

Synthesis of Dibenzo[b,i]xanthene-5,7,12,14(13H)-tetraone using p-Toluenesulfonic Acid as Catalyst

KITTAPPA GUNASUNDARI®, MANICKAM PRAMESH^{*®}, SELVARAJ JAYANTHI[®], MOORTHY VETRISELVAN[®] and SREEDHARAN HELEN PERCI[®]

PG and Research Department of Chemistry, A.V.V.M. Sri Pushpam College, Poondi-613503, India

*Corresponding author: E-mail: mprameshchemistry@gmail.com

Received: 13 December 2021;

Accepted: 3 January 2022;

uary 2022; Published online: 20 April 2022;

AJC-20763

This methodology involves synthesis of dibenzo xanthene tetraone by one pot multicomponent reaction of 2-hydroxy-1,4-naphthoquinone and pyrazole aldehyde in presence of *p*-toluenesulfonic acid (PTSA) as catalyst in ethylene glycol at 75-95 °C. This protocol provides excellent yields (80-90%) involving simple workup procedures and purification techniques. By using several spectroscopic techniques the compounds were characterized.

Keywords: Xanthene, Pyrazole aldehydes, 2-Hydroxy-1,4-naphthoquinone, p-Toluenesulfonic acid.

INTRODUCTION

Modern discovery of drugs through synthetic organic chemistry involves multicomponent reactions (MCRs). This strategy engages synthesis of new products by combining two or more reactants imbibing most of constituents of all the reactants [1]. A large number of new drug like molecules are synthesized by this technique which are proved to have many biological applications. This technique is more advantageous over the traditional multi-step synthesis in different aspects like low reaction time, producing minimal waste, cost effective and have high atom economy utilizing easily available, low costs solvents and catalysts.

To assist the medicine discovery against COVID-19, the binding affinity of xanthene-triazole-chloroquinoline/xanthenechloroquinoline is studied against main proteases of SARS-CoV-2 and found to be potential in inhibition. Xanthene chore is proved to inhibit corona virus [2]. The compounds having xanthene moiety have high pharmacological properties like antimicrobial, antimalarial, antibacterial, antiviral, antitumor, antiparasitic, cytotoxic, anti-inflammatory, analgesic, antidiabetic, antihistaminic, antipsychotic, anticonvulsant [3], antioxidant [4], antifungal [5] activities and used as sensitizers in photodynamic therapy [6]. Xanthenes are used as food dyes and for visualization of biomolecules as chemical probes [7]. Literature survey reveals several methods for the synthesis of xanthenes [8-22].

EXPERIMENTAL

The chemicals were purchased from Sigma-Aldrich USA. The reaction was monitored by TLC using precoated aluminium sheets of silica gel 60 F_{254} (Merck, Germany) of 0.2 mm thickness. Column chromatography were performed with silica gel of mesh size (230-400 Merck).

¹H NMR and ¹³C NMR was recorded on a Bruker (300 MHz and 75 Hz) spectrometer using CDCl₃ solvent. An FTIR spectrum was recorded on a Perkin-Elmer Spectrometer of the range (4000-400 cm⁻¹) using KBr pellet. The Q-Tof-Mass spectrometer was utilized to measure HRMS.

Synthesis of compounds 4a-j: Pyrazole aldehyde (1 equiv.) and 2-hydroxy-1,4-naphthoquinone (2 equiv.) were refluxed in the presence of *p*-toluenesulfonic acid (PTSA) as catalyst in ethylene glycol (10 mL) at 90 °C for 5 h. The residue was washed with cold water and stirred for 10 min, a brown precipitate was filtered under suction (Scheme-I). The crude product was purified using column chromatography on silica gel with ethylacetate:petroleum ether (50:50)] to afford pure benzoxanthene tetraone.

