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INTRODUCTION

Chlorophenols, which are employed as intermediates in the
synthesis of pesticides, herbicides, fungicides, paper industries
and dyes are the one of the most abundant environmental conta-
minants [1-5]. Contamination with numerous phenol substrates
is observed in drinking water and industrial wastewaters, and
toxic compounds are found in the atmosphere [6,7]. Presently,
several methods are used for the estimation and analysis of
phenol pollutants in soil or water. An estimation method involves
the oxidation of phenol substrate with 4-aminoantipyrine
(4-AAP) to form a pink antipyrilquinoneimine dye. This catalytic
oxidation reaction (COR) can be catalyzed through many catal-
ysts [8-12]. The reactive ability and nature of catalysts directly
influences its sensitivity and accuracy. With 4-aminoantipyrine,
phenol substrates undergo oxidation through molecular oxygen
[13]. Molecular oxygen is readily available, eco-friendly,
presents outstanding oxidative behaviour and has led to green
chemistry development [14]. 4-Aminoantipyrine is a metabo-
lite of antipyrine, which serves as anti-inflammatory and
antipyretic agents [15]. 4-Aminoantipyrine causes cations and
anions to become detectable in the chemosensing method [16-
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18]. The products of 4-aminoantipyrine can be highly effec-
tively used to estimate phenols, phenol substrates, glucose
contents in phenols, uric acid and peroxidase in hydrogen
peroxide [19].

The complexes of metal phthalocyanine (MPc) exhibit
low environmental hazards, show an excellent catalytic activity,
and present critical applications dye industries. MPcs have
stable higher oxidation states and electro-active central metal
ions; thus, they are important in chlorophenol COR. MPcs
assist in numerous oxidation reactions, such as nitrile and nitrate
oxidation [20], L-cysteine oxidation [21], molecular O2 redu-
ction [22], olefin oxygenation [23] and water electrolysis [24].
Few researchers [25,26] have reported catalyst applications
to acquire a substitute for activators and found the means to
conduct reactions at low temperatures with less reaction time.

In this study, the HisNiPc complex was synthesized through
a reaction between histidine,  tetracarboxylic acid and Ni(II)
phthalocyanine (NiTcPc). The FTIR, UV-visible, elemental
analysis results supported HisNiPc formation. The thermal
stability of the complex was studied using thermogravimetric
estimation and its molecular morphology was investigated
through PXRD. The HisNiPc was used for the first time in the
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catalytic oxidation reaction (COR) of phenol contaminant subs-
trates and phenol in water. Phenolic compounds, including
phenol, p-chlorophenol (p-CP), o-chlorophenol (o-CP) and 2,4-
dichlorophenol (DCP), readily undergo oxidation by using
dissolved oxygen in the presence of prepared catalyst, HisNiPc.
Phenol substrates vigorously react with 4-aminoantipyrine to
produce a pink dye. The catalytic oxidation reaction (COR)
and their products were investigated through UV-visible spectro-
scopy. The results confirmed the chromogenic recognition of
phenolic pollutants.

EXPERIMENTAL

All chemical compounds, solvents and reagents were of high
grade and used without purification (Sigma-Aldrich, India).
The reaction was performed under the nitrogen atmosphere.
Some chemicals were prepared in oxygen-free distilled water.
Nickel(II) phthalocyanine (NiTcPc) was synthesized by known
procedure [27,28]. The FT-IR spectra have been recorded with
a Perkin-Elmer 1600 FT-IR spectrophotometer using KBr pellets.
Electronic spectra were recorded on a Perkin-Elmer Lambda
25 spectrophotometer in DMF. The XRD spectra was measured
by Bruker D8 diffractometer CuKα radiation source. Thermal
stability of the synthesized HisNiPc was analyzed by thermo-
gravimetric analysis method by way of STA-6000 system in
the temperature range of 0 to 1000 ºC with the scan rate of 20 ºC
min-1 under blow rate of 20 mL/min oxygen.

