

Asian Journal of Chemistry; Vol. 29, No. 12 (2017), 2781-2784

ASIAN JOURNAL OF CHEMISTRY

https://doi.org/10.14233/ajchem.2017.20886

Viscometric and Thermodynamics Study of Bi-Univalent Mixed Electrolytes in Aqueous Solutions at 293.15, 303.15 and 313.15 K

DURGESH GAUTAM*, VARSHA SHARMA and MUKHTAR SINGH

Department of Chemistry, Agra College, Agra-282 002, India

*Corresponding author: E-mail: dgautamchem@gmail.com

Received: 23 June 2017; Accepted: 18 September 2017;

AJC-18633

Viscosities (η) and apparent molar volumes (V_ϕ) of the solutions of bi-univalent mixed electrolytes in aqueous solutions have been determined at 293.15, 303.15 and 313.15 K. From these data the values of coefficients A and B of Jones-Dole equation and that of V_ϕ^0 and S_v of Masson's equation have been obtained. Besides the activation thermodynamic quantities $\Delta\mu_2^{0\#}$, $\Delta H_2^{0\#}$ and $\Delta S_2^{0\#}$ of viscous flow have also been calculated. The variation of ϕ_v with y, fraction of ionic strength due to the first electrolyte in the mixture of two electrolytes at different temperatures is linear. From η and ϕ_v data, the values of coefficients A and B of Jones-Dole equation and that of V_ϕ^0 and S_v of Masson's equation have been obtained. Besides the activation thermodynamic quantities $\Delta\mu_2^{0\#}$, $\Delta H_2^{0\#}$ and $\Delta S_2^{0\#}$ of viscous flow have also been calculated for the mixed electrolytes in aqueous solutions. It is seen that the values of $\Delta\mu_2^{0\#}$ are much larger as compared to those of $\Delta\mu_1^{0\#}$ for all the bi-univalent mixed electrolytes. The values of $T\Delta S_2^{0\#}$ are negative while those of $\Delta H_2^{0\#}$ are positive and that $\Delta H_2^{0\#} > T\Delta S_2^{0\#}$. Thereby suggesting that ion-solvent interaction for the mixed electrolyte system, are nearly complete in the ground state. Further these the values of $T\Delta S_2^{0\#}$ indicate the transition state is associated with the bond breaking and increase in order.

Keywords: Viscosities, Apparent molar volumes, Mixed electrolytes, Aqueous solution.

INTRODUCTION

The studies of thermodynamic properties of aqueous mixed electrolytic solutions using the Mayer-MeMillian [1,2] theory as developed by Friedman and Anderson have been found to be useful in understanding the specific ion-ion interactions in solution Patil and coworkers [3,4] have determined viscosities of aqueous mixed electrolytic solutions for the systems. KBr-NaBr. KBr-Bu₄NBr. NaCl-NaBr and NaCl-Bu₄NBr at various constant ionic strength with varying electrolyte mole fractions (y) at 25 °C.

It appears that studies on viscosities and apparent molar volume of bi-univalent mixed electrolytes in aqueous solution in relation to ion-ion and ion-solvent interaction are still lacking. With this aim, present study has been undertaken in aqueous solutions at different temperatures. The following bi-univalent mixed electrolytes have been used:

$$\begin{split} &CaCl_2 + BaCl_2, NiCl_2 + BaCl_2, MgCl_2 + BaCl_2, MnCl_2 + CaCl_2, \\ &CaCl_2 + MgCl_2, NiCl_2 + MgCl_2, MnCl_2 + NiCl_2, NiCl_2 + CaCl_2, \\ &NiCl_2 + SrCl_2, Mg(NO_3)_2 + Ca(NO_3)_2, Zn(NO_3)_2 + Mg(NO_3)_2, \\ &Sr(NO_3)_2 + Co(NO_3)_2, Co(NO_3)_2 + Zn(NO_3)_2, BaCl_2 + MnCl_2, \\ &BaCl_2 + CoCl_2, NiCl_2 + CoCl_2, SrCl_2 + CoCl_2, CoCl_2 + MgCl_2 \\ &and SrCl_2 + MgCl_2. \end{split}$$

The title study has been undertaken in the light of the following aspects:

Published online: 30 October 2017;

- (1) Determination of densities and viscosities of aqueous solutions of above mentioned bi-univalent mixed electrolytes at different temperatures (293.15, 303.15 and 313.15 + 0.0 1 K) as a function of fraction of the ionic strength due to the first electrolyte in the mixture of two electrolytes (here in after denoted by y) keeping the ionic strength constant at a particular value depending upon the solubility of the electrolytes;
- (2) Analysis viscosity data in the light of Jones-Dole equation;
- (3) Determination of apparent molar volume (ϕ_v) from the density data as a function of y, at different temperatures and calculation of the values of constants ϕ_v^0 and S_v of Masson's equation;
- (4) Determination of free energies of activation for viscous flow $\Delta\mu_1^{0\#}$ and $\Delta\mu_2^{0\#}$ per mole of solvent and solute respectively and also the calculation of entropy of activation ($\Delta S_2^{0\#}$) and enthalpy of activation ($\Delta H_2^{0\#}$) of the bi-univalent mixed electrolytes solutions at different temperatures with a view to interpret the solution behaviour of mixed electrolytes; and
- (5) Ascertaining structure-making or structure-breaking capacities of mixed electrolyte systems in aqueous solution.