13-(1,3-Diphenyl-1H-pyrazol-4-yl)-12H-dibenzo[*b,i*]**xanthene-5,7,12,14(13H)-tetraone (4a):** Red solid; R_f= 0.51 (50% ethyl acetate); ¹H NMR: (300 MHz, CDCl₃, δ ppm): 3.94 (s, 1H), 7.42-7.84 (m, 19H); ¹³C NMR (75 MHz, CDCl₃): 35.0, 117.1, 119.8, 123.1, 126.3, 127.4, 128.75, 129.1, 129.4, 130.9, 131.9, 133.1, 135.1, 139.5, 150.0, 160.7, 178.1, 183.2;

This is an open access journal, and articles are distributed under the terms of the Attribution 4.0 International (CC BY 4.0) License. This license lets others distribute, remix, tweak, and build upon your work, even commercially, as long as they credit the author for the original creation. You must give appropriate credit, provide a link to the license, and indicate if changes were made.

FT-IR (KBr, ν_{max} , cm⁻¹): 3424, 3336, 3249, 2949, 2870, 2365, 1650, 1516, 1457, 1340; HRMS (ESI) [M]⁺*m/z*: 560.14; Anal. calcd. (found) % for C₃₆H₂₀N₂O₅: C, 77.14 (77.23); H, 3.60 (3.36); N, 5.00 (4.93); O, 14.27 (14.32).

13-(3-(4-Chlorophenyl)-1-phenyl-1H-pyrazol-4-yl)- 12H-dibenzo[*b,i***]xanthene-5,7,12,14(13H)-tetraone (4b):** Reddish solid; $R_f = 0.46$ (50% ethyl acetate); m.p.: 250-252 °C; ¹H NMR (300 MHz, CDCl₃, δ ppm): 4.17 (s, 1H), 7.26-8.37 (m,18H); ¹³C NMR (75 MHz, CDCl₃) δ : 40.4, 110.1, 110.9, 119.2, 119.4, 119.6, 122.1, 123.2, 123.7, 127.5, 127.9, 128.9, 129.0, 129.2, 129.7, 130.7, 134.3, 134.6, 134.7, 139.4, 143.07, 146.2, 150.5, 160.0, 180.0, 182.2; FT-IR (KBr, v_{max}, cm⁻¹): 3433, 3148, 3065, 2929, 1669, 1597, 1510, 1452, 1354, 1249, 1105, 1044, 755, 689, 657; HRMS (ESI) [M]⁺*m/z*: 594.10; Anal. calcd. (found) % for C₃₆H₁₉N₂O₅Cl: C, 72.67 (71.55); H, 3.22 (3.11); Cl, 5.96 (6.00); N, 4.71 (4.13); O, 13.44 (12.94).

13-(3-(4-Bromophenyl)-1-phenyl-1*H*-**pyrazol-4-yl)-12***H***-dibenzo**[*b,i*]**xanthene-5,7,12,14(13***H***)-tetraone (4c):** Reddish brown solid; R_f = 0.40 (50% ethyl acetate); m.p.: 250-252 °C; ¹H NMR (300 MHz, CDCl₃, δ ppm):3.95 (s, 1H), 7.45-7.78 (m,18H); ¹³C NMR (75 MHz, CDCl₃) δ: 35.1, 117.4, 120.6, 123.0, 123.1, 126.1, 126.8, 128.3, 129.3, 130.8, 131.8, 132.0, 132.1, 135.0, 139.7, 149.9, 160.8, 178.2, 183.0; FT-IR (KBr, v_{max}, cm⁻¹): 3431, 3343, 2915, 2856, 1634, 1480, 1344, 1222, 1083, 1015, 762, 675; HRMS (ESI) [M]⁺ *m/z*: 638.05; Anal. calcd. (found) % for C₃₆H₁₉N₂O₅Br: C, 67.62 (67.55); H, 3.00 (2.55); Br, 12.50 (12.30); N, 4.38 (3.99); O, 12.51 (12.11).

