

Comparative 4*f*-4*f* Spectral Analysis of Simultaneous Complexation of Pr(III) with L-Tryptophan in Presence and Absence of Ca²⁺ and Zn²⁺ Ions in Aqueous Medium: Energy, Intensity and Kinetic Studies

THIYAM SAMRAT SINGH^{1,0}, CH. SUMITRA^{2,0} and THIYAM DAVID SINGH^{1,*,0}

¹Department of Chemistry, National Institute of Technology Manipur, Langol-795004, India ²Department of Chemistry, Pole Star College, Wabagai, Manipur-795103, India

*Corresponding author: E-mail: davidthiyam@gmail.com

Received: 27 July 2022;	Accepted: 18 September 2022;	Published online: 25 November 2022;	AJC-21043
-------------------------	------------------------------	-------------------------------------	-----------

The spectral analysis of the complexation of praseodymium (Pr³⁺) with L-tryptophan in various aqueous solvent applying a quantitative probe of 4*f*-4*f* transition spectra. The study is carried out by calculating various energy interaction parameters such as the nephelauxetic effect (β), percent covalency (δ), bonding parameter ($b^{1/2}$), Slater-Condon (F_k) and intensity parameters like oscillator strength (P) and intensity of Judd-Ofelt parameters T_{λ} ($\lambda = 2, 4, 6$). The paramagnetic behaviour of Pr³⁺ shows ³H₄ \rightarrow ¹D₂, ³H₄ \rightarrow ³P₁, ³H₄ \rightarrow ³P₂ types of specific 4*f*-4*f* absorption bands and are observed at the visible reason of 427-610 nm. The intensities of 4*f*-4*f* transition bands rise on the addition of Ca²⁺ and Zn²⁺ ions toward the complexation of praseodymium (Pr³⁺):Try and extended result in the case of Ca²⁺ ion compared to the Zn²⁺ ion due to increase in the interaction between ligand and 4*f* orbital of metal ions. These bands on immediate minor's coordination change around praseodymium (Pr³⁺) found to be highly sensitive due to the formation of heterobimetallic complex between L-tryptophan (Try) with Pr³⁺ in the existence of Zn²⁺ and Ca²⁺ ions. The complexation of Try with Pr³⁺ in the presence of Zn²⁺ and Ca²⁺ ions are monitors simultaneously from the sensitivity of the bands using energy parameters and oscillator strength. The rate of heterobimetallic complexation of both Zn²⁺ and Ca²⁺ ions was calculated from the 4*f*-4*f* transition at different temperatures. The thermodynamic parameters and activation energy calculated from the rate constants from different temperatures are more favourable in case of Try form complex with Pr³⁺ in the presence of Ca²⁺ ion as compared to Zn²⁺ ion.

Keywords: Nephelauxetic effect, Judd-Offelt, Heterobimetallic, Oscillator strength, L-Tryptophan.

INTRODUCTION

The potential properties of the lanthanide complex for photoluminescent and many fields of applications have become attentiveness in research. Due to the spectral properties and isomorphous character of lanthanides is used as a technique of investigation in the biological and chemical mechanism involving zinc and calcium [1-3]. The comparable properties of lanthanide with calcium and zinc are the coordination number, ionic radii, the binding pattern [4]. Hence, lanthanide is used as an effective probe in determining the coordination and isomorphous character between calcium and zinc toward the complexation. The importance of calcium and zinc can explain by the study of lanthanide complexation with amino acids [5,6]. From the above properties, may be understandable the biological system and metal protein reaction. Some of the amino acids are essential in human body since it considerably helps in the hormone melatonin production, the nervous system and also enzyme and protein synthesis. (2*S*)-2-Amino-3-(1*H*-indol-3-yl)-propionic acid (Try) has a unique structure, R-carbon or β -carbon bind with a side chain of indole ring so it is a non-polar aromatic amino acid but nitrogen present in indole ring gives polarity to the amino acid [7,8]. Try gives a peculiar role in protein folding conformation [9] and the recreation mechanism of different polypeptides and proteins [10].

In L-tryptophan due to -COOH group and nitrogen atom show unique complexation with lanthanides ions and gives interesting bio-logical and theoretical properties. Calcium and zinc ions do not exhibit sharp absorption in contrast to lanthanide ions in UV-visible reasons due to Laported forbidden 4*f*-4*f* transition or obeying selection rule [11]. The absorption spectra are sensitive in the bonding of metal-ligand and symmetry of

This is an open access journal, and articles are distributed under the terms of the Attribution 4.0 International (CC BY 4.0) License. This license lets others distribute, remix, tweak, and build upon your work, even commercially, as long as they credit the author for the original creation. You must give appropriate credit, provide a link to the license, and indicate if changes were made.

complexation. This sensitivity helps to explain the inner and outer coordination sphere, binding position, degree of covalency nature. This bands are term as "hypersensitive transition" [12]. The hypersensitive transition becomes an interesting topic for theoretical and experimental studies [13,14]. The special character shown by the hypersensitive transition in band transitions and oscillator strengths can use as a probe in coordination geometry, complex formation, ligand structure and solvent effect in complexation [15] explain the binding nature of bovine serum albumin (BSA) with Pr³⁺ and drawn out this application.