Synthesis of histidine substituted Ni(II)phthalocyanine
(HisNiPc) complex: A mixture of histidine (0.05 mmol), tetra-
carboxylic-Ni(II)-phthalocyanine (NiTcPc) (0.003 M), K2CO3

(0.06 mM), DCC (10 mg) and DMF 30 mL in 250 mL and
kept for stirring under nitrogen environment for 30 h at 28 ºC
(Scheme-I). The green colour product was filtered, washed
with warm water then rinsed with ethanol followed by distilled
water. Finally, the HisNiPc precipitate was dried at 40 ºC for 1 h
Yield: 70%. Anal. calcd. (found) % for C60H46N20O12Ni (m.w.:
1295.82): C, 55.527 (55.501); H, 3.572 (3.551); N, 21.584
(21.576); O, 14.793 (14.773), Ni, 4.522 (4.506).

RESULTS AND DISCUSSION

FT-IR studies: The key IR bands of HisNiPc complex
was observed at 1652-1621, 1560-1480, 1440-1410, 1325-
1315, 1290-1245, 1231-1210, 1140-1120, 1110-1050, 935-
930, 830-820, 780-740 and 710-670 cm-1. While for NiTcPc
complex, the key IR bands were observed at 3400-3200 (amide
peak), 3000-2800 (C=N), 1652-1621 (C=C), 1560-1480
(-C=C-N=), 1325, 1315, 1299, 1245, 1230, 1210, 1137  (C-O),
1120, 1050, 930, 820, 740, 710 cm-1 (Fig. 1).
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Fig. 1. FT-IR spectra (cm-1) of (a) HisNiPc complex (b) NiTcPc complex

UV-Vis studies: The UV-Vis spectra of HisTcPc and
NiTcPc in DMSO (Fig. 2), which is the characteristic absorp-
tions range between 600-700 nm in the Q band region [29,30].
The Q band observed was ascribed to the π-π* transition from
the HOMO to the LUMO of phthalocyanine (Pc) ring. The
other bands (B) in the UV region at 290-390 nm were observed
due to the transitions from the deeper π levels to the LUMO.
The HisNiPc complex obtained in this study did not give
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shoulder spectrum in DMSO while NiTcPc gave shoulder at
608 nm. The electronic spectrum showed monomeric behaviour
evidenced by a single Q band, typical for metal bonded phthalo-
cyanine complexes.The optical band gap was determined from
the Tauc plot using eqn. 1:

αhν = α0(hν – Eg)n (1)

Mass studies: The theoretical observation of mass spectra
of HisNiPc complex was 1297.82 and the experimental mass
of the HisNiPc exhibits molecular ion peak at 1295.82 (Fig.
3), which is in the agreement with the the proposed structure
of the compound.

Thermal studies: Fig. 4 showed the thermal stability of
HisNiPc complex. In the first step, the evaporation of water
took place at 235.75 ºC; in the second step, HisNiPc undergoes
the degradation and decomposition of the substituent with
29.6% of weight loss occured at 286.66 ºC and in the third step,
the phthalocyanine ring decomposed with 7.45% of weight
loss, finally, metal was converted into metal oxide 20.23% of
weight loss at 580.60 ºC [31,32]. The experimental results
showed that the HisNiPc complex exhibited good thermal
stability at 235.75 ºC. It indicates that the melting point and
stability of the HisNiPc complex was high ≥ 580.60 ºC. There-
fore, the HisNiPc complex was suitable for an electrochemical
and chemical reaction.

XRD studies: The powder XRD of HisNiPc complex was
obtained by a CuKα radiation source (λ = 1.540 Å) [31,33-
36]. The diffraction pattern of HisNiPc complex shows the broad
peaks with different diffused intensity, the intensity of peak
increased by histidine group (Fig. 5). The less intensity and
short peak observed at 2θ values of 100º, 150º, 160º, 170º,
190º, 200º, 300º and 450º. A highly long and sharp peak was
observed at 2θ values of 50º, 60º, 120º, 130º and 180º indicates
that HisNiPc was amorphous. The XRD analysis also shows
the good microstrain and dislocation density of the HisNiPc
complex.

