytic cycle (Scheme-IV).

By using same approach, a stereoselective β-C-H funct-
ionalization was achieved in N-protected amine and peptides
by using 8-aminoquinoline as a directing group in presence of
Pd catalysis was described in 2018 by Kazmaier et al. [41].
The protocol is also suitable to modify C-terminal alanines of
dipeptides (Scheme-V).

Shi et al. [42] demonstrated that diarylhyperiodinium salts
can be effectively used for Csp3-H bond arylation in different
8-aminoquinoline amides in DCE at 120 ºC for 24 h. Based on
KIE they suggested a mechanistic path. Initially, the formation
of palladacycle intermediate was achieved by coordination of
A with Pd catalyst. After that, C-H bond activation followed
by oxidative addition gave C. Later on, reductive elimination
released the desired arylated product and Pd catalyst back into
the catalytic cycle (Scheme-VI).

Afterwards, a practical approach to Pd(OAc)2-catalyzed
arylation of β-C(sp3)–H bonds in α-cyano-α-methyl aliphatic
amides was reported by Watkins & Reddy [43] in the presence
of 8-aminoquinoline, as a removable directing group, using
Na2CO3 and Mn(OAc)2 (Scheme-VII). This protocol appears
to be compatible with electron-donating as well as withdrawing
group and heteroaromatic substituents on aryl iodide. This
method was applied to synthesized α,α-dialkylated acid.

In 2015, Shi et al. [44] first reported 8-aminoquinoline
directed synthesis of aryl alkyl sulfones through sulfonylation
of unactivated Csp3-H bond of alanine substrate. Optimal reaction
conditions involved the use of Pd(OAc)2 (10 mol%), MesCO2H
(20 mol%) as an additive with Ag2CO3 in DCM at 90 ºC (Scheme-
VIII). This methodology synthesized a wide range of aryl alkyl
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sulfone derivatives in good yields. This sulfonylation method
was applied in late-stage modification of natural product
derivatives such as β-citronellol, (–)-santonin and cholic acid.

At the same time, in 2015, Besset et al. [45] described a
palladium catalyzed C-H process for trifluoromethylthiolation
of 8-AQ directed α,α-dialkylamides in presence of Brønsted
acid and an electrophilic –SCF3 reagent. The synthetic utility
of this method was demonstrated by the formation of –SCF3

containing the derivative of biologically active Ibuprofen and
naproxen. Moreover, a reasonable mechanism was proposed
in Scheme-IX. Initially, palladacycle intermediate A forms
via β-Csp3-H-bond activation through the CMD process. After

that, oxidative addition is followed by reductive elimination,
leading to form the trifluoromethylthiolation products.

In 2015, Xu et al. [46] reported the C-H fluorination of
8-aminoquinoline butyramide derivatives in presence of Pd
catalyst to form β-fluorinated carboxylic acid derivatives in
good yields. They proposed a plausible mechanism of reaction,
at the outset [5,5] fused bicyclic palladated intermediate, follo-
wed by oxidative addition. Finally, reductive elimination form
β-fluorinated product (Scheme-X).

By compare, enantioselective CH activation has not expected
many reports probably because of the absence of proper ligands
to control the stereoselectivity in the CH activation reaction.

Shi et al. [44]
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Duan et al. [47] reported Pd-catalyzed enantioselective
asymmetric arylation of 8-aminoquinoline (8-AQ) amides to
synthe-size β,β-diaryl carboxylic derivatives (Scheme-XI). A
plausible mechanism starts with the ligand substitution followed
by oxidative addition to form intermediate C. Finally, reductive
elimination synthesized product. The reaction probably follows
a PdII/IV manifold, which has been most widely accepted for
Pd-catalyzed AQ-directed C–H functionalization reactions.

Chen et al. [48] found that 8-aminoquinoline directed 3-
arylpropanamides underwent coupling with aryl iodide via Pd(0)
catalyst by using BINOL-phosphoramidite (PIII) ligand to form
desired product in good to excellent yield with enantioselec-

tivity up to 95% (Scheme-XII). Supported by DFT calculations,
a feasible mechanism was proposed that followed Pd0/II catalytic
path which is unprecedented for bidentate directing group-
mediated C–H functionalization reactions.

A new approach to synthesize cis-2,3-disubstituted proline
via palladium-catalyzed C(sp3)–H functionalization of unacti-
vated C3 position of proline derivative by using 8-amino-
quinoline as a directing group was described by Bull et al.
[49,50]. Further, another elegant protocol was reported by
Zhang [51] via Pd catalyzed coupling of proline derivative with
diversely substituted aryl iodide in toluene at 110 ºC, leading
to the formation of C-3-substituted proline (Scheme-XIII).

Besset et al. [45]
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The synthetic importance of this methodology is the formation
of pharmaceutically important monoamine reuptake inhibitor.
Then, Schreiber et al. [52-54] described to access bicyclic
azetidine by Pd catalyzed 8-aminoquinoline mediated C(sp3)-H
arylation of proline- and piperidine-based 8-aminoquinoline
amide derivatives. This method proceeds in a one-pot manner
and is effectively applied in pyroglutamic acid substituents.

Recently, a facile alkenylation and alkynylation at the C3
position of proline derivative with aliphatic, aromatic and hetero-
aromatic substituted vinyl iodide in presence of Pd catalyst was
introduced by Verho et al. [55] (Scheme-XIV). A wide range
of C3 alkenylated products formed in good to high yield. More-
over, this method was also applicable on TIPS protected alkynyl
bromide to install an alkynyl group into the pyrrolidine scaffold.