Currently, both the transitions (hypersensitive and nonhypersensitive) band intensities and shape are also used to explaining the change in 4f-4f transition spectra of Er³⁺, Pr³⁺and Ho³⁺on complexation with 2,2'-bipyridine and thiocyanate (SCN⁻) [16,17]. From the present studies, the complexation and behaviour change of Pr³⁺ with L-tryptophan (Try) on simultaneous addition of Zn²⁺ and Ca²⁺ ions, it is observed that the variation of 4f-4f absorption spectra with an increase in time and comparing the feasibility of complexation between the Zn²⁺ and Ca²⁺ ions. The metalloproteins coordination of Zn²⁺ and Ca²⁺ ions from stable complexes in vitro and in vivo [18]. Hence, Zn²⁺ and Ca²⁺ ions may involve simultaneously in the heterobimetallic complex of Try with praseodymium (Pr³⁺). From complexation, the intensity and energy interaction parameters are calculated and used in explaining the ligand and metal ions bonding from the variation of these parameters.

The absorption spectra of the above complexes in different organic solvents are reported. With the peripheral change in coordination about Pr^{3+} , the sensitivity and intensity of 4f-4f transition bands also change with the oscillator strength and can be utilized in explaining the coordination between Try and Pr^{3+} in simultaneous addition of Zn^{2+} and Ca^{2+} ions. The rate of reaction of both the Zn^{2+} and Ca^{2+} ions complex with Try and Pr^{3+} are study at different temperatures, the activation energy, thermodynamic parameters are calculated. From the kinetics and thermodynamic parameters, the heterobimetallic complex formation between the Ca^{2+} and Pr^{3+} with tryptophan are more feasible than Zn^{2+} .

EXPERIMENTAL

Praseodymium hexahydrate (Pr(NO₃)₃·6H₂O, 99% purity) was purchased from Central Drug House (P) Ltd. India, whereas L-tryptophan (Try) was purchased from Sigma-Aldrich used without purified. The organic solvents were acetonitrile, dioxane, methanol and dimethylformamide (DMF) of A.R. grade from E. Merck. Perkin-Elmer lambda-35 UV-Vis spectrometer was used for recording the absorption spectra of praseodymium (Pr³⁺) with Try and simultaneous addition of Zn²⁺ and Ca²⁺ ions. For the kinetics studies, the required temperature *i.e.* 298, 303, 308 and 313 K were conserved by Peltier temperature controller.

Praseodymium nitrate (10^{-2} mol/L) and Try (10^{-2} mol/L) were mixed to form the complex (Pr^{3+} :Try). Zinc nitrate and calcium nitrate (10^{-2} mol/L) were further added to the complex solution in aqueous DMF solvent. The variation in 4*f*-4*f* transition, bonding parameters and oscillator strength were used as a probe in explaining the complex formation and the preferable

comparative study of heterobimetallic complex formation between Zn^{2+} and Ca^{2+} ions.

Methods

In the comparative absorption spectra, the energy (E_{so}) appear from two components the spin-orbital interaction (A_{so}) and angular part of static electric charges (F_k) .

$$E_{so} = \Sigma \int F_k + A_{so} \xi_{4f} \tag{1}$$

Here Lande's parameter (ξ_{4f}) is the radial integral parts. Applying representation operator technique, the required values can be calculated. To determine $4f^{n}$ energy configuration the required four radial integrals parameters were F₂, F₄, F₆ and ξ_{4f} [19,20]. Wong gives the energy E_j of the jth level by first order approximation [21] as:

$$E_{j}(F_{k},\xi_{4f}) = F_{0j}(F_{k}^{0},\xi_{4f}^{0}) + \sum_{k=2,4,6} \frac{\delta E_{j}}{\delta F_{k}} \Delta F + \frac{\delta E_{j}}{\delta \xi_{4f}} \Delta \xi_{4f} \quad (2)$$

where the energy of zero order at j^{th} level is E_{0j} and the partial

derivatives are
$$\left(\frac{\delta E_j}{\delta \xi_{4f}}\right)$$
, $\left(\frac{\delta E_j}{\delta F_k}\right)$. The least square technique is

used in calculating the correction values of F_k and put in the zero-order parameter to acquire the values of F_2 , F_4 , F_6 and ξ_{4f} . Thus

$$F_k = F_k^0 + \Delta F \tag{3}$$

$$\xi_{4f} = \xi_{4f}^0 + \Delta \xi_{4f} \tag{4}$$

The red shift in the spectra of all electronic transition explain the complexation. The red shift is main reason of the extension of metal electron cloud and decrease of Racah parameter or inter electronic repulsion suggest that the complex have larger orbital then metal ion. The above experience is known as nephelauxetic effect (β) and used in calculating the change in F_k with free ions as:

$$\beta_{1} = \frac{F_{k}^{c}}{F_{k}^{f}}$$

$$\beta_{2} = \frac{\xi_{4f}^{c}}{\xi_{k4f}^{f}}$$

$$\overline{\beta} = \frac{\beta_{1} + \beta_{2}}{2}$$
(5)

where F_k^c (k = 2, 4, 6) are the different parameters of complex and free ions by F_k^f . The chemical bonding and inter mixing of ligand orbital with metal 4*f*-orbitalcalculate from the bonding parameter $b^{1/2}$ and also used in measuring covalency nature of metal-ligand bond known as percent covalency $\delta\%$. Percent covalency and nephelauxetic ratio are related [22] and defined as:

$$b^{1/2} = \left(1 - \frac{\beta}{2}\right)^{1/2}$$
$$\delta = \left(1 - \frac{\beta}{\beta}\right) \times 100 \tag{6}$$