Catalytic oxidation: The catalytic oxidation reactions
(CORs) of substituted phenols with 4-aminoantipyrine (4-AAP)
using HisNiPc as catalyst were carried out (Schemes II and
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Fig. 3. Mass spectrum of HisNiPc complex

III). In a 100 mL beaker, 30 mL demineralized water, 6 mL of
4-AAP (1.5 × 10-3 mol/L) and 6 mL of substituted phenol were
thoroughly mixed followed by the addition of 0.01 mM of
HisNiPc. The reaction mixture was ultrasonicated for 5 min
with continous stirring at 30 ºC. The product was filtered and
analyzed with a UV-visible spectrophotometer. The product
was then washed with deionized water until pink colour disap-
peared and kept for drying in 30 ºC in an oven. The dry HisNiPc
powder was washed finally with hot water and dried at 110
ºC.

2.5

2.0

1.5

1.0

0.5

0

A
bs

or
ba

nc
e

300 400 500 600 700 800

Wavelength (nm)

HisTcPc
NiTcPc (a) 

(b)

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0

(
h

)
 (

e
V

 c
m

)
α

ν
2

–1

Tauc plot

E  = 3.00 eVg

2.5 3.0 3.5 4.0 4.5 5.0

Energy (eV)

Fig. 2. UV-vis spectra of (a) HisNiPc complex (b) NiTcPc complex (S2) Tauc Plot of the HisNiPc complex

Vol. 33, No. 10 (2021) Synthesis and Catalytic Behaviour of Histidine Substituted Nickel(II) Phthalocyanine  2457



In
te

ns
ity

 (
a

.u
.)

10 20 30 40 50 60
2  (°)θ

(a)

(b)

NiTcPc
HisTcPc

Fig. 5. XRD spectra of (a) NiTcPc (b) HisNiPc

Catalytic-oxidation of phenols and chloro phenols by
UV-visible method: The UV-Vis chromogenic absorption
spectra of o-CP, DCP, p-CP and phenol with 4-aminoantipyrine
in the presence of  HisNiPc as catalyst at regular intervals is
shown in Fig. 6. The characteristics peaks corresponds to the
formation of dye at 520 nm indicates that COR of phenols
converted into chloro substituted anti-pyrilquinoneimine dye

[37]. The intensity of dye can be observed more in the range
of 500-530 nm or observed at low intense in the range of 210-
350 nm within 120 min. After 120 min,  no further change was
observed in the absorption, thus considered as the endpoint of
a reaction. The absorption intensity was observed at 520 nm,
the catalytic reactivity trends for various phenol compounds
were in the order of o-CP > DCP > phenol > p-CP.

Catalytic oxidation of phenol substrates by varying
pH: The COR of phenols with 4-aminoantipyrine (4-AAP)
was carried out with different pH conditions [38]. The pKa

value for the deprotonation of o-CP and DCP, the hydroxyl
species is 8.49 and 7.86, respectively; therefore, phosphate
buffer solution (PBS, pH 9 and 10) and acetic acid buffer
solution (pH 4 and 5) as well as demineralized water was utilized
to study the catalytic reaction by varying with pH.

Fig. 7 shows the dye formation process in o-CP, DCP,
p-CP and phenol system at various pH. In o-CP system (Fig.
7a), the catalytic reaction was over after 2 h at pH-7.0 and 2.5 h
at pH 4 and 5, while the reaction was continued after 4 h at pH
9 and 10. From these results, the COR of o-CP in demineralized
water, more dye formed at pH 7 within 120 min. The formation
of dye at pH 4 and 5 occured after 150 min, and at pH 9 and
10 occured at ≥ 240 min. The reactions of DCP at studied pH
(Fig. 7b) was also similar to o-CP.
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In p-CP (Fig.7c), the reaction was over after 2.5 h at pH
7.0 and 3.0 h at pH 4 and 5, while the reaction proceeded after
5 h at pH 9 and 10. From these results, the COR of p-CP in
demineralized water, maximum dye yield at pH 7.0 was occured
at ≥ 150 min. The formation of dye at pH 4 and 5 occured
after 180 min and at pH 9 and 10, the dye formed after 300

min. The reaction of phenol of studied pH was similar to
p-CP but small variation was observed at pH 9 and 10, as shown
in Fig. 7d.