13-(3-(4-Methoxyphenyl)-1-phenyl-1*H***-pyrazol-4-yl)-12***H***-dibenzo[***b***,***i***]xanthene-5,7,12,14(13***H***)-tetraone (4d): Red solid; R_f = 0.48 (50% ethyl acetate); m.p.: 250-252 °C; ¹H NMR (300 MHz, CDCl₃, \delta ppm): 3.81 (s, 3H), 3.93 (s, 1H), 7.03 (d, 2H,** *J* **= 7.61), 7.41-7.74 (m, 16H); ¹³C NMR (75 MHz, CDCl₃) \delta: 35.1, 117.2, 120.5, 123.0, 123.1, 126.2, 126.8, 128.3, 129.3, 130.8, 131.8, 132.0, 132.1, 135.0, 139.7, 149.9, 160.8, 178.2, 183.0; FT-IR (KBr, v_{max}, cm⁻¹): 3431, 3343, 2915, 2856, 1634, 1480, 1344, 1222, 1083,1015, 762, 675; HRMS (ESI) [M]⁺** *m/z***: 590.15; Anal. calcd. (found) % for C₃₇H₂₂N₂O₆: C, 75.25 (75.05); H, 3.75 (3.60); N, 4.74 (4.50); O, 16.25 (16.11).**

13-(3-(4-Ethoxyphenyl)-1-phenyl-1*H*-pyrazol-4-yl)- **12H-dibenzo**[*b*,*i*]xanthene-5,7,12,14(13H)-tetraone (4e): Red solid; $R_f = 0.44$ (50% ethyl acetate); m.p.: 250-252 °C; ¹H NMR (300 MHz, CDCl₃, δ ppm): 1.34 (t, 3H *J* = 8.05), 3.96 (s, 1 H), 4.05 (q, 2H, *J* = 7.89), 7.08 (d, 2H, *J* = 7.51), 7.43-7.71 (m, 16H); ¹³C NMR (75 MHz, CDCl₃) δ : 14.8, 35.1, 64.6, 114.9, 117.2, 119.9, 120.5, 123.0, 124.6, 126.2, 126.8, 128.1, 129.3, 130.8, 131.8, 135.0, 139.7, 149.9, 159.4, 160.8, 178.2, 183.0; FT-IR (KBr, v_{max} , cm⁻¹): 3431, 3343, 2915, 2856, 1634, 1480, 1344, 1222, 1083, 1015, 762, 675; HRMS (ESI) [M]⁺ *m/z*: 604.16; Anal. calcd. (found) % for C₃₈H₂₄N₂O₆: C, 75.49 (75.35); H, 4.00 (3.88); N, 4.63 (4.51); O, 15.88 (15.23).

13-(1-(2,4-Dinitrophenyl)-3-phenyl-1*H*-pyrazol-4-yl)-**12H-dibenzo**[*b*,*i*]**xanthene-5,7,12,14(13H)-tetraone (4f):** Dark brown solid; $R_f = 0.38$ (50% ethyl acetate); m.p.: 250-252 °C; ¹H NMR (300 MHz, CDCl₃, δ ppm): 3.94 (s, 1H), 7.49-7.84 (m, 14 H), 8.13 (d, 1H, *J* = 7.85), 8.75 (d, 1H, *J* = 7.33), 8.81 (d, 1H, *J* = 7.66); ¹³C NMR (75 MHz, CDCl₃) δ : 335.1, 117.2, 120.5, 120.6, 123.0, 124.7, 126.8, 127.5, 128.7, 129.2, 130.8, 131.8, 133.0, 135.0, 136.1, 142.1, 146.3, 149.9, 160.8, 178.2, 183.0; FT-IR (KBr, v_{max}, cm⁻¹): 3431, 3343, 2915, 2856, 1634, 1480, 1344, 1222, 1083, 1015, 762, 675; HRMS (ESI) [M]⁺ *m/z*: 650.11; Anal. calcd. (found) % for C₃₆H₁₈N₄O₉: C, 66.47 (66.33); H, 2.79 (2.52); N, 8.61 (8.12); O, 22.13 (22.01).