Oscillator strength (P_{obs}) are experimentally determined and used in measuring the absorption spectral band intensity given by Gaussian equation [23,24] as:

$$\mathbf{P} = 4.6 \times 10^{-9} \times \boldsymbol{\varepsilon}_{\max} \times \Delta \boldsymbol{v}_{1/2} \tag{7}$$

where, the molar extinction coefficient is ε_{max} and the half band width is $\Delta v_{1/2}$. Judd-Ofelt give the idea of electric dipole oscillator strength (P_{obs}) as the intensity parameter of 4*f*-4*f* crystal field transition of lanthanides (Pr³⁺, Nd³⁺ and Eu³⁺) [25]. The calculated oscillator strength (P_{cal}) of electric dipole are concern with transition $\langle f^n \psi J | f^n \psi^* J \rangle$ of energy $(\overline{\nu}, cm^{-1})$ can be express as:

$$\mathbf{P}_{cal} = \sum_{\lambda=2,4,6} \mathbf{T}_{\lambda} \overline{\mathbf{v}} \left\langle \mathbf{f}^{n} \boldsymbol{\psi}_{J} \left\| \mathbf{U}^{(\lambda)} \right\| \mathbf{f}^{n} \boldsymbol{\psi}_{J^{*}}^{*} \right\rangle$$
(8)

The three electric dipole or Judd-Ofelt intensity parameters T_{λ} ($\lambda = 2, 4, 6$) homologous to the radial wave function (4 f^{N}). Being perturbing configuration to the above wave function and ligand field parameters help in explaining the change of environment around the metal ion. The value of square matrix elements U^(λ) taken from Carnall *et al.* [26,27]. The T_{λ} ($\lambda = 2, 4, 6$) parameters are calculated using the partial multiple linear regression method.

$$\frac{P_{obs}}{v} = [U^{(2)}]^2 . T_2 + [U^{(4)}]^2 . T_4 + [U^{(6)}]^2 . T_6$$
(9)

The two activation energy (E_a) of praseodymium (Pr^{3+}) : Try with Zn^{2+} and Ca^{2+} ions are simultaneously calculated for the comparison of the feasibility of complex formation using the graph of ln K *versus* 1/T of Arrhenius equation.

CALCULATED VALUES OF ENERCY INTER

$$E_a = \text{Slope} \times R \tag{10}$$

The slope observed from the graph of ln K *versus* 1/T and the observed intercept of the linear plots of van't Hoff are used for thermodynamic parameters calculated.

$$\ln k = -\frac{\Delta G}{RT} = -\frac{\Delta H^{\circ}}{R} \left(\frac{1}{T}\right) + \frac{\Delta S^{\circ}}{R}$$
(11)

RESULTS AND DISCUSSION

The red shift observed in praseodymium (Pr³⁺) complex, known as the nephelauxetic effect is used in determining metalligand mode of bonding. It is also observed the decline in spinorbital (ξ_{4f}), Slator-Condon (F_k) and interelectronic repulsion parameters due to an extension of wave functions between the metal and ligand. Lanthanide shows the electrostatic nature of bonding due to Ln³⁺ ions are hard metal ions and highly favour in bond formation with non-polarizable donor atoms such as nitrogen and oxygen atoms. In Table-1 comparing with free ions the values of complexation have remarkable changes and more within Zn²⁺ and Ca²⁺ ions. The positive value of the bonding parameter (b^{1/2}) and minor variation in percentage covalency (δ) suggested that the bonding between ligand and metal have a covalent character. A notable increase was observed in bands oscillator strength and higher in the magnitude of 4f-4f transition. The observed values and calculated Judd-Ofelt or electric dipole intensity parameters T_{λ} ($\lambda = 2, 4, 6$) and oscillator strength values are shown in Table-2. In addition to Try with Pr^{3+} , a significant magnification in the intensity parameters T_{λ}

