

# **Biological Activities of Some Novel 1,2,4-Triazole Derivatives**

XIANYOU WANG<sup>\*</sup>, YANPING PANG, PEIYUN CHEN and GUANGCHEN WU

College of Quality and Technical Supervision, Hebei University, Baoding, P.R. China

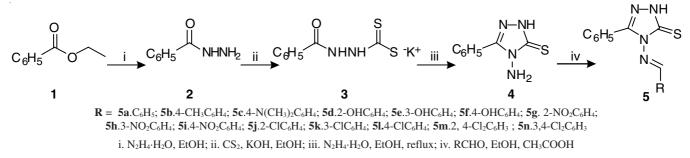
\*Corresponding author: E-mail: xianyouwang@126.com

| Received: 2 July 2016; | Accepted: 15 September 2016; | Published online: 29 October 2016; | AJC-18134 |
|------------------------|------------------------------|------------------------------------|-----------|
|                        |                              |                                    |           |

The antifungal activity of some reported 1,2,4-triazole derivatives against *Rhizoctonia solani*, *Fusarium graminearum* and *Blumeria graminis* at dosages of 50  $\mu$ g mL<sup>-1</sup> were evaluated. The antifungal tests indicated that some of the compounds exhibited promising antifungal activity.

Keywords: 1,2,4-Triazole, Schiff base, Synthesis, Antifungal activity.

Triazoles and their heterocyclic derivatives represent an interesting class of compounds, which possess a wide range of biological activities, such as pesticides, fungicides, herbicidal, anticancer, anti-inflammatory, antiviral and antimicrobial properties [1-5].


In our previous work, we have reported the synthesis and antifungal activities of some 1,2,4-triazole derivatives, finding that most of the synthesized compounds showed interesting antifungal activities [6]. Nowadays, in this research paper the authors have expand the scope of the bactericidal activity of some compounds. The target compounds were prepared following the reaction sequences shown in **Scheme-I**.

Antimicrobial activity: Inhibitive active freshly prepared compounds were tested by mycelium growth rate method under the laboratory conditions and these target derivatives were screened for antifungal activity against *Rhizoctonia solani*, *Fusarium graminearum* and *Blumeria graminis* at dosages of 50 µg mL<sup>-1</sup>. Antifungal activity was determined by measuring the diameter of the inhibition zone. The growth inhibition rates were calculated by using the following equation:

#### $I = [(C-T)/C] \times 100 \%$

Here, I is the growth inhibition rate (%), C is the control settlement radius (mm) and T is the treatment group fungi settlement radius (mm). Activity of each compound was compared to kresoxim-methyl as standard.

**Biological evaluation:** The fungicidal activities of the series of 1,2,4-triazole derivatives the compound **5** were tested at a concentration of 50 µg mL<sup>-1</sup> by a modified method as described in the literature [7]. The values (Table-1) clearly indicate that the compounds **5g** and **5j** exhibited promising antifungal activity, inhibiting growth of *Rhizoctonia solani* at 42.23 and 37.95 % and *Fusarium graminearum* at 54.17 and 39.55 %, respectively. However, the obtained values were still less than that of kresoxim-methyl (65.32 % against *Rhizoctonia* 



Scheme-I: Synthetic route of target compounds 5a-5n [Ref. 6]

| TABLE-1<br>FUNGICIDAL ACTIVITIES OF COMPOUNDS <b>5a-5n</b><br>(INHIBITION RATE, %, 50 μg mL <sup>-1</sup> ) |                       |                         |                      |  |
|-------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------|----------------------|--|
| Entry                                                                                                       | Rhizoctonia<br>solani | Fusarium<br>graminearum | Blumeria<br>graminis |  |
| 5a                                                                                                          | 20.80                 | 12.19                   | 23.53                |  |
| 5b                                                                                                          | 10.38                 | 19.36                   | 43.69                |  |
| 5c                                                                                                          | 19.44                 | 10.66                   | 70.91                |  |
| 5d                                                                                                          | 18.14                 | 19.72                   | 22.34                |  |
| 5e                                                                                                          | 14.32                 | 15.32                   | 21.66                |  |
| 5f                                                                                                          | 10.44                 | 9.18                    | 33.47                |  |
| 5g                                                                                                          | 42.23                 | 54.17                   | 39.83                |  |
| 5h                                                                                                          | 24.42                 | 26.45                   | 16.02                |  |
| <b>5</b> i                                                                                                  | 14.85                 | 19.33                   | 71.03                |  |
| 5j                                                                                                          | 37.95                 | 39.55                   | 37.49                |  |
| 5k                                                                                                          | 25.63                 | 28.61                   | 25.46                |  |
| 51                                                                                                          | 11.01                 | 19.76                   | 56.10                |  |
| 5m                                                                                                          | 27.31                 | 11.63                   | 70.79                |  |
| 5n                                                                                                          | 21.42                 | 17.12                   | 49.46                |  |
| Kresoxim-methyl                                                                                             | 65.32                 | 73.36                   | 100                  |  |

*solani* and 73.36 % against *Fusarium graminearum* at 50 μg mL<sup>-1</sup>). Moreover, compounds **5c**, **5i and 5m** exhibited 70.91, 71.03 and 70.79 % inhibitory activity against *Blumeria graminis*, respectively.

Interestingly, the fungicidal activities of the synthesized compound **5** were influenced by the position of substituted group on the benzene ring. The sequence of fungicidal activity against *Rhizoctonia solani* and *Fusarium graminearum* was as follows: *o*-substituted benzylidene derivatives > *m*-substituted benzylidene derivatives.

### Conclusion

The compounds were screened for their antifungal activity by mycelium growth rate method. The antifungal tests indicated that compounds **5g** and **5j** exhibited promising antifungal activity against *Rhizoctonia solani* and *Fusarium graminearum*. Moreover, compounds **5c**, **5i** and **5m** exhibited higher fungicidal activities against *Blumeria graminis*. This study provides an impetus to the further exploration of antifungal compounds.

## ACKNOWLEDGEMENTS

The authors thank Hebei Natural Science Foundation (B2012201053) for financial support.

## REFERENCES

- 1. S. Eswaran, A.V. Adhikari and N.S. Shetty, *Eur. J. Med. Chem.*, **44**, 4637 (2009).
- B.F. Abdel-Wahab, E. Abdel-Latif, H.A. Mohamed and G.E.A. Awad, *Eur. J. Med. Chem.*, **52**, 263 (2012).
- B.L. Wang, X.H. Liu, X.L. Zhang, J.F. Zhang, H.B. Song and Z.M. Li, *Chem. Biol. Drug Des.*, 78, 42 (2011).
- P.L. Zhao, A.N. Duan, M. Zou, H.K. Yang, W.W. You and S.G. Wu, *Bioorg. Med. Chem.*, 22, 4471 (2012).
- Z. Fan, Z. Yang, H. Zhang, N. Mi, H. Wang, F. Cai, X. Zuo, Q. Zheng and H. Song, *J. Agric. Food Chem.*, 58, 2630 (2010).
- X.Y. Wang, P.Y. Chen, Y.P. Pang, Z.L. Zhao and G.C. Wu, Asian J. Chem., 26, 8207 (2014).
- J. Wilamowski, E. Kulig, J.J. Sepiol and Z.J. Burgiel, *Pest Manag. Sci.*, 57, 625 (2001).