2782 Gautam et al. Asian J. Chem.

EXPERIMENTAL

All the bi-univalent electrolytes were of analytical reagent grade and were used after drying in a vacuum oven at 110 °C for 10 to 12 h. The standard stock solutions of these electrolytes were prepared in doubly distilled water (specific conductivity: 10^{-6} ohm⁻¹ cm⁻¹) The solutions of mixed electrolytes of different composition with y varying in the range of 0.0 of 1.0, were prepared by mixing requisite volume of the solutions of individual electrolytes, in a measuring flask keeping the ionic strength constant.

The densities and viscosities of aqueous solutions of mixed electrolytes were determined at different temperatures (293.15, 303.15 and 313.15 ± 0.01 K). The viscosity data were analyzed in the light of the modified form of Jones-Dole equation [5] as given blow:

Jones-Dole equation is

$$\eta_{\rm rel} = \frac{\eta}{\eta_0} = 1 + A\sqrt{C} + BC \tag{1}$$

or
$$\frac{(\eta_{rel} - 1)}{\sqrt{C}} = A + B\sqrt{C}$$
 (2)

In the case of solutions of mixed electrolytes (at a constant ionic strength) replacing C by y *i.e.* fraction of ionic strength due to the first electrolyte in the mixtures of two electrolytes in eqn. 3, the Jones-Dole equation assumes the following modified form [6].

$$\frac{(\eta_{rel} - 1)}{\sqrt{y}} = A + B\sqrt{y}$$
 (3)

Thus from the linear plots of $(\eta_{rel}-1)/\sqrt{C}$ and $\frac{(\eta_{rel}-1)}{\sqrt{y}}$ versus \sqrt{y} , the value of A and B can be obtained.

The apparent molar volume (ϕ_v) of aqueous solutions of bi-univalent mixed electrolyte systems was determined as a

function of y, at different temperatures using the following eqn. 4 [7]:

$$\phi_{v} = \frac{1000(\rho_{0} - \rho)}{C\rho_{0}} + \frac{\overline{M}}{\rho_{0}}$$

$$\tag{4}$$

where ρ_0 and ρ are the densities of solvent and solution respectively and C is the molarity of the solution, \overline{M} is the effective molecular weight of the mixed electrolyte system given by

$$\overline{M} = \frac{n_1 M_1 + n_2 M_2}{n_1 + n_2} \tag{5}$$

where n_1 and n_2 are the number of moles, M_1 and M_2 are the molecular weights of first and second electrolytes respectively. The variation of apparent molar volume (ϕ_v) with the molar concentration of the electrolyte solution is governed by Masson's equation (eqn. 6) [8]

$$\phi_{v} = \phi_{v}^{0} + S_{v} \sqrt{C} \tag{6}$$

In the present study, the modified form of this equation in terms of y is to be determined on the basis of the linearity or otherwise of Φ_v versus \sqrt{y} plots Φ_v versus y plots.

Free energies of activities of viscous flow $\Delta\mu_2^{0\#}$ and $\Delta\mu_1^{0\#}$ per mole of solute and solvent respectively were determined at different temperatures. The values of entropy and enthalpy of activation of viscous flow were calculated from the following equations:

$$d\frac{(\Delta \mu_2^{0\#})}{dT} = -\Delta S_2^{0\#} \tag{7}$$

$$\Delta H_2^{0\#} = \Delta \mu_2^{0\#} + T \Delta S_2^{0\#} \tag{8}$$

The experimental data in regard to foregoing aspects of the present study have been presented in Tables 1-5.

RESULTS AND DISCUSSION

The densities and viscosities of aqueous solution of biunivalent mixed electrolytes have been determined at 293.15,

TABLE-1
VALUES OF COEFFICIENTS A AND B OF JONES-DOLE EQUATION FOR BI-UNIVALENT
MIXED ELECTROLYTE SYSTEMS IN AQUEOUS MEDIUM AT DIFFERENT TEMPERATURES