TED CONDON (E) CDIN ODDITAL INTED ACTION

(ξ_{4f}) , THE NEPHELAUXETIC RATIO (β), BONDING PARAMETER ($b^{1/2}$) AND COVALENCY (δ) OF Pr^{3+} , Pr^{3+} :Try, Pr^{3+} :Try: Ca^{2+} , Pr^{3+} :Try: Zn^{2+} SYSTEM AT AQUEOUS AND ORGANIC SOLVENT									
Solvent	F_2	F ₄	F ₆	ξ_{4f}	β	b ^{1/2}	δ		
Water									
Pr ³⁺	309.26	42.693	4.67	722.75	0.9474	0.1621	309.26		
Pr ³⁺ :Try	309.27	42.686	4.669	722.77	0.9474	0.1622	309.2		
Pr ³⁺ :Try:Ca ²⁺	309.29	42.686	4.669	722.77	0.9474	0.1622	309.2		
Pr ³⁺ :Try:Zn ²⁺	309.28	42.686	4.669	722.77	0.9474	0.1622	309.2		
			Met	hanol					
Pr ³⁺	308.30	42.561	4.655	718.88	0.9434	0.1682	308.3		
Pr ³⁺ :Try	308.43	42.579	4.657	720.64	0.9448	0.1661	308.43		
Pr ³⁺ :Try:Ca ²⁺	308.97	42.653	4.665	719.59	0.9449	0.166	308.97		
Pr ³⁺ :Try:Zn ²⁺	308.96	42.652	4.663	719.58	0.9447	0.166	308.96		
			D	MF					
Pr ³⁺	307.91	42.507	4.649	721.1	0.9443	0.1668	307.91		
Pr ³⁺ :Try	307.91	42.507	4.649	721.1	0.9443	0.1668	307.91		
Pr ³⁺ :Try:Ca ²⁺	307.82	42.494	4.648	720.25	0.9436	0.1679	307.82		
Pr ³⁺ :Try:Zn ²⁺	307.81	42.493	4.648	720.37	0.9437	0.1678	307.81		
			D	XN					
Pr ³⁺	308.08	42.531	4.652	723.21	0.946	0.1642	308.08		
Pr ³⁺ :Try	308.09	42.532	4.652	717	0.9418	0.1706	308.09		
Pr ³⁺ :Try:Ca ²⁺	308.42	42.577	4.657	721.17	0.9451	0.1656	308.42		
Pr ³⁺ :Try:Zn ²⁺	308.49	42.588	4.658	720.61	0.9449	0.166	308.49		
			CH	I ₃ CN					
Pr ³⁺	308.29	42.559	4.655	718.51	0.9431	0.1686	308.29		
Pr ³⁺ :Try	308.11	42.535	4.653	724.54	0.947	0.1628	308.11		
Pr ³⁺ :Try:Ca ²⁺	308.95	42.65	4.665	719.02	0.9444	0.1667	308.95		
Pr ³⁺ :Try:Zn ²⁺	309.07	42.667	4.667	720.89	0.9459	0.1645	309.07		

TABLE-1

TABLE-2											
OBSERVED AND CALCULATED VALUE OF OSCILLATOR STRENGTHS (P × 10°) AND JUDD-OFELT (TI × 10 ¹⁰) PARAMETER Pr ³⁺ Pr ³⁺ ·Try. Pr ³⁺ ·Try·Ca ²⁺ , Pr ³⁺ ·Try·Za ²⁺ IN AQUEQUS AND DIFFERENT ORGANIC SOLVENT											
	$^{3}\text{H}_{4}\rightarrow^{3}\text{P}_{2}$ $^{3}\text{H}_{4}\rightarrow^{3}\text{P}_{1}$ $^{3}\text{H}_{4}\rightarrow^{3}\text{P}_{0}$ $^{3}\text{H}_{4}\rightarrow^{1}\text{D}_{2}$ m										
Solvent	$\mathbf{P}_{(4)} \xrightarrow{\mathbf{P}_2} \mathbf{P}_2$	$\mathbf{H}_4 \rightarrow \mathbf{H}_1$ Pero (Pero)	$\mathbf{P}_{4} \rightarrow \mathbf{P}_{0}$	$P_{\text{ch}}(\mathbf{P}_{\text{ch}})$	T ₂	T_2	T_4	RMS			
Water											
Pr ³⁺	3.6084 (3.6084)	1.077 (1.077)	0.531 (0.522)	0.828 (0.828)	-51.453	2.219	11.229	102.95			
Pr ³⁺ :Try	3.4519 (3.4519)	1.037 (1.037)	0.4776 (0.47)	0.905 (0.9049)	-23.724	2.091	10.752	97.81			
Pr ³⁺ :Try:Ca ²⁺	3.2743 (3.2743)	0.962 (0.962)	0.4588 (0.451)	0.873 (0.8725)	-19.253	1.962	10.205	98.20			
Pr ³⁺ :Try:Zn ²⁺	3.1596 (3.1596)	0.925 (0.925)	0.4333 (0.426)	0.749 (0.7488)	-39.661	1.875	9.852	98.20			
	· · ·		CH ₃	OH							
Pr ³⁺	2.8474 (2.8474) 0.573 (0.573) 0.3632 (0.358) 0.095 (0.095) -166.885 1.297 9.005 14										
Pr ³⁺ :Try	4.0822 (4.0822)	0.847 (0.847)	0.4867 (0.48)	1.126 (1.1257)	-14.017	1.847	12.913	123.24			
Pr ³⁺ :Try:Ca ²⁺	4.3953 (4.3953)	0.838 (0.838)	0.5106 (0.502)	1.393 (1.3926)	25.702	1.863	13.937	121.22			
Pr ³⁺ :Try:Zn ²⁺	4.3953 (4.3953)	0.838 (0.838)	0.5106 (0.502)	1.393 (1.3926)	25.702	1.863	13.937	121.22			
DMF											
Pr ³⁺	5.3455 (5.3455)	1.043 (1.043)	0.6183 (0.611)	1.26 (1.2604)	-67.139	2.302	16.979	130.46			
Pr ³⁺ :Try	5.6813 (5.6813)	1.198 (1.198)	0.4878 (0.482)	1.952 (1.9521)	68.497	2.336	18.076	123.49			
Pr ³⁺ :Try:Ca ²⁺	5.7829 (5.7829)	1.216 (1.216)	0.6662 (0.658)	1.998 (1.9979)	71.875	2.61	18.337	122.42			
Pr ³⁺ :Try:Zn ²⁺	5.884 (5.884)	1.349 (1.349)	0.7267 (0.716)	1.683 (1.6832)	-6.848	2.873	18.599	132.53			
			DX	IN .							
Pr ³⁺	0.8198 (0.8198)	0.476 (0.476)	0.1668 (0.165)	0.301 (0.3009)	13.844	0.887	2.453	158.10			
Pr ³⁺ :Try	1.1884 (1.1884)	1.073 (1.073)	0.3927 (0.387)	0.898 (0.898)	125.694	2.025	3.358	189.63			
Pr ³⁺ :Try:Ca ²⁺	2.1806 (2.1806)	1.055 (1.055)	0.1927 (0.19)	0.468 (0.4682)	-38.66	1.721	6.701	126.02			
Pr ³⁺ :Try:Zn ²⁺	2.0157 (2.0157)	0.704 (0.704)	0.625 (0.616)	1.232 (1.2318)	146.454	1.84	6.124	145.87			
CH ₃ CN											
Pr ³⁺	5.884 (5.884)	1.349 (1.349)	0.7267 (0.716)	1.683 (1.6832)	-6.848	2.873	18.599	132.53			
Pr ³⁺ :Try	3.6044 (3.6044)	0.386 (0.386)	0.2969 (0.293)	0.708 (0.7076)	-75.956	0.946	11.558	150.22			
Pr ³⁺ :Try:Ca ²⁺	3.9879 (3.9879)	0.693 (0.693)	0.4659 (0.458)	0.847 (0.8467)	-71.128	1.602	12.668	129.81			
Pr ³⁺ :Try:Zn ²⁺	4.2275 (4.2275)	0.78 (0.78)	0.5115 (0.503)	9.044 (9.0438)	1776.403	1.785	13.376	123.94			

