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INTRODUCTION

Among the synthesized noble metal nanoparticles, silver nano-
particles (AgNPs) are more attracted than gold and palladium
nanoparticles, because of its low cost, environment friendly,
abundance, high photostability and catalytic properties [1-3].
It has better unique characteristics as compared to bulk form
and hence, extensive studies on silver nanoparticles have been
carried out and found applications in many fields. The bacteri-
cidal properties of silver nanoparticles have been cited in the
literature [4-7]. The studies on the anticancer properties of
AgNPs have also been well documented [8-10]. Silver nano-
particle synthesis using the green method is widely discussed
because it reduced hazardous wastes to the environment and
for safer clinical applications [11,12]. Synthesis of silver nano-
particles using green methods require environmentally friendly
solvents and non-toxic chemicals [13-18].

Effective applications of silver nanoparticles dependent
upon the sizes and shape. To tune the sizes of silver nano-
particles, various capping/stabilizing agents are used [19-22].
Green reducing agent like gallic acid which is a natural poly-
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phenolic compound is used in AgNPs synthesis [23-25]. The
designing of a fast, stable and simple method for AgNPs synth-
esis at room temperature in aqueous media is still a challenge.
Therefore, fast synthesis of stable AgNPs at low pH using gallic
acid as reductant and starch as a capping agent at room temper-
ature is reported here. The crystallite size of the synthesized
AgNPs was determined by using Debye-Scherrer’s formula.
TEM images revealed the existence of quasi-spherical, highly
facet hexagonal and triangular silver nanoparticles. The
synthesized AgNPs exhibited catalytic effect on the alkaline
hydrolysis of crystal violet dye and its reaction rate increases
2.1 times. The method used to study catalytic activity here is
simple, fast, cost-effective and reliable and can be used for
scavenging of toxic dyes from the contaminated samples.

EXPERIMENTAL

Silver nitrate, gallic acid and starch were procured from
Sigma-Aldrich, USA. Analytical grade sodium hydroxide was
also purchased from Merck. Crystal violet dye was purchased
from Himedia. Aqua-regia solution was used for cleaning all
the glasswares and finally rinsed with deionized water.
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Synthesis of AgNPs: In a cleaned 150 mL beaker, 20 mL
of AgNO3 (50 mM) was mixed with 50 mL of starch (0.34%
w/v) and stirred for 3 min at 25 ºC using a magnetic stirrer. To
the above solution, 30 mL of gallic acid (50 mM) was added
quickly and mixed thoroughly for another 2 min. One drop
(0.05 mL) of NaOH (0.1 M) was added to the above mixture
and immediately recorded the time of the start of the reaction
by using a stopwatch. The pH of the above mixture was noted
by using a pH-meter (Systronic pH System 361). The solution
colour becomes light yellow and then to deep grey within a
few seconds. The stirring of the solution continued for another
3 min for the homogeneous mixing of the solution. For examining
of nanoparticle formation and its stability, the absorbance was
measured at 3 min, 18 min, 60 min, 84 min, 1 d, 3 d, 5 d, 9 d
and 52 d by taking 0.1 mL of the reaction mixture and diluting
it with 4 mL of deionized water in a quartz cuvette by using
Beckman Coulter DU 720 spectrophotometer in the scan range
of 300-700 nm. The obtained AgNPs colloidal solution was
purified repeatedly by centrifugation for 10 min using REMI
R-24 at 10,000 rpm followed by re-dispersion of the residue
in deionized water and this process was repeated for three times.
Finally, at room temperature, the purified AgNPs pellets were
dried and kept in an Amber bottle for characterization and
applications. The mechanism of the reaction is given in Fig. 1.

Characterization of AgNPs: The maximum absorption
band of the synthesized nanoparticles was recorded by using
a UV-Vis spectrophotometer (Beckman Coulter DU 720 Spectro-
photometer) at room temperature. Powder X-ray diffractogram
of the prepared sample was taken by using BRUKER D2 phase
diffractometer (CuKα, λ = 1.54182 Å, 30 kV) in the scan range
2θ = 20-80º by preparing a thin film of the silver nanoparticles
on a clean commercial glass slide. The phase composition and
crystallite size were calculated from the XRD data by analyzing
the X-ray diffractogram by using Origin software. The particle
sizes of the prepared nanoparticles were measured by employing
transmission electron microscopy (JEM-2100, Jeol, 200 kV).
The FTIR spectroscopy of AgNP was carried out by using the
FTIR spectrophotometer (Tensor 27, Bruker, equipped with
ZnSe ATR) in the range of 4000-500 cm-1, whereas the surface
morphology was analyzed by using FESEM, SUPRA55 (CARL
ZEISS, Germany).