One of the approaches to build C-C glycosidic bonds is
established by 8-aminoquinoline directing group-equipped C-
H functionalization of a sugar C-H bond. In this contest,
Messaoudi et al. [56] reported Pd catalyzed Csp3-H functionali-
zation of β- and α-amidosugar substrates to give 2,3-trans-
diastereoselective C3-arylglycosylamides in good to excellent
yields with diastereoselectivity (Scheme-XV). Aryl iodide
showed high functional group tolerance in this protocol. Based
on the DFT study reasonable mechanistic path is suggested.
Begin with concerted metalation-deprotonation followed by
oxidative addition, then reductive elimination gave pallad-
acycle intermediate IV. Finally, ligand substitution furnished
the desired product and Pd catalyst regenerated into catalytic
path.
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Scheme-XV: C(sp3)–H arylation of glycosides

8-aminoquinoline amides by utilizing L-proline as a ligand
(Scheme-XVI). Based on experimental results authors proposed
a mechanistic path, starting with the formation of palladacycle
intermediate A. After that, oxidative addition followed by
reductive elimination furnished product.

Recently, a remarkable work was reported by Chen et al.
[58] in 2019, by using glycosyl chloride donors in presence
of Pd(OAc)2 catalyst underwent ortho-directed C(sp2)-H glyco-
sylation of aryls and heteroaryls equipped N,N-bidentate
8-aminoquinoline (AQ) directing group to synthesize C-aryl
glycosides. Various directing groups were tested in the C(sp2)–H
functionalization process, showing that the presence of a biden-
tate moiety, as well as an unsubstituted N-amide atom, were
crucial in this reaction, leading to the desired products (Scheme-
XVII).

Recently, in 2021, Chen et al. [59] accessed ortho-directed
C-H glycosylation of urea-and amide-linked bidentate auxi-
liaries equipped aryl amine with glycosyl donors (Scheme-
XVIII). A wide variety of pyranose and furanose worked effi-
ciently in this methodology, synthesizing products in excellent
yield and with regio- and diastereoselectively.

Same group in the same year described the synthesis of
C-vinyl glycoside via C-H glycosylation of unactivated alkene

in presence of Pd catalyst [60] (Scheme-XIX). The γ-C-H
allylamines and δ-C-H homoallylamine derivative coupled
with glycosyl donor, leading to the formation of regio- and
stereoselective products. In 2015, Chen et al. [61] utilized
8-aminoquinoline mediated benzamide in presence of a Pd
catalyst, which underwent mono-selective ortho-β-Csp2-H
alkylation with alkyl iodide, leading to alkylated product. Also
in 2018, N-(8-quinolinyl) benzamide precursor treated under
an electrochemical environment with I2 via palladium catalyzed
β-Csp2-H iodination, generate corresponding product [62,63]
(Scheme-XX).

In 2017, an efficient and generalized strategy for diastereo-
selective trifluoromethylthiolation of acrylamides via Pd catalysis
by using 8-aminoquinoline as a directing group was accom-
plished by Basset et al. [64]. A wide variety of substituted acryl-
amide transformed into trifluromethylthiolated olefins with
Z-selectivity (Scheme-XXI). Based on KIE the authors proposed
the mechanism, which begins with the coordination of the
catalyst with an auxilliary followed by C-H bond activation.
Subsequently, oxidative addition then reductive elimination
released desired product.

An additive free approach to form a variety of isothiazo-
lones has been developed via Pd catalyzed C-H bond activation
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Scheme-XXI: Additive free diastereoselective trifluoromethylthiolation

of acrylamides by using 8-aminoquinoline as a directing group
and an electrophilic SCF3 reagent in 2019 by Besset et al. [65]
(Scheme-XXII). In this, mild reaction conditions require PdCl2

(20 mol%) in DMF at 100 ºC for 16 h. A reaction tolerates a wide
variety of substrate scope including EWG, EDG and hetero-
aromatic substituents on acrylamides to synthesize corresponding
products up to 71% yield.

A generalized method by Engle et al. [66] in which 8-amino-
quinoline serves as a directing group for regiocontrolled proto-
palladation. Under mild reaction conditions. directing group
mediated alkene amide treated with a variety of nitrogen nucleo-
philes in presence of Pd catalyst undergoes hydroamination
in MeCN at 120 ºC to afford corresponding products in good
to excellent yield (Scheme-XXIII).
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In 2017, a facile dual catalysis approach has been devel-
oped by Kumar & Sattar [67] in which 8-aminoquinoline
mediated ferrocene coupled with substituted toluene, underwent
Csp2/Csp3-H functionalization (Scheme-XXIV). This protocol
affords highly functionalized products in good to excellent yield
with chemo- and regio-selectively.

Ferry et al. [68] reported a palladium catalyzed efficient
method for the synthesis of C-aryl/alkenyl glycosides (Scheme-
XXV). In this method, Csp2-H glycosylation occurs at anomeric
position of glycal substrate in presence of Pd catalyst (20 mol%),
AgOAc (1.5 equiv.), K2CO3 (3.6 equiv.) in toluene at 130 ºC
for 16 h. It is noteworthy that this protocol gave access to a
dapagliflozin analogue, which is used to treat type-2 diabetes.
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Conclusion

In this review, N,N-bidentate 8-aminoquinoline auxilliary
proved to be facile for numerous metal-catalyzed C-H bond
transformations. This auxilliary plays a crucial role in metal-
catalyzed β-Csp3/Csp2-functionalization, owing to its versa-
tility. Importantly, 8-aminoquinoline assists the regioselectivity
in functionalized products. However, after using 8-amino-
quinoline the removal of directing group required additional
steps and late-stage modification needed a long template. So,
these pitfalls need to be solved by a chemist with future develop-
ments.
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