
A J CSIAN OURNAL OF HEMISTRYA J CSIAN OURNAL OF HEMISTRY
https://doi.org/10.14233/ajchem.2022.23670

INTRODUCTION

The rapid expansion of industrialization and the increased
urban population have led to a rise in air pollution. The air
pollution due to industrial and automobile exhausts gases that
have caused this pollution. This process has created major health
challenges for living organisms [1]. Therefore, to maintain
sustainable development and balance the ecosystem, there is
a necessity for a clean air supply. On the other hand, with the
continued industrialization, many industries have a drawback
of leakage inflammable and explosive gases into the environ-
ment [2]. Hence, there is an urge to develop accurate real time
gas monitoring sensors to clean and detect pollutants. In recent
times, gas sensors have been used in various fields like mining
industries (for methane detection) [3], fuel cells (for hydrogen
gas detection) [4], fertilizer industries (for NH3 detection) [5]
and oil refineries (for hydrocarbon detection) [6].
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Therefore, a highly sensitive, small size, low cost and reliable
gas sensor development to detect the toxic and explosive gasses
at room temperature with continuous monitoring is the need
of the time [7,8]. For last few decades, researchers have deve-
loped metal oxide semiconductor-based gas sensors to meet
the above requirements [9-14]. Recently, nanomaterial based
gas sensors have shown a higher sensitivity than bulk material.
This is due to their high surface area and small size [15]. Hence
many types of metal oxide based nanomaterial gas sensors
have been developed that include SnO2, TiO2, CuO, Fe2O3,
ZnO and WO3 [15-22]. Among them, the ZnO nanomaterial
has been emerging as one of the promising materials for gas
sensing applications [16,17].

The ZnO nanomaterial is an intrinsic n-type semicon-
ductor having a bandgap of 3.37 eV [14,23]. These ZnO nano-
structure has been synthesized by various methods like chemical
vapour deposition, sol-gel method, RF sputtering, hydrothermal
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and molecular beam deposition [24-31]. It possesses different
morphologies like 1-D, 2-D, and 3-D nanostructures [32-34].
Among them, urchins are 3D nanostructures. The 2D nanostru-
ctures are nanosheets, nanoplates, whereas the nanowire and
nanorods are 1D nanostructures.

Recently, the ZnO composite with polymer materials has
opened up an opportunity for the development of biomaterial-
based gas sensors. A polymer/ZnO composite based hybrid
solar cell was reported by Venkatesan et al. [35]. They synthe-
sized bilayer interfaces of ZnO films with cationic polymer
modification (PEIE) and found that the enhanced device
lifetime for PEIE modified ZnO as compared to pristine ZnO.
However, the drawback of ZnO-based gas sensors is that they
have to be operated in high temperatures of 200 and 500 ºC
for activation. So far, less research work was carried out related
to the development of biomaterial based gas sensors operated
at room temperature.

Our interest has deployed silk cocoons as a biomaterial for
gas sensing applications. Silk cocoon is two protein-polymer
materials, a highly porous network. Many studies have been
reported on silk cocoons as a suitable material for gas sensing
because of their porosity and crystal structure. Naturally, this
silk cocoon possesses a controlled gas permeability property
for the protection of worms inside it. This allows only oxygen
and filters the carbon dioxide inside the matrix [36-38]. In
this work, a simple silk cocoon fiber-ZnO based gas sensor
operated at room temperature is developed. The gas sensing
property was analyzed using LPG gas.

EXPERIMENTAL

Silk cocoons were procured from a central silk board,
Bengaluru, India. Sodium hydroxide and zinc nitrate (Zn(NO3)2·
6H2O) were purchased from Sigma-Aldrich. All chemicals were
of analytical grade and used without any further modification.

Preparation of ZnO and silk cocoon-ZnO composite:
The hydrothermal method was used for the synthesis of ZnO
nanoparticles. A 30 mL 0.5 M Zn(NO3)2·6H2O was added to
30 mL of 5 M NaOH and stirred for 1h. The solution is now
transferred to a Teflon and kept in hydrothermal at temperature
100 ºC for 2 h. The obtained powder was cooled and grinded
for 30 min. A 2 mg of as-synthesized ZnO nanoparticles were
gently grinded for 5 min by adding distilled water to maintain
a slurry formation. To this slurry, a layer of silk cocoon (a
small piece of 1 cm × 1cm size) was added and grinded for
the next 10 min. Thus, the ZnO nanoparticles were deposited
on the surface of the silk cocoon layer and formed silk cocoon-
ZnO micro-nanocomposite. Further, it was dried at room temp-
erature and used for the characterization.

