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INTRODUCTION

Heterocyclic compounds play a major role to produce diverse
biologically active compounds during the drug development
process [1]. The heterocyclic moiety provides the opportunity
to design target molecules with suitable therapeutic potentials
[2]. Hence, nitrogen containing heterocyclic compounds like
pyrimidines have received significant attention due to their wide
spectrum of biological activities such as anticancer, antitubercular,
anthelmintic, antidiabetic, antihypertensive, anticonvulsant,
antibacterial, antifungal, anti-Alzheimer, antiviral, analgesic, anti-
inflammatory activities, etc. [3-7]. Pyrimidine is a six-membered
heterocyclic compound that contains two nitrogen atoms present
at positions 1 and 3 of the ring system.

Various drugs used clinically that contain pyrimidine scaffold
include sulphamidine (antibacterial), cyprodinil (antifungal),
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fluorouracil (antineoplastic), propylthiouracil (antithyroid),
azacitidine (antineoplastic), enazadrem (antipsoriatic), etc. [8-
10]. Ceritinib was identified as a potential antitubercular agent
that contains a pyrimidine nucleus in its chemical structure
(Fig. 1) [11]. Tuberculosis (TB) is an infectious disease caused
by Mycobacterium tuberculosis, which remains a serious health
problem worldwide [12]. The treatment of TB with first-line
antitubercular drugs like isoniazid, rifampicin, pyrazinamide,
ethambutol and their combination therapy requires 6-9 months
to complete dose but that result in several side effects [13]. So,
the development of new drugs containing pyrimidine moiety
with improved therapeutic strategies is needed to improve the
potential of drug treatment of TB [14].

In present work, the microwave irradiated synthetic
technique is applied to synthesize pyrimidine derivatives [15].
All the reactions were performed under optimized reaction
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conditions. Microwave-induced synthetic protocol is mainly
considered an environment-friendly process that affords cleaner
products with higher yield, selectivity, reduced reaction period,
efficient rate of the reaction and also reduces the environmental
pollution [16-18].

Thus, the synthesis of pyrimidine derivatives is carried
under microwave irradiation by reacting the equimolar mixture
of ethyl cyanoacetate, aryl aldehydes and guanidine [19]. The
formation of the pyrimidine derivatives involves the sequential
reaction mechanism such as Knoevenagel condensation of
ethyl cyanoacetate with aryl aldehydes followed by Michael
addition of guanidine and intramolecular cyclization in presence
of ethanolic NaOH solution [20]. The characterization of newly
synthesized compounds is carried out by spectral data of FT-
IR, 1H NMR and LC-MS. The titled compounds are subjected
to in vitro screening for their antitubercular activity [21].

EXPERIMENTAL

The reagents, chemicals and solvents used for the current
experimental work were of commercial grade. The melting
points of the synthesized compounds were determined by the
open capillary tube method and are found uncorrected. TLC
was monitored to check the purity of the synthesized comp-
ounds and also to determine the completion of the reaction.
Ethyl acetate and n-hexane were used as mobile phase. The
IR spectra of the titled compounds were recorded on FT-IR

Spectrophotometer, model IR Affinity-1 (SHIMADZU) using
KBr powder. 1H NMR spectra of the selected compounds were
recorded on FT NMR spectrometer; model Advance-II (Bruker),
(400 MHz) using tetramethylsilane (TMS) as an internal standard.
Mass spectral data was obtained by using electrospray ionization
(ESI) techniques.

General synthesis of pyrimidine derivatives (4a-j): An
equimolar mixture of aryl aldehydes (1a-j), ethyl cyanoacetate
(2) and guanidine (3) in ethanolic NaOH solution was allowed
to reflux under microwave irradiation at power level-2 (210 W)
for 7-12 min. The completion of the reaction was checked by
TLC. After completion of the reaction, the reaction mixture
was poured into ice-cold water to get pyrimidine derivatives
(4a-j) as solid product (Scheme-I).

2-Amino-4-oxo-6-phenyl-4,5-dihydropyrimidine-5-
carbonitrile (4a): White solid; yield 65% (conventional), 74%
(microwave); m.p.: 170-172 ºC; FT-IR (KBr, νmax, cm–1): 3422
(-NH2), 3018 (C-H, Ar), 2200 (-CN), 1660 (-C=O); 1H NMR
(400 MHz, CDCl3) δ (ppm): 6.8-7.4 (m, 5H, aromatic-H), 8.47
(s, 2H, NH2); 13C NMR (101 MHz, CDCl3) δ: 163, 200, 33.7,
164.6, 115.3, 134.0, 129.2, 128.9, 131.1, 128.9, 129.2; MS (ESI),
m/z (%): 212.21 [M+1]; Anal. calcd. (found) % for C11H8N4O:
C, 62.26 (62.23); H, 3.80 (3.78); N, 26.40 (26.38); O, 7.54 (7.52).