13-(3-(4-Chlorophenyl)-1-(2,4-dinitrophenyl)-1*H***-pyrazol-4-yl)-12***H***-dibenzo[***b,i***]xanthene-5,7,12,14(13***H***)tetraone (4g):** Reddish brown solid; R_f = 0.33 (50% ethyl acetate); m.p.: 250-252 °C; ¹H NMR (300 MHz, CDCl₃, δ ppm): 3.95 (s, 1H), 7.52-7.98 (m, 13 H), 8.14 (d, 1H, *J* = 7.90), 8.77 (d, 1H, *J* = 7.30), 8.98 (d, 1H, *J* = 7.69); ¹³C NMR (75 MHz, CDCl₃) δ: 35.1, 117.2, 120.5, 120.6, 123.0, 124.7, 126.8, 127.6, 128.9, 129.3, 130.8, 131.1, 131.8, 134.3, 135.0, 136.1, 142.1, 146.3, 149.9, 160.8, 178.2, 183.0; FT-IR (KBr, v_{max}, cm⁻¹): 3431, 3343, 2915, 2856, 1634, 1480, 1344, 1222, 1083, 1015, 762, 675; HRMS (ESI) [M]⁺ *m/z*: 684.07; Anal. calcd. (found) % for C₃₆H₁₇N₄O₉Cl: C, 63.12 (63.01); H, 2.50 (2.32); Cl, 5.18 (5.03); N, 8.18 (7.89); O, 21.02 (20.98).

13-(3-(4-Bromophenyl)-1-(2,4-dinitrophenyl)-1*H***pyrazol-4-yl)-12***H*-**dibenzo**[*b,i*]**xanthene-5,7,12,14(13***H*)**tetraone (4h):** Dark red solid; $R_f = 0.25$ (50% ethyl acetate); m.p.: 250-252 °C; ¹H NMR (300 MHz, CDCl₃, δ ppm): 3.92 (s, 1H), 7.55-7.78 (m, 13 H), 8.11 (d, 1H, *J* = 7.65), 8.65 (d, 1H, *J* = 7.33), 8.81 (d, 1H, *J* = 7.66); ¹³C NMR (75 MHz, CDCl₃) δ : 35.1, 117.2, 120.5, 120.6, 123.0, 123.1, 124.7, 126.8, 127.6, 128.3, 130.8, 131.8, 132.0, 132.1, 135.0, 136.1, 142.1, 146.3, 149.9, 160.8, 178.2, 183.0; FT-IR (KBr, v_{max} , cm⁻¹): 3431, 3343, 2915, 2856, 1634, 1480, 1344, 1222, 1083, 1015, 762, 675; HRMS (ESI) [M]⁺ *m/z*: 728.02; Anal. calcd. (found) % for C₃₆H₁₇N₄O₉Br: C, 59.28 (59.13); H, 2.35 (2.11); Br, 10.95 (10.14); N, 7.68 (7.28); O, 19.74 (19.34).

13-(1-(2,4-Dinitrophenyl)-3-(4-methoxyphenyl)-1*H*pyrazol-4-yl)-12*H*-dibenzo[*b*,*i*]xanthene-5,7,12,14(13*H*)tetraone (4i): red solid; $R_f = 0.35$ (50% ethyl acetate); m.p.: 250-252 °C; ¹H NMR (300 MHz, CDCl₃, δ ppm): 3.81 (s, 3H), 3.94 (s, 1H), 7.05 (d, 2 H, J = 6.32), 7.59-7.73 (m, 11 H), 8.13 (d, 1H, J = 7.66), 8.75 (d, 1H, J = 7.58), 8.81 (d, 1H, J = 6.96); ¹³C NMR (75 MHz, CDCl₃) δ: 35.1, 55.8, 114.8, 117.2, 120.5, 123.0, 124.7, 125.3, 126.8, 128.5, 130.8, 131.8, 135.0, 136.1, 142.1, 149.9, 160.6, 160.8, 178.2, 183.0; FT-IR (KBr, v_{max} , cm⁻¹): 3431, 3343, 2915, 2856, 1634, 1480, 1344, 1222, 1083, 1015, 762, 675; HRMS (ESI) [M]⁺ m/z: 680.12; Anal. calcd. (found) % for C₃₇H₂₀N₄O₁₀: C, 65.30 (65.12); H, 2.96 (2.56); N, 8.23 (8.13); O, 23.51 (23.48).