Characterization: The surface morphology and elemental
analysis of ZnO and silk cocoon-ZnO micro-nanocomposite
were observed by scanning electron microscopy (SEM, Hitachi
SU1510). X-ray diffraction (XRD Rigaku IV), analysis of as-
prepared samples were performed using CuKα1 radiation
operated with 2θ diffraction angle at 35 kV and 25 mA from
10 to 80º with a step width of 0.02º. The surface functional
group analysis was performed using Fourier transform infrared
spectroscopy (Perkin-Elmer STA8000). An electrochemical

workstation (Keithley 2400 SMU model) was employed to
analyze the electrical characteristic curves.

RESULTS AND DISCUSSION

Structural analysis: The structural analysis of ZnO and
silk cocoon-ZnO micro-nanocomposite has been analyzed
using the XRD pattern as shown in Fig. 1. It is observed that
ZnO nanoparticle has a hkl plane of (100), (002), (101), (102),
(110), (103), (200), (112) and (201) represents the wurtzite
crystal structure. These XRD patterns peaks were matched to
the JCPDS card number 36-1451. The as-synthesized ZnO
nanoparticles were deposited on the silk cocoon layer using
the doctor-blade technique. It is noticed in the XRD pattern of
silk cocoon--ZnO micro-nanocomposite that along with the
ZnO characteristic peaks, a diffraction peak at 20.6º is also
found, which has an hkl plane of (020) and represents the β-
sheet crystalline structure of the silk cocoon. Thus, it is concl-
uded the formation of silk cocoon-ZnO micro-nanocomposite.
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Fig. 1. XRD patterns of ZnO (black) and Silk-ZnO micro-nanocomposite
(red) representing the crystal structure

The morphology of ZnO and silk cocoon-ZnO micro-
nanocomposite was analyzed using SEM technique. The as-
synthesized ZnO nanoparticles showed a rod-like shape morp-
hology (Fig. 2a). The uniformed shape of ZnO nanoparticles
can be noticed, whereas,Fig. 2b shows the bare silk cocoon
fiber matrix and can observe the fibers with irregular porosity
formation. Using the doctor-blade method the ZnO nanoparticles
were deposited on the silk cocoon fiber matrix. Fig. 2c shows
the ZnO nanoparticles are uniformly deposited on the surface
of fiber-matrix and thus forming a closed network. After the
deposition process, a change in the fiber surface can be noticed
in Fig. 2d. Thus with the proposed method, there is a possibility
of uniform deposition on the surface of the silk cocoon fiber
matrix.

Electrical measurement for gas sensing analysis: The
electrical measurements were performed on ZnO nanoparticles
and silk cocoon-ZnO micro-nanocomposite. Here, LPG gas
was used in this analysis, which was carried out at room temp-
erature. Fig. 3a shows the change of resistance with respect to
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Fig. 2. SEM image of (a) ZnO nanorods, (b) bare silk cocoon fiber matrix, (c) ZnO nanorods deposited on the silk cocoon fiber matrix, and
(d) silk-ZnO micro-nanocomposite and shows the uniform deposition of ZnO nanoparticles on the surface of the silk cocoon fiber
matrix
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Fig. 3. Electrical measurements of ZnO and silk cocoon-ZnO micro-nano composite: (a) resistance - time curve of ZnO and silk cocoon-ZnO
micro nanocomposite and (b) voltage-time curve of silk cocoon-ZnO micro nanocomposite detection agonist the LPG gas

the time when the sample was exposed to LPG gas. It is noticed
that with exposure to gas there is a decrease in resistance in
both ZnO and silk cocoon-ZnO micro nanocomposite. This
indicates the detection of LPG gas. However, it is clearly
observed that the silk cocoon-ZnO micro nanocomposite has

shown a better response than the ZnO nanoparticle. This is due
to that the gas molecules have interacted with the oxygen cites
of silk cocoon-ZnO micro-nanocomposite and thereby change
in the resistance is observed. It is obvious that with the decrease
in resistance, there is an increase in the voltage as shown in
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Fig. 3b. The sharp peak indicates the detection of LPG gas,
where the voltage has been increased from 0.3 mV to 2.8 mV.
Based on the findings, it is notified that the gas molecules are
trapped on the surface of the composite and form a closed
network, which facilitates the transformation of ions or electrons
in the composite matrix.

FTIR studies: Functional group analysis was performed
for silk cocoon-ZnO micro-nanocomposite before and after
exposure to LPG gas. The analyses were performed for the
spectral range from 4000 cm-1 to 400 cm-1. The regions from
2000-400 cm-1 show the fingerprint region of silk-cocoon-ZnO
micro-nanocomposite. Specifically, the absorption peak at
575.9 cm-1 shows the stretching vibration of ZnO in vibration
mode (Fig. 4). The peaks at 1005.3, 1118.1, 1355.5 and 1383.7
cm-1 belong to the stretching vibration of C-N bonds of the
primary amine group of silk fiber and also the secondary alcohol-
plane vibration [39]. It is clearly observed from the spectra
that there is no change in the fingerprint region before and after
LPG gas exposure. This shows that no structural deformation
occurs even after the detection of gas. However, a change in
C-C bond has been noticed in the 2345.2 cm-1, which may be
due to the interaction of gas molecules to the polymer hydrogen
chain of the composite.
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Fig. 4. Functional group (FTIR) spectral analysis of Silk-ZnO composite
before and after gas exposure