2-Amino-4-oxo-6-p-tolyl-4,5-dihydropyrimidine-5-
carbonitrile (4b): White solid; yield 69% (conventional), 74%
(microwave); m.p.: 172-174 ºC; FT-IR (KBr, νmax, cm–1): 3327.27
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(-NH2), 3026 (C-H, Ar), 2960 (C-H aliphatic), 2190 (-CN),
1663 (-C=O); 1H NMR (400 MHz, CDCl3) δ (ppm): 4.40 (s,
3H, -CH3), 7.10-7.21 (m, 4H, aromatic-H), 9.98 (s, 2H, NH2);
13C NMR (101 MHz, CDCl3) δ: 163, 200, 33.7, 164.6, 115.3,
131.0, 129.1, 140.7, 129.1, 129.2, 129.2, 24.3; MS(ESI), m/z
(%): 226.23 [M+1]; Anal. calcd. (found) % for C12H10N4O:
C, 63.71 (63.70); H, 4.46 (4.44); N, 24.76 (24.74); O, 7.07
(7.04).

2-Amino-6-(4-methoxyphenyl)-4-oxo-4,5-dihydro-
pyrimidine-5-carbonitrile (4c): White solid; yield 58%
(conventional), 67% (microwave); m.p.: 180-183 ºC; FT-IR
(KBr, νmax, cm–1): 3423 (-NH2), 3034 (C-H, Ar), 2856 (-OCH3),
2220 (-CN), 1668 (-C=O); 1H NMR (400 MHz, CDCl3) δ
(ppm): 6.42 (s, 3H, -OCH3), 7.09-7.44 (m, 4H, aromatic-H),
8.20 (s, 2H, NH2); 13C NMR (101 MHz, CDCl3) δ: 163, 200,
33.7, 164.6, 115.3, 126.3, 130.2, 114.4, 163.0, 114.4, 130.2,
55.2; MS (ESI), m/z (%): 242.23 [M+1]; Anal. calcd. (found)
% for C12H10N4O2: C, 59.50 (59.48); H, 4.16 (4.14); N, 23.13
(23.12); O, 13.21 (13.20).

2-Amino-6-(2-nitrophenyl)-4-oxo-4,5-dihydro-
pyrimidine-5-carbonitrile (4d): Yellow solid; yield 65%
(conventional), 73% (microwave); m.p.: 162-164 ºC; FT-IR
(KBr, νmax, cm–1): 3323 (-NH2), 2974 (C-H, Ar), 1687 (-CO),
2226 (-CN), 1573, 1344 (Ar-NO2); 1H NMR (400 MHz, CDCl3)
δ (ppm): 7.33-7.42 (m, 4H, aromatic-H), 8.26 (s, 2H, NH2);
13C NMR (101 MHz, CDCl3) δ: 163, 200, 32.7, 164.6, 115.3,
126.3, 148.9, 121.2, 132.0, 135.0, 130.1; MS(ESI), m/z (%):
285.43 [M+1]; Anal. calcd. (found) % for C11H7N5O3: C, 53.10
(53.08); H, 8.71 (8.70); N, 25.33 (25.32); O, 12.86 (12.84).

2-Amino-6-(4-nitrophenyl)-4-oxo-4,5-dihydro-
pyrimidine-5-carbonitrile (4e): Yellow solid; yield 72%
(conventional), 84% (microwave); m.p.: 160-162 ºC; FT-IR
(KBr, νmax, cm–1): 3363 (-NH2), 2987 (C-H, Ar), 2226 (-CN),
1738 (-C=O), 1575, 1342 (Ar-NO2); 1H NMR (400 MHz, CDCl3)
δ (ppm): 7.36-7.50 (m, 4H, aromatic-H), 8.42 (s, 2H, NH2);
13C NMR (101 MHz, CDCl3) δ: 163, 200, 33.7, 164.6, 115.3,
140.3, 130.1, 121.2, 150.7, 121.2, 130.1; MS(ESI), m/z (%):
285.43 [M+1]; Anal. calcd. (found) % for C11H7N5O3: C, 53.10
(53.08); H, 8.71 (8.70); N, 25.33 (25.32); O, 12.86 (12.84).

