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INTRODUCTION

The study of concerted processes in organic chemistry has
been continually explored since the development of the general
theory of orbital symmetry by Woodward & Hoffmann [1-10].
It is generally accepted that [1,5]-shift usually proceeds by a
suprafacial concerted pathway involving an aromatic transition
state [11-27] as rationalized by Woodward and Hoffmann [W-
H] rule [28-31]. Further, the [1,5]-shifts in cyclic alkenes like
cyclo-pentadiene, cyclopropene and cycloheptatriene have also
been experimentally and theoretically explored [32,33]. Although
generally carbon and hydrogen shifts are well known, migration
of halogens have also been documented [10,13,30,34-36].

The aromaticity is a dynamic phenomenon which would
facilitate the pericyclic reaction by its enhancement in the
transition state [27]. Recently, during [1,5]-halo shift in 1,3-
pentadiene [37], a contra Woodward Hoffmann allowed
antarafacial pathway was noticed for [1,5]-F shift and amply
supported on the basis of aromaticity. The present paper tries
to further elaborate the role of aromaticity in this [1,5]-halo
shifts in 1,3-pentadienes systems with aromatic benzene and
naphthalene ring fused at 3,4-positions (benza and naphtha
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fused systems). The present study would evaluate the subtle
competition in aromaticity of the ring and the transition state
in deciding the reaction pathway and barrier to [1,5] shifts of
X in the system under study.

COMPUTATIONAL METHODS

In this study, all the geometries were modelled and
optimized at B3LYP [38-40]/6-31G(d,p) [38-40] level using
Gaussian 98 software [41]. The optimized geometries of the
reactants (R) and products (P) were characterized by real
frequencies and transition states (TS) have one imaginary
frequency corresponding to [1,5]-X migration. The intrinsic
reaction coordinate (IRC) paths have also been calculated,
which connected the TS with reactant and product. Thermo-
chemical activation parameters like ∆E‡, ∆G‡, ∆H‡ and ∆S‡

were calculated. Aromaticity index viz., nucleus independent
chemical shift (NICS) [42] values at the centre of the cyclic
transition states & aromatic rings and 1 Å above and below
the rings (NICS(0) and NICS(1), respectively) were computed
using the gauge invariant atomic orbital (GIAO) [43,44] method
at B3LYP/6-311G+(d,p) level.
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RESULTS AND DISCUSSION

[1,5]-Shift of benz and naphtha fused pentadiene systems
(BP(X) & NP(X) X = H/F/Cl/Br) (I-VIII) are modelled and
transition states corresponding to two stereochemical pathways

such as suprafacial [S] and antarafacial [A] modes are located
(Schemes I and II). But for BP(H) & NP(H) only supramode
TS is presented as the other antara mode could not be located
as reported earlier [37]. Optimized geometries of the transition
states of both modes [S & A] and their activation parameters
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Scheme-I: [1,5]-Shift in benzene annealed 1,3-pentadiene analogues where X = H (I); X = F (II); X = Cl (III); X = Br (IV); A = Benzene ring
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(∆G‡, ∆H‡ & ∆S‡) have been presented in Figs. 1 & 2 respec-
tively. According to W-H rule suprafacial [1,5]-shift is thermally
allowed and antarafacial [1,5]-shift is forbidden, but fluorine
shift tends to follow antarafacial pathway (contra W-H) [37].
In the present paper, our focus lies on the effect of annealed
benzene/(or) naphthalene ring in deciding the stereochemical
pathways of the [1,5]-shift of X in the systems under study.
Table-1 showed that benzene and naphthalene ring annealed
to pentadiene making it an embedded diene have commensura-
tely increased the barrier of both the stereochemical modes
supra and antara relative to the simple 1,3-pentadiene [37]
(Table-1).

I

IIa IIb

IIIa IIIb

IVa IVb
Fig. 1. Optimized geometries of transition states (TSs) of benzene annealed

1,3-pentadiene and its halogen analogues at B3LYP/6-31G(d,p) level
where H = I; F = II; Cl = III; Br = IV, STS: IIa, IIIa & IVa; ATS:
IIb, IIIb & IVb
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Fig. 2. Optimized geometries of transition states (TSs) of naphthalene
annealed 1,3-pentadiene and its halogen analogues at B3LYP/6-
31G(d,p) level where H = V; F = VI; Cl = VII; Br = VIII, STS:
VI(a), VII(a) & VIII(a); ATS: VI(b), VII(b) & VIII(b)

The benz and naphtha fused systems each show an increase
of about 10 & 15 kcal/mol, respectively in their [1,5]-X shift
barrier than free 1,3-pentadiene. As there is an increase in barrier
on benzene ring and naphthalene ring fusing, it could be looked
up as an additive effect due to benzene ring. This increase in
barrier might be due to alternation/loss of aromaticity in the
benzene ring in the reaction coordinate or due to other electronic
phenomenon.