Catalytic oxidation of phenol substrates by the catalytic
quantity: The catalytic role is important in the formation of
dye yield. The HisNiPc catalytic dosage of 10 mg, 15 mg, 20
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mg, 25 mg and 30 mg was used for the catalytic oxidation of
o-CP, DCP, p-CP and phenol. The maximum absorption was
monitored within 300 min as shown in Fig. 8. The o-CP, DCP,
p-CP and phenol results showed that 20 mg of HisNiPc catalyst
contributed to the maximum formation of dye, since at this
amount, the activation energy reduces more and the reactants
easy to convert into the product. However, excess of catalyst
30 mg did not contributed the good catalytic efficiency because
of the dye deposited on the catalytic site. Thus, 20 mg HisNiPc
catalyst was optimized for the formation of dye in o-CP, DCP,
p-CP and phenol after 180 min.

Catalytic oxidation of phenol substrates by varying
temperature: The COR of phenol substrates was performed
at various temperatures viz. 5, 25, 40 and 60 ºC, the maximum
absorption was monitored within 300 min. The results revealed
that at 40 ºC, the reaction rate was faster due to COR of phenols
related to the fast concussion of the radical species, therefore
more dye formation takes place as shown in Fig. 9. At 60 ºC,
less dye formed due to the small effect of rate of reaction on
COR and it involves the pseudo-first-order reaction [37] and
according to the Arrhenius theory, the rate of side reactions
depends upon the yield of the dye. At 15 ºC and 25 ºC, the rate

of reaction was slow thus less yield formed at low temperature.
The above data indicates that the temperature was also affected
by the COR of phenols and chloro phenols reactions.

Catalytic oxidation under aerobic and anaerobic condi-
tions: The catalytic oxidation reactions of o-CP, DCP, p-CP
and phenol were carried out in presence of air and no other
oxidant was used. The reaction was done in a neutral atmosp-
here by the continuous supply of N2 gas in the reaction mixture.
Under anaerobic conditions (Fig. 10a), the rate of dye forma-
tion was more forbidden compared to typical catalysis (Fig.
10d), which indicates that oxygen is essential for the oxidation
of phenols. Usually, the electrons gained by oxygen molecule
to become active oxygen radical (O2

•− and OH−) and thus facili-
tating the oxidation reaction (Scheme-IV) [39]. The O2

•− is
also an important for the chromogenic reaction and an O2

•−

mediator in the oxidation of phenol mechanism of HisNiPc
catalysis was confirmed. Further, the typical catalysis could
also proceed efficiently in absence of light (Fig. 10b), which
gives the evidence that in the absence of sunlight and with the
presence of catalyst o-CP, DCP, p-CP and phenol, the catalytic
oxidation process proceeds. The overall reaction mechanism
proceeds in three steps [40] (Scheme-V) viz. step-I: formation
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of p-quinoid radical by treating with phenol and oxygen; step-
II: formation of antipyrine-NH3

+; and step-III: formation of
chloro substituted antipyrilquinoneimine dye.

Conclusion

A novel histidine substituted nickel(II) phthalocyanine
(HisNiPc) complex was synthesized and chacterized by mass,
FT-IR, UV-visible, elemental analysis, X-Ray diffraction and
Thermogravimetric techniques. Furthemore, the catalytic oxid-
ation behaviour of new complex against phenols and chloro
phenols in water was also carried out reported. The results
indicated that several phenolic compounds like p-chlorophenol
(p-CP), o-chlorophenol (o-CP), 2,4-dichlorophenol (DCP) and
phenol were easily oxidized in the presence of HisNiPc catalyst
and rapidly reacts with 4-aminoantipyrine to produce pink dye.
The formation of the pink dye involved the transfer of a single
electron to dioxygen using the HisNiPc catalyst.
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