2-Amino-6-(4-fluorophenyl)-4-oxo-4,5-dihydro-
pyrimidine-5-carbonitrile (4f): Brown solid; yield 67%
(conventional), 78% (microwave); m.p.: 156-158 ºC; FT-IR
(KBr, νmax, cm–1): 3427 (-NH2), 2967 (C-H, Ar), 2208 (-CN),
1693 (-C=O), 1080 (C-F); 1H NMR (400 MHz, CDCl3) δ (ppm):
7.26-7.46 (m, 4H, aromatic-H), 8.26 (s, 2H, NH2); 13C NMR
(101 MHz, CDCl3) δ: 163, 200, 33.7, 164.6, 115.3, 129.6, 130.8,
115.6, 165.2, 115.6, 130.8; MS(ESI), m/z (%): 230.2 [M+1];
Anal. calcd. (found) % for C11H7N4OF: C, 59.73 (59.70); H, 3.42
(3.40); N, 25.33 (25.32); O, 7.23 (7.21); F 4.29 (4.27).

2-Amino-6-(4-hydroxyphenyl)-4-oxo-4,5-dihydro-
pyrimidine-5-carbonitrile (4g): White solid; yield 54%
(conventional), 68% (microwave); m.p.: 154-157 ºC; FT-IR
(KBr, νmax, cm–1): 3480 (-OH), 3463 (-NH2), 2974 (C-H, Ar),
2216 (-CN), 1683 (-C=O); 1H NMR (400 MHz, CDCl3) δ (ppm):
7.49-7.57 (m, 4H, aromatic-H), 8.16 (s, 2H, NH2); 13C NMR
(101 MHz, CDCl3) δ: 163, 200, 33.7, 164.6, 115.3, 126.6, 130.6,
116.0, 160.8, 116.0, 130.6; MS(ESI), m/z (%): 252.4 [M+1];

Anal. calcd. (found) % for C11H8N4O2: C, 56.87 (56.85); H, 8.68
(8.66); N, 24.12 (24.10); O, 10.33 (10.32).

2-Amino-6-(2-chlorophenyl)-4-oxo-4,5-dihydro-
pyrimidine-5-carbonitrile (4h): White solid; yield 62%
(conventional), 76% (microwave); m.p.: 166-169 ºC; FT-IR
(KBr, νmax, cm–1): 3363 (-NH2), 2994 (C-H, Ar), 2238 (-CN),
1685 (-C=O), 786 (C-Cl); 1H NMR (400 MHz, CDCl3) δ (ppm):
7.05-7.33 (m, 4H, aromatic-H), 8.32 (s, 2H, NH2); 13C NMR
(101 MHz, CDCl3) δ: 163, 200, 33.7, 164.6, 115.3, 137.2,
134.0, 129.0, 132.5, 127.0, 130.6; MS(ESI), m/z (%): 246.65
[M+1], 248.65 [M+2]; Anal. calcd. (found) % for C11H7N4OCl:
C, 57.59 (57.58); H, 3.29 (3.28); N, 24.42 (24.40); Cl, 7.73
(7.72); O, 6.97 (6.95).

2-Amino-6-(4-chlorophenyl)-4-oxo-4,5-dihydro-
pyrimidine-5-carbonitrile (4i): White solid; yield 66%
(conventional), 72% (microwave); m.p.: 174-177 ºC; FT-IR
(KBr, νmax, cm–1): 3342 (-NH2), 2979 (C-H, Ar), 2228 (-CN),
1681 (-C=O), 798 (C-Cl); 1H NMR (400 MHz, CDCl3) δ (ppm):
6.9-7.3 (m, 4H, aromatic-H), 8.30 (s, 2H, NH2); 13C NMR (101
MHz, CDCl3) δ: 163, 200, 33.7, 164.6, 115.3, 132.1, 130.6,
129.0, 136.6, 129.0, 130.6; MS(ESI), m/z (%): 246.65 [M+1],
248.65 [M+2]; Anal. calcd. (found) % for C11H7N4OCl: C, 57.59
(57.58); H, 3.29 (3.28); N, 24.42 (24.40); Cl, 7.73 (7.72); O,
6.97 (6.95).