 $(\lambda = 2, 4, 6)$ and oscillator strength is observed. The 4*f* orbital of metal interact with ligand wave function were determined from the strengthening of 4*f*-4*f* bands. The hetero bimetallic complexation of Ca²⁺ ions have notable intensity of 4*f*-4*f* transitions as compare to Zn²⁺ ion and binary complexation of Try with Pr³⁺ as shown in Fig. 1.

Fig. 1. Comparative absorption spectra of $Pr^{3+},\,Pr^{3+}:Try,\,Pr^{3+}:Try:Ca^{2+}$ and $Pr^{3+}:Try:Zn^{2+}$ in DMF

Importance changes observed in the intensity parameters of Judd-Ofelt (T_{λ}) are used in the studies of the asymmetrical part of the crystal field. According to Devi & Singh [28], it gives the idea that the covalency parameters increase on complexation is not the single reason that influence T_{λ} values. The T_{λ} (T_2 , T_4 , T_6) values change at different solvents are related to the immediate coordination changes and variation in symmetry effects on the complex [29,30]. Different organic solvent shows the active participation on the coordination environment of the 4*f*-4*f* transition spectra of Pr³⁺ complex. The oscillator strength is changing and intensification of bands are observed at different organic solvents may be correlated to the coordination behaviour and shift in symmetry on complexation with ligand Try. From Fig. 2, DMF shows the strongest impact on Pr³⁺ complexation with Try and the next shown by dioxane and acetonitrile at last. It shows that solvent DMF has strong electric dipole intensity on 4*f*-4*f* transitions. The DMF can coordinate with two sites but it predominantly binds through oxygen when coordinates with lanthanides which is hard acid. The pseudo hypersensitive transition of Pr³⁺ ion *i.e.*, ³H₄ \rightarrow ¹D₀, ³H₄ \rightarrow ³P₀, ³H₄ \rightarrow ³P₁ and ³H₄ \rightarrow ³P₂ show a red shift in all the tran-

Fig. 2. Comparative absorption spectra of Pr³⁺:Try at different solventswater, DMF, CH₃CN, dioxane, CH₃OH

sition, higher energies and most prominent effect is observed in solvent DMF. The nephelauxetic effect is mainly due to retrenchment in the bond length of metal-ligand which help in explaining the interaction and coordination between the inner sphere of metal Pr^{3+} and Try.