13-(1-(2,4-Dinitrophenyl)-3-(4-ethoxyphenyl)-1*H***pyrazol-4-yl)-12***H*-**dibenzo**[*b,i*]**xanthene-5,7,12,14(13***H*)**tetraone (4j):** Red solid; $R_f = 0.30$ (50% ethyl acetate); m.p.: 250-252 °C; ¹H NMR (300 MHz, CDCl₃, δ ppm): 1.34 (t, 3H, 3.34), 3.91 (s, 1H), 4.05 (q, 2H, 12.50), 7.15 (d, 2H, *J* = 6.38), 7.60-7.79 (m, 11 H), 8.17 (d, 1H, *J* = 7.64), 8.62 (d, 1H, *J* = 7.60), 8.85 (d, 1H, *J* = 6.87); ¹³C NMR (75 MHz, CDCl₃) δ : 14.8, 35.1, 64.6, 114.9, 117.2, 120.5, 120.6, 123.0, 124.7, 126.8, 127.6, 128.1, 130.8, 131.8, 135.0, 136.1, 142.1, 146.3, 149.9, 159.4, 160.8, 178.2, 183.0; FT-IR (KBr, v_{max} , cm⁻¹): 3431, 3343, 2915, 2856, 1634, 1480, 1344, 1222, 1083, 1015, 762, 675; HRMS (ESI) $[M]^+ m/z$: 694.13; Anal. calcd. (found) % for $C_{38}H_{22}N_4O_{10}$: C, 65.71 (65.66); H, 3.19 (3.09); N, 8.07 (7.89); O, 23.03 (22.95).

RESULTS AND DISCUSSION

Herein, a new methodology for the synthesis of dibenzoxanthene tetraone is adopted. The best results were obtained while using *p*-TSA catalyst and ethylene glycol solvent. It was found that optimum temperature for the reaction was 90 °C. Optimizing the reaction conditions, good yields of the desired products (78-90%) were obtained. For the synthesis of 13-(1,3-diphenyl-1*H*-pyrazol-4-yl)-12*H*-dibenzo-[*b*,*i*]xanthene-5,7,12,14(13*H*)-tetraone, comparative analysis of temperature, time and yield are shown in Table-1. In aim of optimize the reaction, we carried out the reaction with a variety of catalysts and solvents (Table-2). All the synthesized products were characterized with spectroscopic techniques thoroughly.

The ¹H NMR spectrum of compound **4b** exhibited a singlet at 4.17 ppm was attributed to pyran ring proton. The one proton

TABLE-1 SYNTHESIS OF DIBENZOXANTHENE TETRAONE DERIVATIVES						
Entry	Pyrazole aldehyde	Product (4a-j)	Time (h)	Temp. (°C)	Isolated yield (%)	
1	N-N CHO 2a		4.0	75	90	
2		$ \underbrace{ \begin{pmatrix} \circ & \circ \\ + & \circ \\ \circ & + \\ \circ & + \\ \circ & + \\ & \circ & & \circ & + \\ & \circ & & \circ & + \\ & & \circ & & \circ & + \\ & \circ & & \circ & & \\ & & \circ & & & & & \\ & \circ & & & &$	4.5	78	88	
3	$ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$ \begin{array}{c} & & & \\ & & & \\ & & & \\ & & $	5.0	77	91	
4	$\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$	O O OCH ₃ O O OCH ₃ O OCH ₃	5.5	82	80	