2-Amino-6-(2,3-dichlorophenyl)-4-oxo-4,5-dihydro-
pyrimidine-5-carbonitrile (4j): White solid; yield 57%
(conventional), 65% (microwave); m.p.: 166-169 ºC; FT-IR
(KBr, νmax, cm–1): 3415 (-NH2), 2979 (C-H, Ar), 2242 (-CN),
1668 (-C=O), 834 (C-Cl); 1H NMR (400 MHz, CDCl3) δ (ppm):
7.27-7.91 (m, 4H, aromatic-H), 8.56 (s, 2H, NH2); 13C NMR
(101 MHz, CDCl3) δ: 163, 200, 33.2, 164.6, 115.3, 138.6,
130.9, 133.5, 132.6, 128.4, 128.7; MS(ESI), m/z (%): 279.99
[M+1], 281.1 [M+2]; Anal. calcd. (found) % for C11H6N4OCl2:
C, 47.04 (47.02); H, 2.15 (2.14); N, 19.93 (19.92); Cl, 25.22
(25.20); O, 5.69 (5.67).

Antitubercular activity: All the newly synthesized pyri-
midine derivatives were evaluated for antimycobacterial activity
in vitro against M. tuberculosis H37Rv and clinical isolates such
as S, H, R and E resistant strains. In the case of antimycobacterial
activity, the percentage reduction in relative light units (RLU)
was calculated by using luciferase reporter phage (LRP) assay
using isoniazid as a standard drug [22]. The compounds as
considered to be antimycobacterial agents, if a 50% reduction in
the relative light unit was observed when compared to the control.
The RLU was measured by using a luminometer [23].

Luciferase reporter phage (LRP) assay: Approximately
50 µL bacterial suspension equivalent to McFarland’s No. 2
standard was added to 400 mL of G7H9 with and without the
test compounds. For each sample, two drug-free controls and
two drug concentrations were prepared and this setup was
incubated at 37 ºC for 72 h. After incubation, 50 mL of high
titer LRP (phAE129) and 400 mL of 0.1 M CaCl2were added
to all the vials and this setup was incubated at 37 ºC for 4 h.
After incubation, 100 mL of mixture was taken from each tube
into a luminometer cuvette and an equal amount of working
D-luciferin solution (0.3 mM in 0.05 M sodium citrate buffer,
pH 4.5) was added. The percentage reduction in the RLU was
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calculated for each test compound in comparison with the
control. DMSO (1%) was used as solvent control [24].

Control Test

Control

RLU RLU
RLU (%) 100

RLU

−= ×

RESULTS AND DISCUSSION

In current study, a series of pyrimidine derivatives (4a-j)
were synthesized by reacting the equimolar mixture of
aromatic aldehydes, ethyl cyanoacetate and guanidine under
microwave irradiation. With the help of microwave irradiation,
the rate of chemical reaction was enhanced with a high product
yield as compared to conventional synthesis (Table-1). Hence,
ethyl cyanoacetate undergoes Knoevenagel condensation
reaction with aryl aldehydes followed by Michael addition
reaction of guanidine and intramolecular cyclization in presence
of ethanolic NaOH solution. Due to microwave synthesis, the
yield of the finished product was improved (65-84%). The
melting points of the newly synthesized compounds were
determined by the open capillary tube method and were found
to be in the range of 154-183 ºC. The purity of the compounds
was monitored by TLC using n-hexane and ethyl acetate
(70:30) as mobile phase.

TABLE-1 
OPTIMIZATION STUDY ON REACTION  

TIME AND PRODUCT YIELD 

Conventional 
synthesis 

Microwave 
synthesis Compd. 

No. Ar Rf RT 
(h) 

Yield 
(%) 

RT 
(min) 

Yield 
(%) 

4a C6H5- 0.54 2 65 6 74 
4b 4-CH3 C6H4- 0.67 4 69 8 74 
4c 4-OCH3 C6H4- 0.65 3 58 7 67 
4d 2-NO2 C6H4- 0.56 2 65 10 73 
4e 4-NO2 C6H4- 0.58 4 72 9 84 
4f 4-F C6H4- 0.52 3 67 12 78 
4g 4-OH C6H4- 0.56 2 54 7 68 
4h 2-Cl C6H4- 0.58 4 62 11 76 
4i 4-Cl C6H4- 0.54 3 66 9 72 
4j 2,3-Cl2 C6H3- 0.59 4 57 12 65 