Due to the Zwitter ion effect on the complexation of Try and the lanthanide ions, it provides a remarkable electron density resulting in intensification in the Judd-Ofelt (T_{λ}) and oscillator strength of lanthanides. Hence, the pseudo hypersensitive transitions ${}^{3}H_{4} \rightarrow {}^{1}D_{0}$, ${}^{3}H_{4} \rightarrow {}^{3}P_{0}$, ${}^{3}H_{4} \rightarrow {}^{3}P_{1}$ and ${}^{3}H_{4} \rightarrow {}^{3}P_{2}$ sensitivity on the praseodymium (Pr³⁺) complex and variation in intensity are observed on the coordination changes, different organic solvent interaction and binding nature of Pr3+:Try. From the distinct spectra and variant in transitions, the 4f-4f comparative absorption transition use as a probe of the kinetic studies and comparison of spontaneity between the complex formation of Try and Pr³⁺ with Zn²⁺ or Ca²⁺ ions. In kinetic study, it is observed the variations in the 4*f*-4*f* transition concerning the time of all the hypersensitive and pseudo hypersensitive transitions on the Pr³⁺. In Table-3 with the increase in time at 308 K, the absorbance also increases steadily. It is observed that the rate of complexation increases with the rise of temperature in both cases of Ca^{2+} and Zn^{2+} ions. The oscillator strength and T_2 , T_4 , T_6 parameters increase with respect to time. Initially the complexation and reaction were slow which is shown by minor variation in the oscillator strength and the values of T_2 , T_4 , T_6 parameters. Within the T_2 , T_4 , T_6 parameters T_4 , T_6 are more sensitive in the coordination and shift in asymmetry environment of Pr³⁺ so the variation of these parameter is use in explaining the shift in asymmetric structure of complex with the change of time and increase in temperature.

From the four-pseudo hypersensitive ${}^{3}H_{4} \rightarrow {}^{1}D_{0}$, ${}^{3}H_{4} \rightarrow {}^{3}P_{0}$, ${}^{3}H_{4} \rightarrow {}^{3}P_{1}$ and ${}^{3}H_{4} \rightarrow {}^{3}P_{2}$ of Pr^{3+} , the rate of complex is determined from the maximum height of complex absorbance at DMF medium of both Ca^{2+} and Zn^{2+} ions (Fig. 3). From the oscillator strength of four pseudo-hypersensitive transitions rate constant (K) were evaluated. To calculate the activation energy (E_a) of Pr^{3+} :Try:Ca²⁺ and Pr^{3+} :Try:Zn²⁺, the Arrhenius equation is used and compared between the complex. The thermodynamic parameters (ΔH° , ΔS° and ΔG°) of Try with Pr^{3+} in the presence of Zn²⁺ and Ca²⁺ are calculated in addition to activation energy

Fig. 3. Plot of Oscillator strength vs. time for four transition $({}^{3}H_{4}\rightarrow {}^{3}P_{2}, {}^{3}H_{4}\rightarrow {}^{3}P_{1}, {}^{3}H_{4}\rightarrow {}^{3}P_{0}, {}^{3}H_{4}\rightarrow {}^{1}D_{2})$ of $Pr^{3+}:Try:Ca^{2+}$ and $Pr^{3+}:Try:Zn^{2+}$

and the rate of complexation are derived by graphing of ln k with 1/T.

From Tables 4 and 5, the positive values of ΔH° and ΔS° shows that both complexation of Pr^{3+} :Try:Ca²⁺ and Pr^{3+} :Try: Zn²⁺ are endothermic, while increasing entropy and the negative values of ΔG° indicate the spontaneous process. The thermodynamic parameters of the complex are suitable in both Pr^{3+} : Try:Ca²⁺ and Pr^{3+} :Try:Zn²⁺ complexes. The hetero bimetallic complexation of Try with praseodymium (Pr^{3+}) in the presence of Ca²⁺ show more spontaneous and favourable compare to Zn²⁺.

Conclusion

In summary, it is firmed that binary complexation of praseodymium (Pr^{3+}) with L-tryptophan (Try) is less stable but on complexation of Try with Pr^{3+} in the presence of Ca^{2+} and Zn^{2+} ions also. The intensification and enhancement of 4f-4f transition when Ca^{2+} ion hetero-bimetallic complex is more dominant than the Zn^{2+} ion due to spin-orbital coupling and the columbic force interaction parameter, which is connected with the polarization and asymmetry of complex.

The intensification and variation of pseudo hypersensitive transitions ${}^{3}H_{4} \rightarrow {}^{1}D_{0}$, ${}^{3}H_{4} \rightarrow {}^{3}P_{0}$, ${}^{3}H_{4} \rightarrow {}^{3}P_{1}$ and ${}^{3}H_{4} \rightarrow {}^{3}P_{2}$ of Pr^{3+} are used as a probe for kinetics and calculation of activation energy. With the increase of temperature from 298, 303, 308,