Does fused benzene/naphthalene ring alter the preference
of fluorine shift from the contra Hoffman antarafacial mode

TABLE-1 
ACTIVATION PARAMETERS OF THE [1,5]-X SHIFT IN SYSTEMS I-VIII CALCULATED AT B3LYP/6-31G(d,p) LEVEL 

[1,5]-Suprafacial mode [1,5]-Antarafacial mode 
System ∆E‡ 

(kcal/mol) 
∆H‡ 

(kcal/mol) 
∆G‡ 

(kcal/mol) 
∆S‡ 

(cal/K/mol) 
∆E‡ 

(kcal/mol) 
∆H‡ 

(kcal/mol) 
∆G‡ 

(kcal/mol) 
∆S‡ 

(cal/K/mol) 

∆∆G‡
S-A

* 

(kcal/mol) 

I 42.58 
32.17 

41.88 
31.32 

43.90 
33.20 

6.77 
6.30 

– – – – – 

II 67.90 
57.56 

67.58 
57.17 

68.53 
58.28 

3.19 
3.7 

57.16 
47.50 

56.87 
47.08 

57.72 
48.23 

2.88 
3.8 

10.81 
10.05 

III 40.67 
30.36 

40.44 
29.95 

41.09 
31.29 

2.18 
4.5 

45.07 
37.64 

45.04 
37.43 

45.06 
38.18 

0.06 
2.5 

-3.97 
-6.89 

VI 35.31 
24.55 

35.01 
24.17 

35.78 
25.22 

2.58 
3.6 

43.37 
35.55 

43.31 
35.4 

43.29 
36.19 

-0.06 
2.6 

-7.51 
-10.96 

V 47.77 47.11 48.98 6.29 – – – – – 
VI 71.85 71.56 72.45 2.99 61.35 61.10 61.87 2.57 10.58 
VII 44.82 44.77 44.70 -0.25 47.26 47.26 47.25 -0.05 -2.55 
VIII 40.39 40.16 40.67 1.73 45.99 45.96 45.94 -0.05 -5.27 

*∆∆G‡
S-A refers to free energy between suprafacial TS and antarafacial TS.  

Values in italic represent the activation parameters of [1,5]-X shift in 1,3-pentadiene 
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to Hoffmann allowed suprafacial mode? Does the ring fusing
bring any change in the preference of suprafacial shift of chlorine
/bromine? Table-1 reveals the following: The BP(F) & NP(F)
tends to choose only antara mode while BP(H, Cl & Br) choose
supra mode for [1,5]-X shift. The barrier trend is as follow:
NP/BP(Br)supra < BP(Cl)supra < BP(H)supra < BP(F)antara. This trend
is exactly similar to 1,3-pentadienes. Further, the ∆∆G‡

S-A remains
the same for X = F, but it decreases for (X = Br, Cl) in both BP
and NP systems implying that antarafacial is becoming more
facile.

Role of aromaticity in the rate and stereochemistry of
the reaction: Nucleus Independent Chemical Shift (NICS)
values in Table-2 indicates the aromaticity of the sigmatropic
transition states at benzene/naphthalene ring centres. The arom-
aticity of suprafacial TS are more aromatic (characterized by
a more negative NICS value) while antarafacial modes are anti-
aromatic (positive NICS values) in the case of H, Cl & Br shifts.
But fluorine shift is opposite; TS of supra mode is antiaromatic
(positive NICS) and antara mode is aromatic (negative NICS).
This is consistent to earlier report [37] favouring the Contra
Hoffmann [1,5]-F shift via antarafacial mode. Further, the fact
that aromaticity of TS decides the favouredness of the pathway
has been established by relatively excellent correlation (Table-3)
(0.9) between ∆NICS(0,1) and (supra-antara) ∆∆G‡

S-A of BP(X)
& NP(X) systems (Fig. 3). Now let us focus on the aspect of
aromaticity loss of benzene and naphthalene ring at the TS as
the factor behind increase in reaction barrier. Table-4 lists the
loss of aromaticity in benzene ring (A) of BP systems and ring
1 & 2 of naphthalene rings (B & C) of NP systems relative to

TABLE-3 
CORRELATION COEFFICIENT OF AROMATICITY  

INDEX ∆NICS of TSs WITH ∆∆G‡
S-A 

Parameter ∆NICS(0) ∆NICS(1) 

(BP(X)) ∆∆G‡ 0.9993 0.9999 

(NP(X)) ∆∆G‡ 0.9975 0.9984 
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Fig. 3. Correlation between ∆∆G‡
S-A and ∆NICS of TSs [(a) & (b) Correlation

plots for BP(X); (c) & (d) Correlation plots for NP(X)]

their reactants. To envisage the direct effect of loss of aromati-
city correlation between ∆∆NICS(0,1) & ∆∆G‡

S-A of benz and
naphtha systems (Table-5) is done. A relatively good corre-
lation establishes our assumption that enhancement in barrier
is due to loss of aromaticity in the fused rings (Fig. 4).