 
In the FTIR studies, the stretching vibrations in the range

of 1290-1346, 1422-1568, 1576-1620, 1674-1736, 2190-2318,
3034-3124 and 3487-3546 cm–1 indicates the presence of -OCH3,
-C=C, -C=N,C=O, -CN, Ar-CH and -NH, respectively. Further,
the IR spectrum of the nitro group (-NO2) exhibited absorption
with λmax at 1620-1546 and 1440-1360 cm–1. Similarly, pyrimi-
dine derivatives substituted with halogens exhibited the IR
absorption bands in the region 1426-1024 and 837-647 cm–1

which corresponds to C-F str. and C-Cl str. respectively.
Whereas the presence of Ar-OH is confirmed by IR absorption
bands in the region of 3640-3235 cm–1 and the C-H stretching
in case of –CH3 exhibited at 2945-2857 cm–1. The chemical
shift (δ ppm) in the range of 7.14-8.47 indicates the presence
of aromatic proton (Ar-H) and was observed as a multiplet.
Similarly, the 1H NMR spectrum of –NH2 was observed as a
singlet at δ 8.58. The mass spectra of the pyrimidine derivative
exhibited a molecular ion peak that corresponds to their mole-

cular formula. Compounds 4b, 4c, 4d, 4e, showed molecular
ion peaks at m/z 226.06, 242.04 and 257.06 respectively.

The synthesized compounds such as 4d, 4e, 4f, 4h, 4i
and 4j were found to be active against M. tuberculosis H37Rv
at a concentration of 50 µg/mL. Similarly, compounds 4f, 4g,
4h, 4i and 4j exhibited antitubercular activity at a concentration
of 100 µg/mL. Whereas compounds 4d, 4i, 4j displayed promi-
sing activity against clinical isolate S, H, R and E resistance
of M. tuberculosis at a concentration of 50 µg/mL. But, the
tested compounds like 4d, 4e, 4g, 4i and 4j displayed potential
activity against resistant strains at a concentration of 100 µg/mL
as compared to isoniazid (Table-2).

TABLE-2 
ANTITUBERCULAR ACTIVITY OF  

THE TITLE COMPOUNDS (4a-j) 

Reduction in RLU (%) 

M. tuberculosis H37Rv Clinical isolate: S, H, R and 
E resistant M. tuberculosis 

Compd. 
No. 

50 µg/mL 100 µg/mL 50 µg/mL 100 µg/mL 
4a 41.62 47.48 43.62 47.76 
4b 44.46 48.64 44.37 49.83 
4c 44.85 51.68 38.76 47.24 
4d 62.47 66.82 51.62 56.64 
4e 54.76 58.46 43.35 54.85 
4f 61.45 67.84 40.78 47.43 
4g 47.65 53.76 48.87 52.66 
4h 50.36 62.73 38.84 42.77 
4i 52.67 57.86 54.87 58.48 
4j 56.84 61.68 56.64 61.46 

Isoniazid 81.57 84.58 
 

SAR study: The structure-activity relationship (SAR) study
of pyrimidine derivatives is mainly focused on the screening
results obtained from the biological activity. The promising
antitubercular activity of the pyrimidine derivatives may be
due to the presence of the type of substituents and their position
on the aryl ring (hydrophobic domain). The presence of pyrimi-
dine scaffold potentiates the activity. Similarly, the presence
of an aryl ring on pyrimidine pharmacophore augments
the lipophilicity of the designed molecule. The presence of
electron-withdrawing groups including nitro, chloro, fluoro,
hydroxy, methoxy on aryl ring of pyrimidine derivatives exhibit
better antitubercular activity as compared to other derivatives
(Fig. 2) [25].

N

N
CN

O

H2N

Carbonyl group Pyrimidine moiety

Hydrophobic domain

Substituents

Nitrile group

X
Amino group

Fig. 2. SAR study of pyrimidine derivatives

Conclusion

A microwave irradiated eco-friendly approach was applied
for the synthesis of pyrimidine derivatives. The equimolar
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mixture of aryl aldehydes, ethyl cyanoacetate and guanidine
was allowed to react in the presence of ethanolic NaOH solution
under microwave irradiation. The newly synthesized comp-
ounds were evaluated for their antitubercular activity in vitro
by using the LRP assay method. Most of the tested compounds
exhibited significant activity as compared to standard drugs.
It was observed that the promising biological activity is due to
the presence of electron-withdrawing groups at para positions
on the aryl ring of pyrimidine derivatives. Hence, it can be
concluded that this new series of pyrimidine derivatives certainly
holds a greater promise in designing the potential antitubercular
agent in the future.
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