TABLE-3OSCILLATOR STRENGTHS ($P \times 10^6$) AND JUDD-OFELT ($TI \times 10^{10}$)PARAMETER OF Pr^{3+} : $Try:Ca^{2+}$, ($Pr^{3+}:Try:Zn^{2+}$) IN DMF MEDIUM OF 35 °C									
Time (b)	${}^{3}\text{H}_{4} \rightarrow {}^{3}\text{P}_{2}$	${}^{3}\text{H}_{4} \rightarrow {}^{3}\text{P}_{1}$	${}^{3}H_{4} \rightarrow {}^{3}P_{0}$	${}^{3}\text{H}_{4} \rightarrow {}^{1}\text{D}_{2}$	т	т	т		
Time (ii)	P _{obs}	\mathbf{P}_{obs}	\mathbf{P}_{obs}	P _{obs}	12	14	16		
0	4.8652 (4.775)	1.425 (1.243)	0.6158 (0.574)	1.021 (0.919)	22.261 (-8.473)	1.447 (2.140)	15.408 (15.127)		
0.5	4.9592 (4.784)	1.460 (1.245)	0.6194 (0.596)	1.040 (0.930)	-15.189 (-32.150)	2.332 (2.142)	15.937 (15.138)		
1.0	5.0758 (4.859)	1.462 (1.269)	0.6272 (0.602)	1.051 (0.953)	-69.697 (-38.386)	2.332 (2.153)	16.356 (15.417)		
1.5	5.1095 (4.869)	1.464 (1.285)	0.6455 (0.615)	1.057 (0.964)	-4.234 (-42.371)	2.377 (2.160)	16.252 (15.449)		
2.0	5.1270 (4.906)	1.474 (1.302)	0.6467 (0.616)	1.063 (0.965)	-5.297 (-30.030)	2.437 (2.165)	19.377 (15.562)		
2.5	5.1271 (4.908)	1.599 (1.350)	0.6499 (0.617)	1.065 (0.972)	-13.123 (-40.964)	2.336 (2.198)	16.224 (15.594)		
3.0	5.1585 (4.912)	1.615 (1.390)	0.6538 (0.623)	1.074 (0.976)	31.333 (-36.308)	2.449 (2.211)	16.194 (15.577)		
3.5	5.2125 (4.961)	1.712 (1.598)	0.6631 (0.625)	1.106 (0.981)	135.659 (54.293)	2.381 (2.217)	16.503 (15.750)		
4.0	5.5416 (5.061)	1.840 (1.631)	0.7137 (0.626)	1.111 (0.985)	54.907 (47.402)	2.736 (2.226)	16.071 (16.025)		
4.5	5.5048 (5.260)	1.900 (1.793)	0.7349 (0.681)	1.158 (0.990)	66.191 (42.724)	2.652 (2.281)	17.536 (16.724)		
5.0	5.5621 (5.528)	2.204 (1.807)	0.8168 (0.732)	1.180 (1.149)	67.478 (37.345)	2.641 (2.605)	17.370 (17.459)		
5.5	6.0800 (5.649)	2.234 (2.010)	0.8175 (0.745)	1.194 (1.175)	-328.19 (123.266)	2.266 (2.659)	17.495 (17.841)		

TABLE-4
RATE CONSTANT AND THERMODYNAMIC PARAMETERS FOR THE COMPLEXATION OF Pr ³⁺ :Try:Zn ²⁺ AT
DIFFERENT TEMPERATURES AND ACTIVATION ENERGY FOR THE COMPLEXATION REACTION ${}^{3}\text{H}_{4}{\rightarrow}{}^{3}\text{P}_{2}$

Temp. (K)	Rate constant (M ⁻¹ S ⁻¹)	ln K	E _a (kJ mol ⁻¹)	$\Delta H (kJ mol^{-1})$	$\Delta S (JK^{-1} mol^{-1})$	$\Delta G (kJ mol^{-1})$
298	17.08	2.838			23.64	-14.51
303	21.17	3.052			25.42	-19.34
308	21.47	3.067	14.076	14.076	25.54	-19.71
313	22.94	3.133			26.09	-21.51
318	23.22	3.145			26.19	-21.86

 TABLE-5

 RATE CONSTANT AND THERMODYNAMIC PARAMETERS FOR THE COMPLEXATION OF Pr^{3+} :Try:Ca²⁺ AT

 DIFFERENT TEMPERATURES AND ACTIVATION ENERGY FOR THE COMPLEXATION REACTION $^{3}H_4 \rightarrow ^{3}P_2$

Temp. (K)	Rate constant (M ⁻¹ S ⁻¹)	ln K	E _a (kJ mol ⁻¹)	$\Delta H (kJ mol^{-1})$	$\Delta S (JK^{-1} mol^{-1})$	$\Delta G (kJ mol^{-1})$
298	17.11	2.839			23.66	-79.22
303	18.86	2.937			24.47	-80.59
308	19.61	2.976	9.1945	9.1945	24.79	-80.33
313	19.81	2.986			24.87	-79.31
318	21.75	3.079			25.65	-80.52

313 K the rate of reaction increases and the calculated value of activation energy shows that the complexation of Pr^{3+} ions with Try is the presence of Ca^{2+} ions show more effective than Zn^{2+} ions. And from the thermodynamic parameters ($\Delta H^{\circ}, \Delta S^{\circ}$ and ΔG°) proved that the complexation in the presence of Ca^{2+} ions is more favoured than Zn^{2+} ions.

ACKNOWLEDGEMENTS

The authors are thankful to the Department of Chemistry, National Institute of Technology Manipur for providing the research facilities and financial support.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interests regarding the publication of this article.