5	$ \begin{array}{c} \swarrow \\ & & \\ $	$ \begin{array}{c} $	4.5	80	88
6	$ \begin{array}{c} O_2N \\ & \downarrow \\ & \downarrow \\ N-N \\ & \downarrow \\ CHO \\ 2f \end{array} $	$ \begin{array}{c} $	6.0	88	82
7	O_2N NO_2 N-N CHO 2g	$\begin{array}{c} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 \\$	5.5	90	78
8	O_2N N-N CHO 2h	$O_{2N} O_{N-N} O_{2N} O_{2N}$	6.0	92	75
9	O_2N N-N CHO N-N CHO 2i	$O_{2N} = O_{1} O$	5.5	95	85
10	O_2N V V V V V V V V	$\begin{array}{c} 0 & 0 \\$	6.0	91	83

singlet at 7.76 ppm was assigned to pyrazole ring proton. The peaks at 7.26-8.37 ppm were attributed to aromatic protons. In the ¹³C NMR spectra, the peaks range between 110-150 ppm was assigned to aromatic carbon. The peak at 160 ppm was attributed to C-O-C group in xanthene ring. The peaks at

180 ppm and 182 ppm were assigned to four carbonyl carbons in xanthene ring. The mass spectrum revealed the molecular ion peak (M^+) at m/z 594. The formation of the product was further confirmed by elemental analysis.

TABLE-2 CATALYSTS SCREENING FOR THE SYNTHESIS OF DIBENZO[b,i]XANTHENE-5,7,12,14(13 <i>H</i>)-TETRAONE							
Catalyst Solvent Time (h) Yield (%)							
-	Ethanol	24	5				
Acetic acid	Ethanol	10	50				
$Yb(OTf_3)$	Ethanol	12	55				
Boric Acid	Ethanol	11	60				
I_2	Ethanol	08	57				
CAN	Ethanol	09	40				
InCl3	Ethanol	10	35				
ZrOCl ₂ ·8H ₂ O	Ethanol	8.5	40				
PTSA	Ethanol	6	75				
PTSA	Ethylene glycol	4-5	78-90				

Conclusion

After preliminary examinations, it was found that refluxing pyrazole aldehyde and 2-hydroxy-1,4-naphthalenedione mixture (dissolved in ethylene glycol), in presence of *p*-toluenesulfonic acid (PTSA) catalyst for 4 h at 85 °C yielded 85% of desired product 13-(1,3-diphenyl-1*H*-pyrazol-4-yl)-12*H*-dibenzo[*b*,*i*]-xanthene-5,7,12,14(13*H*)-tetraone (**4a**). Under similar conditions, the reaction with various pyrazole aldehydes were conducted and obtained the respective 13-aryl-5*H*-dibenzo[*b*,*i*]xanthene-5,7,12,14(13*H*)-tetraones (**4b**-**j**) in good yields. The current methodology provides a simple, easy reaction and workup procedure using easily available solvents, readily available, low cost catalyst and utilizing the simple equipments.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interests regarding the publication of this article.

REFERENCES

1. B.A.D. Neto, R.O. Rocha and M.O. Rodrigues, *Molecules*, **27**, 132 (2022);

https://doi.org/10.3390/molecules27010132

- V. Kumar Vishvakarma, B. Nand, V. Kumar, K. Kumari, I. Bahadur and P. Singh, *Comput. Toxicol.*, 16, 100140 (2020); <u>https://doi.org/10.1016/j.comtox.2020.100140</u>
- M. Maia, D.I.S.P. Resende, F. Durães, M.M.M. Pinto and E. Sousa, *Eur. J. Med. Chem.*, 210, 113085 (2021); <u>https://doi.org/10.1016/j.ejmech.2020.113085</u>