Conclusion

[3,4]-Benz and naphtha fused 1,3-pentadiene undergo
[1,5]-shift of H/F/Cl/Br relatively slower than their 1,3-penta-
diene analogue. But the preference of contra Woodward-
Hoffmann antarafacial stereochemical pathway for [1,5]-fluorine
shift repeats back. However, other halogens favour [1,5]-supra-
facial shift. Although stereochemical pathway has not been
altered upon ring fusing, they have enhanced the barriers, which
commensurately correlates with loss of aromaticity of benzene
and naphthalene ring at the TS measured in terms of as NICS.
Hence, this article adds up to the fact that aromaticity of TS
goes hand in hand with the aromaticity of residual ring in deter-
mining the path and rate of the reaction.

TABLE-2 
AROMATICITY INDICES COMPUTED FOR THE TRANSITION STATES (TSs) OF I TO VIII 

[1,5]-Suprafacial mode [1,5]-Antarafacial mode 
System 

NICS(0) NICS(1) NICS(0) NICS(1) 
∆NICS(0)* ∆NICS(1)* 

I -13.68 -6.13 – –   
  -14.03 – –   

II 11.4 7.24 -7.41 -7.11 18.81 14.35 
  7.62  -6.11  13.73 

III -0.98 -4.58 9.68 6.2 -10.66 -10.78 
  -0.98  7.75  -8.73 

IV -3.18 -6.42 13.43 10.05 -16.61 -16.47 
  -3.18  11.23  -14.41 

V -5.4 -7.37 – –   
  -1 – –   

VI 13.03 10.71 -7.97 -6.66 21 17.37 
  8.41  -7.53  15.94 

VII -1.99 -5.38 11.76 12.15 -13.75 -17.52 
  -2.09  5.02  -7.11 

VIII -2.76 -7.32 15.79 15.48 -18.55 -22.79 
  -2.03  10.25  -12.28 

*∆NICS refers to the difference between corresponding suprafacial and antarafacial modes. Values in italic refer to NICS 1Å above the plane. 
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TABLE-5 
CORRELATION COEFFICIENT OF AROMATICITY  

INDEX ∆∆NICS OF RINGS WITH ∆∆G‡
S-A 

System ∆∆NICS(0)2 ∆∆NICS(1)2 

A ∆∆G‡ 0.691 0.8465 
B ∆∆G‡ 0.9916 0.9999 
C ∆∆G‡ 0.9999 0.9988 

2∆∆NICS(0,1) values represent the difference in ∆NICS(0,1) values 
between suprafacial and antarafacial modes. 
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TABLE-4 
AROMATICITY INDICES OF RINGS (A, B AND C) IN THE TSs OF I TO VIII 

[1,5]-Supra mode [1,5]-Antara mode Supra-antara 
System 

∆NICS(0)1 ∆NICS(1)1 ∆NICS(0)1 ∆NICS(1)1 ∆∆NICS(0) ∆∆NICS(1) 
∆∆G‡

 S-A 

A (BP(X))        
I -1.52 -1.15 – – – – – 
II -10.16 -9.09 -3.24 -2.91 -6.92 -6.18 10.81 
III -5.84 -4.97 -10.11 -7.06 4.27 2.09 -3.97 
IV -4.4 -3.59 -4.22 -3.8 -0.18 0.21 -7.51 

B (NP(X))        
V -0.22 -1.24 – – – – – 
VI -12.62 -10.87 -5.22 -1.78 -7.4 -9.09 10.58 
VII -5.39 -3.34 -9.03 -10.1 3.64 6.76 -2.55 
VIII -4.63 -3.32 -12.14 -13.64 7.51 10.32 -5.27 

C (NP(X))        
V -2.33 -1.78 – – – – – 
VI -8.99 -7.63 -3.09 -2.8 -5.9 -4.83 10.58 
VII -5.23 -4.06 -7.8 -6.44 2.57 2.38 -2.55 
VIII -5.8 -4.74 -9.99 -8.26 4.19 3.52 -5.27 

1∆NICS(0,1) values represent the difference in NICS(0,1) values between reactants and their corresponding TSs. 
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