REFERENCES

- J.-C.G. Bünzli, S. Comby, A.-S. Chauvin and C.D.B. Vandevyver, J. Rare Earths, 25, 257 (2007);
- https://doi.org/10.1016/S1002-0721(07)60420-7
- I. Hemmila and V. Laitala, J. Fluoresc., 15, 529 (2005); https://doi.org/10.1007/s10895-005-2826-6
- K.S. Gupta, RM. Kadam and P.K. Pujari, *Coord. Chem. Rev.*, 420, 21340 (2020); https://doi.org/10.1016/j.ccr.2020.213405
- 4. E. Pidcock and G.R. Moore, *J. Biol. Inorg. Chem.*, **6**, 479 (2001); https://doi.org/10.1007/s007750100214
- X. Wang, Y. Xie and J. Sun, *Polyhedron*, **15**, 3569 (1996); https://doi.org/10.1016/0277-5387(96)00074-5
- J. Legendziewicz, G. Oczko, R. Wiglusz and V. Amirkhanov, J. Alloys Compd., 323-324, 792 (2001); https://doi.org/10.1016/S0925-8388(01)01147-1
- H. Masuda, T. Sugimori, A. Odani and O. Yamauchi, *Inorg. Chim.* Acta, 180, 73 (1991);
- https://doi.org/10.1016/S0020-1693(00)83068-6 8. O. Yamauchi, A. Odani and M. Takani, J. Chem. Soc., Dalton Trans., 3411 (2002);

https://doi.org/10.1039/B202385G

- Y. Ueda, H. Taketomi and N. Go, *Biopolymers*, 17, 1531 (1978); <u>https://doi.org/10.1002/bip.1978.360170612</u>
- A.J. de Jesus and T.W. Allen, *Biochim. Biophys. Acta-Biomemb.*, **1828**, 864 (2013);
- https://doi.org/10.1016/j.bbamem.2012.09.009 11. B.G. Jean-Claude, Handbook on the Physicals and Chemical of Rare Earths, vol. 50, p. 141 (2016).

- 12. R.D. Peacock, Mol. Phys., 33, 1239 (1977).
- https://doi.org/10.1080/00268977700101051
- N. Bendangsenla, T. Moaienla, Th. David Singh, Ch. Sumitra, N.R. Singh and M.I. Devi, *Spectrochim. Acta A Mol. Biomol. Spectrosc.*, 103, 160 (2013);

https://doi.org/10.1016/j.saa.2012.11.011

- B. Huidrom, N.R. Devi, Th. David Singh and N.R. Singh, Spectrochim. Acta A Mol. Biomol. Spectrosc., 85, 127 (2012); https://doi.org/10.1016/i.saa.2011.09.045
- M. Xu, Z.-R. Ma, L. Huang, F.-J. Chen and Z. Zeng, Spectrochim. Acta A Mol. Biomol. Spectrosc., 78, 503 (2011); https://doi.org/10.1016/j.saa.2010.11.018
- A.A. Khan, H.A. Hussain and K. Iftikar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 60, 2087 (2004); <u>https://doi.org/10.1016/j.saa.2003.10.042</u>
- H.A. Hussain, A.A. Ansari and K. Iftikhar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 60, 873 (2004); https://doi.org/10.1016/S1386-1425(03)00312-3
- E.T. Nomkoko, G.E. Jackson and B.S. Nakani, *Dalton Trans.*, 1432 (2004); https://doi.org/10.1039/B316698H
- W.T. Carnall, P.R. Fields and K. Rajnak, J. Chem. Phys., 49, 4424 (1968); https://doi.org/10.1063/1.1669893
- W.T. Carnall, P.R. Fields and R. Sarup, J. Chem. Phys., 51, 2587 (1969); https://doi.org/10.1063/1.1672382
- 21. E.Y. Wong, J. Chem. Phys., **35**, 544 (1961); https://doi.org/10.1063/1.1731965
- 22. D.E. Henrie, *Mol. Phys.*, **28**, 415 (1974); https://doi.org/10.1080/00268977400102941
- W. Lamb, R. Young and S.R. La Paglia, J. Chem. Phys., 49, 2868 (1968); https://doi.org/10.1063/1.1670507
- R.A. Gangi and L. Burnelle, J. Chem. Phys., 55, 843 (1971); https://doi.org/10.1063/1.1676153.
- 25. K. Binnemans and C. Gorller-Walrand, J. Phys. Condens. Matter, 10, L167 (1998);

https://doi.org/10.1088/0953-8984/10/10/002

- C. Görller-Walrand, L. Fluyt, P. Porcher, A.A.S. Da Gama, G.F. De Sa, W.T. Carnall and G.L. Goodman, *J. Less Common Met.*, **148**, 339 (1989); <u>https://doi.org/10.1016/0022-5088(89)90049-0</u>
- 27. W.T. Carnall, P.R. Fields and B.G. Wybourne, *J. Chem. Phys.*, **42**, 3797 (1965);

https://doi.org/10.1063/1.1695840 28. C.V. Devi and N.R. Singh, *Arab. J. Chem.*, **10**, S2124 (2017);

- 20. C.v. Devi and N.N. Singh, Anal. J. Chem., 10, 52124 (2017), https://doi.org/10.1016/j.arabjc.2013.07.044
- C. Sumitra, T.D. Singh, M.I. Devi and N.R. Singh, J. Alloys Compd., 451, 365 (2008); <u>https://doi.org/10.1016/j.jallcom.2007.04.153</u>
- T.D. Singh, C. Sumitra, N. Yaiphaba, H.D. Devi, M.I. Devi and N.R. Singh, Spectrochim. Acta A Mol. Biomol. Spectrosc., 61, 1219 (2005); https://doi.org/10.1016/j.saa.2004.06.044