Gas response and sensing mechanism: Additionally, the
performance of ZnO nanoparticles and silk cocoon-ZnO micro
nanocomposite against the exposure of LPG gas were also
analyzed. Fig. 5 shows the response (∆R) - time curve of both
ZnO and Silk cocoon-ZnO. It is clearly noticed that an increase
in the response indicates the LPG gas detected and in contract
decrease in response shows no detection of LPG gas. The resp-
onse of ZnO is very low with respect to the silk cocoon-ZnO
micro- nanocomposite (same has been highlighted in the figure).
Though ZnO has the tendency to detect toxic gas, its perfor-
mance has been further increased with silk cocoon composite.

The response (∆R) was calculated using the following
equation:
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where Ra and Rg represent the atmospheric gas and LPG gas
detected resistance, respectively.

Fig. 6 shows the possible gas sensing mechanism of silk
cocoon-ZnO micro-nanocomposite. Generally, the gas sensing
sensitivity relies on the depletion layer of the sample. Here,
when LPG gas is exposed to the surface of silk cocoon-ZnO
micro-nanocomposite, the oxygen molecules is adsorbed on
the surface of the composite in the presence of atmospheric
gas. The oxygen molecules binding to the surface of silk cocoon-
ZnO micro-nanocomposite will extract the electrons from the
valence band to the conduction band [40]. This leads to the
formation of a conduction medium and thereby an increase in
voltage is observed. Further, based on the band bending theory,
the bandgap of silk cocoon-ZnO micro-nanocomposite moves
upwards due to the high electronegativity of oxygen molecules
under atmospheric air [8]. Thus results in the bandgap of 4.18
eV as shown in Fig. 6.
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Fig. 6. Graphical representation of gas sensing mechanism of silk-ZnO
composite before and after LPG gas exposure
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Hence LPG gas is a mixture of more than 20 hydrocarbon
groups. Generally, when the reductive gasses like NH3, HCHO,
and CH4 have interacted with the ZnO surface, there will be a
decrease in the resistance. This is due to the oxygen ions donating
free electrons to the conduction band of ZnO and thereby
decreasing the barrier height. However a contrasting behaviour
can also be noticed that with the interaction with gasses like
NO2 and CO2, there will be an increase in the resistance [8,33].
Based on the results, it is concluded that the NO2 and CO2

molecules of LPG gas have interacted with the surface of the
nanocomposite, and hence thereby a formation of conducting
medium was observed.

In addition, the sensitivity and sensor time response of
the silk cocoon-ZnO micro-nanocomposite was calculated
using the following formula and found to be 0.05 kΩ s-1.

Here, the sensitivity (S) is defined as the ratio change in
the resistance in air and in the gas normalizes to the exposure
time:

R
S M /s

T
= Ω

where R is the change of resistance in atmospheric air and T is
the change with respect to time.

Comparative studies: Table-1 shows the comparison of
the ZnO nanocomposite as gas sensing material for gas sensor.
No much literature report has been found for polymer based
ZnO composite for LPG gas detection at room temperature. It
is clearly observed that the ZnO operated temperature between
200 to 500 ºC has shown a good response. However, silk cocoon-
ZnO micro-nanocomposite based gas sensor has shown high
response than other materials. Thus, present findings concludes
that the proposed method can be used as a gas sensor at room
temperature.

TABLE-1 
COMPARISON TABLE OF VARIOUS ZnO COMPOSITE AS  

GAS SENSING MATERIAL, AGAINST THE LPG GAS 

Sensor Temp. (°C) Response Ref. 
ZnO-CuO (80) 300 87.3 [41] 
ZnO-Al (94) 325 89.0 [42] 
ZnO-Cu (106) 500 0.9 [43] 
ZnO nanorods (46) 340 5.0 [44] 
Porous ZnO nanotubes 200 8.0 [45] 
Silk cocoon-ZnO RT 92.6 This work 
ZnO nanorods RT 61.1 This work 
 

Conclusion

In this work, a gas sensing property of silk cocoon-ZnO
composite at room temperature has been studied. The novel
nanocomposite has been prepared using a simple doctor blade
method. The ZnO nanoparticles were synthesized using hydro-
thermal methods and obtained rod-like morphology. Using
band bending theory, we have analyzed the barrier height of
silk cocoon-ZnO micro-nanocomposite after sensing the gas.
These results indicated that with the detection of LPG gas there
is an increase in the voltage. Thus, based on the present findings
this approach is suitable for industries like mining, fuel cells,
oil refiners and fertilization industries.
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