Catalytic degradation: The catalytic activity of the synthe-
sized AgNPs on alkaline hydrolysis of crystal violet dye was
carried out at room temperature. Firstly, maximum absorbance
(λmax) of crystal violet solution made by mixing 6 mL deionized

water with 4 mL dye (1 × 10-4 M) was recorded by using
Beckman Coulter DU 720 spectrophotometer. Secondly, a
control was prepared by mixing 5 mL deionized water with 4
mL crystal violet dye (1 × 10-4 M) and 1 mL of NaOH (5 × 10-2

M) solution. The absorbance maxima of the control were
monitored by using UV-Vis spectrophotometer at different time
intervals. Thirdly, 4.9 mL deionized water, 4 mL crystal violet
dye (1 × 10-4 M), 1 mL NaOH (5 × 10-2 M) and 0.1 mL prepared
colloidal AgNPs were mixed and measured its absorbance
maxima at different time intervals. The total volume of every
mixture was fixed at 10 mL and reaction time at 20 min. The
degradation percentage was determined by using eqn. 1:

o

o

A A
Degradation (%) 100

A

−
= × (1)

where Ao and A are the absorbances of crystal violet dye
solution at times corresponding to 0 min and t min, respectively,
at a characteristic absorption wavelength of 590 nm. Langmuir-
Hinshelwood equation was used for the study of the kinetics
of degradation, which is expressed by eqn. 2 [26]:

o
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The slope of straight-line plot of ln (A/A0) vs. degradation
time, t gives the pseudo-first-order rate constant, k of the
reaction.

RESULTS AND DISCUSSION

UV-visible studies: UV-vis spectra of AgNPs formed by
reducing silver nitrate with gallic acid and stabilized with starch
is shown in Fig. 2. There is no detectable surface plasmon
resonance (SPR) band before 3 min of reaction time indicating
that there is no formation of a sufficient amount of AgNPs.
But, after 3 min, silver nanoparticles formation started with
changing colour from light yellow to dark brown with a
characteristic surface plasmon resonance bands [27-29]. The
maximum absorption bands of the nanoparticles exhibited a
bathochromic shift with the progress of reaction time starting
from 419 nm and remained constant at 444 nm after 24 h. This
might be due to the slight AgNPs agglomeration with long
storage time. The colour of the synthesized nanoparticles did
not show any significant change in colour over 52 days which
supports the stability of the synthesized AgNPs [30].

XRD studies: The XRD pattern of the prepared AgNPs
along with JCPDS File No. 04-0783 is shown in Fig. 3. There
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Fig. 1. Schematic representation of the reaction mechanism of the formation of silver nanoparticles using gallic acid as reducing agent and
starch as the stabilizing agent
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Fig. 2. UV-vis spectra of silver nanoparticles synthesized by using gallic
acid as reducing agent and starch as the stabilising agent
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Fig. 3. XRD spectrum of synthesized silver nanoparticles

are no extra peaks due to the presence of impurities in the diffra-
ctogram. The highest intense peak is along the (111) plane.
The high intensity of peaks attributes to a high degree of crysta-
llinity of AgNPs. The broad nature of the peaks indicates the
polydisperse nature of the synthesized silver nanoparticles [31].
The peaks at 2θ values 38.018º, 44.289º, 64.396º and 77.452º
are assigned to (111), (200), (220) and (311) planes, respect-

ively of the fcc structure of silver and the diffraction pattern is
well-matched with JCPDS File No. 04-0783 of the fcc crystal
structure of silver. The average crystallite size of the nano-
particle was calculated by using Debye-Scherrer’s formula [32]
(D = Kλ/(βcos θ), where, D is average crystallite size, K =
0.94, λ = 0.154 nm is the wavelength of X-ray reflection, full-
width at half maximum (FWHM) of the XRD peaks was measured
in radian and is represented by β. The average crystallite size
calculated using the above formula was found to be 9.324 ±
1.314 nm.

Morphology studies: The TEM micrographs of the
synthesized AgNPs are shown in Fig. 4a-b with 200 nm and
100 nm scale bars, respectively. It is seen from the TEM images
that the synthesized AgNPs consists of quasi-spherical silver
nanoparticles of average diameter 48.42 ± 14 nm, highly facet
hexagonal silver nanoparticles with a mean edge length 31.75
± 7.29 nm and triangular silver nanoparticles of mean edge
length 48.55 ± 11.37 nm. It is also observed from the TEM
micrographs that the population of quasi-spherical silver nano-
particles is more dominant than hexagonal and triangular
AgNPs. Selected-area electron diffraction patterns of AgNPs
is shown in Fig. 4c and the presence of bright circular spots
confirmed the existence of crystalline silver nanoparticles [33].

Fig. 5a-c show the histograms showing the size distri-
butions of AgNPs of quasi-spherical, hexagonal and triangular
silver nanoparticles, respectively. Fig. 6 shows the scanning
electron micrographs of the as-formed silver nanoparticles and
revealed the surface morphology of the synthesized AgNPs
and indicating a uniform distribution of the nanoparticles.