- L.A. Adeniran, A.L. Ogundajo and A.O.T. Ashafa, *South Afr. J. Bot.*, 135, 330 (2020); https://doi.org/10.1016/j.sajb.2020.08.023
- R.M. Naidu Kalla, M. Akkarapalli and H. Osman, J. Drug Metab. Toxicol., 5, 3 (2014);
- https://doi.org/10.4172/2157-7609.1000167

 6.
 A. Rahmati, Chin. Chem. Lett., 21, 761 (2010); https://doi.org/10.1016/j.cclet.2010.02.014
- 7. F. Nemati and S. Sabaqian, J. Saudi Chem. Soc., 21(suppl. 1), S383 (2017);
- https://doi.org/10.1016/j.jscs.2014.04.009
- N.G. Khaligh and F. Shirini, *Ultrason. Sonochem.*, 22, 397 (2015); https://doi.org/10.1016/j.ultsonch.2014.06.020
- A. Chaudhary and J.M. Khurana, *Curr. Org. Synth.*, 15, 341 (2018); https://doi.org/10.2174/1570179414666171011162902
- J.V. Madhav, B.S. Kuarm and B. Rajitha, *ARKIVOC*, 204 (2008); https://doi.org/10.3998/ark.5550190.0009.222
- 11. A. Bazgir, Z.N. Tisseh and P. Mirzaei, *Tetrahedron Lett.*, **49**, 5165 (2008);
- https://doi.org/10.1016/j.tetlet.2008.06.077
 S.U. Bhat, R.A. Naikoo, M.A. Mir, R.A. Bhat, M.A. Malla and R. Tomar, *J. Mater.*, 2016, 7908584 (2016); https://doi.org/10.1155/2016/7908584
- S.M. El-Dafrawy, R.S. Salama, S.A. El-Hakam and S.E. Samra, J. Mater. Res. Technol., 9, 1998 (2020); https://doi.org/10.1016/j.jmrt.2019.12.032
- G.H. Mahdavinia, S. Rostamizadeh, A.M. Amani and Z. Emdadi, Ultrason. Sonochem., 16, 7 (2009); <u>https://doi.org/10.1016/j.ultsonch.2008.05.010</u>
- 15. Z.N. Tisseh, S.C. Azimi, P. Mirzaei and A. Bazgir, *Dyes Pigments*, **79**, 273 (2008);
- https://doi.org/10.1016/j.dyepig.2008.04.001
 Y. Li, Y. Zhao, T. Yu, W. Su, R. Wang, H. Ma and L. Qian, *Synth. Met.*, 277, 116771 (2021);
- https://doi.org/10.1016/j.synthmet.2021.116771 17. D. Khaki, H. Namazi and S.M. Amininasab, *React. Funct. Polym.*, **158**,
- 104780 (2021); https://doi.org/10.1016/j.reactfunctpolym.2020.104780
- P. Bansal, N. Kaur, C. Prakash and G.R. Chaudhary, *Vacuum*, **157**, 9 (2018); <u>https://doi.org/10.1016/j.vacuum.2018.08.018</u>
- M.A. Bhat, M.A. Al-Omar, A.M. Naglah and A.A. Khan, J. Saudi Chem. Soc., 24, 425 (2020); https://doi.org/10.1016/j.jscs.2020.03.006
- R.S. Salama, S.M. El-Bahy and M.A. Mannaa, Colloids Surf. A Physicochem. Eng. Asp., 628, 127261 (2021); https://doi.org/10.1016/j.colsurfa.2021.127261
- U. Kusampally, R. Varala, C.R. Kamatala and S. Abbagoni, *Chem. Data Collect.*, **20**, 100201 (2019); https://doi.org/10.1016/j.cdc.2019.100201
- H. Naeimi and Z. Ansarian, J. Taiwan Inst. Chem. Eng., 85, 265 (2018); https://doi.org/10.1016/j.jtice.2018.01.047