FTIR studies: Fig. 7a shows the FTIR spectra of  the
synthesized AgNPs stabilized with (0.34 w/v) starch and pure
starch (Fig. 7b) at room temperature. A strong O-H stretching
band of starch is observed at 3308 cm-1. An asymmetric stret-
ching band due to C-H is observed at 2958 cm-1. The strong
absorption band at 1635 cm-1 is due to the O-H bending of
water adsorbed in starch. Intra and intermolecular hydrogen
bonding are responsible for slight shifting of band observed
in 3309-3308 cm-1 in AgNPs. The binding of OH group of
starch to AgNPs is confirmed by the observance of characteris-
tic bands of starch [34].

Fig. 4. (a) TEM micrograph of synthesized AgNPs (scale bar = 200 nm); (b) TEM micrograph of synthesized AgNPs (Scale bar = 100 nm);
(c) SAED pattern of AgNPs
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Fig. 6. SEM micrograph of synthesized AgNPs

Catalytic effect of AgNPs on alkaline hydrolysis of
crystal violet dye: The λmax of crystal violet dye in aqueous
solution shows an absorption band at 590 nm. Plots of relative
absorption band versus absorption intensity as a function of
time in the absence of AgNPs is shown in Fig. 8a and whereas
in the presence of AgNPs is shown in Fig. 8b. A decrease in
the absorption intensity with time is due to the formation of
triarylleucohydroxide, a colourless product (Fig. 9).

Fig. 10a and 10b are the straight-line plots drawn between
Ln (A/Ao) vs. time in the absence and presence of AgNPs,
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Fig. 7. FTIR spectra of (a) starch stabilized AgNPs (b) pure starch

respectively. Table-1 shows the degradation percentage (D %)
of crystal violet in the absence and presence of AgNPs, the
ratio of degradation percentage and the average ratio of degrad-
ation percentage. From Table-1, the degradation percentage
ratio is 1.5 and almost uniform throughout the reaction, which
attributes to the uniform catalytic function of synthesized AgNPs.
From the slopes of straight-line plots, the degradation reaction
rate constants were also calculated and found to be 2.41 × 10-2

min-1 and 4.49 × 10-2 min-1, in the absence and the presence of
AgNPs, respectively. From the rate constant values, it was found
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TABLE-1 
DEGRADATION PERCENTAGE (D, %) OF CRYSTAL VIOLET IN THE ABSENCE AND  
PRESENCE OF AgNPs, THE RATIO OF D (%) AND THE AVERAGE RATIO OF D (%) 

Absence of AgNPs Presence of AgNPs 
Time (min) 

Absorbance D (%) Absorbance D (%) 
Ratio of D (%) 

Average ratio of 
D (%) 

0 0.95 – 0.95 – – 
2 0.74 22.11 0.67 29.47 1.3 
4 0.72 24.21 0.62 34.74 1.4 
6 0.69 27.37 0.57 40.00 1.5 
8 0.66 30.53 0.52 45.26 1.5 

10 0.64 32.63 0.48 49.47 1.5 
12 0.61 35.79 0.44 53.68 1.5 
14 0.58 38.95 0.4 57.89 1.5 
16 0.55 42.11 0.36 62.11 1.5 
18 0.53 44.21 0.33 65.26 1.5 
20 0.51 46.32 0.3 68.42 1.5 

1.5 
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Fig. 9. Alkaline hydrolysis of crystal violet and formation of triarylleuco-
hydrooxide (a colourless product)
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that the reaction rate of alkaline hydrolysis of crystal violet
dye is 2.1 times enhanced due to the presence of AgNPs. The
synthesized AgNPs helps the electron relay from OH− to crystal
violet dye (acceptor). The OH− ions are nucleophilic, while
crystal violet is electrophilic concerning AgNPs, where the
AgNPs accept electrons from OH− ions and convey them to
crystal violet forming the colourless product [35].

Conclusion

Successfully synthesized quasi-spherical, hexagonal and
triangular AgNPs using green chemicals, starch and gallic acid

at room temperature (25 ºC). The XRD analysis revealed the
formation of face centre cubic structure of silver crystal with
preferential orientation along (111) plane with a crystallite
size of 9.32 ± 1.31 nm. TEM images showed the formation of
quasi-spherical, highly facet hexagonal and triangular silver
nanoparticles. The average degradation percentage was 1.5
and the catalytic action of the synthesized AgNPs was uniform
throughout the reaction. The reaction rate of degradation of
crystal violet dye in alkaline medium was increased by 2.1
times due to the presence of AgNPs. These experimental findings
will have the potential applications in removing the toxic dyes
from industrial effluents.
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