Mixed electrolyte system	Ionic	A $(dm^{3/2} mol^{-1/2})$			B (dm³ mol ⁻¹)		
whited electrolyte system	strength (I)	293.15 K	303.15 K	313.51 K	293.15 K	303.15 K	313.51 K
CaCl ₂ + BaCl ₂	3.0	-0.0675	-0.1551	-0.198	0.527	0.5294	0.5438
NiCl ₂ + BaCl ₂	3.0	-0.3461	-0.5698	-0.62	0.3801	0.5104	0.6332
$MnCl_2 + CaCl_2$	3.0	-0.0772	-0.1634	-0.2036	0.7668	0.7983	0.5357
$BaCl_2 + CoCl_2$	1.5	-0.3276	-0.4667	-0.5761	0.2848	0.3849	0.4809
NiCl ₂ + CoCl ₂	1.5	0.1451	0.0777	0.0646	0.1671	0.1875	0.1922
$SrCl_2 + CoCl_2$	1.5	-0.0711	-0.1354	-0.1491	0.5405	0.5548	0.5734
$CoCl_2 + MgCl_2$	1.5	-0.3809	-0.6266	-0.7107	0.4755	0.6366	0.7684
$MgCl_2 + BaCl_2$	3.0	0.1287	0.1063	0.0802	0.294	0.3065	0.3137
$CaCl_2 + MgCl_2$	3.0	-0.0282	-0.0417	-0.0542	0.1878	0.1894	0.2139
$NiCl_2 + MgCl_2$	3.0	-0.2799	-0.5497	-0.6049	0.3898	0.5823	0.7007
$SrCl_2 + MgCl_2$	1.5	-0.2984	-0.5531	-0.5763	0.405	0.6146	0.6879
$Mg(NO_3)_2 + Ca(NO_3)_2$	3.0	-0.038	-0.132	-0.2071	0.5242	0.5361	0.547
$Zn(NO_3)_2 + Mg(NO_3)_2$	3.0	0.3334	0.185	0.1599	0.369	0.3794	0.3875
$Co(NO_3)_2 + Zn(NO_3)_2$	3.0	-0.0164	-0.0642	-0.0856	0.2697	0.2766	0.2839
$Sr(NO_3)_2 + Co(NO_3)_2$	3.0	-0.1385	-0.1954	-0.3336	1.1214	1.1577	1.1746
$MnCl_2 + NiCl_2$	3.0	0.0296	0.0207	0.0189	0.0557	0.3081	0.3564
$NiCl_2 + SrCl_2$	3.0	-0.3783	-0.4859	-0.5420	0.423	0.4273	0.4898
NiCl ₂ + CaCl ₂	3.0	0.1188	0.0999	0.0929	-0.2636	-0.273	-0.2812
$BaCl_2 + MnCl_2$	1.5	-0.5566	-0.6147	-0.6593	0.3687	0.5885	0.6937

TABLE-2
VALUES OF LIMITING APPARENT MOLAR VOLUME (ϕ_v^0) AND EXPERIMENTAL SLOPE (S_v) OF
BI-UNIVALENT MIXED ELECTROLYTE SYSTEMS IN AQUEOUS MEDIUM AT DIFFERENT TEMPERATURES

Mixed electrolyte system	Ionic	$V_{\phi}^{0} (cm^{3} mol^{-1})$			$S_{v} (cm^{3} dm^{3/2} mol^{-3/2})$		
white electronyte system	strength (I)	293.15 K	303.15 K	313.51 K	293.15 K	303.15 K	313.51 K
CaCl ₂ + BaCl ₂	3.0	110.81	113.05	116.79	-31.15	-32.695	-42.88
NiCl ₂ + BaCl ₂	3.0	128.43	130.81	132.33	-36.748	-40.5	-43.33
$MnCl_2 + CaCl_2$	3.0	87.088	88.89	90.375	-59.358	-80.91	-81.58
$BaCl_2 + CoCl_2$	1.5	219.41	224.08	229.42	-23.482	-33.077	-52.11
NiCl ₂ + CoCl ₂	1.5	214.67	218.53	220.62	23.549	21.275	15.023
$SrCl_2 + CoCl_2$	1.5	220.72	224.79	227.12	-24.454	-28.391	-39.06
$CoCl_2 + MgCl_2$	1.5	236.93	240.39	243.44	-33.567	-40.262	47.274
$MgCl_2 + BaCl_2$	3.0	110.92	114.4	117.3	59.157	57.256	50.694
$CaCl_2 + MgCl_2$	3.0	166.74	170.32	173.35	-87.48	-95.193	-102.2
$NiCl_2 + MgCl_2$	3.0	159.92	161.53	162.1	-46.45	-50.693	-55.06
$SrCl_2 + MgCl_2$	1.5	220.47	224.83	227.76	-26.247	-28.165	-36.47
$Mg(NO_3)_2 + Ca(NO_3)_2$	3.0	159.12	160.42	160.97	-18.469	-17.714	-15.47
$Zn(NO_3)_2 + Mg(NO_3)_2$	3.0	141.23	143.96	144.95	16.371	11.598	9.073
$Co(NO_3)_2 + Zn(NO_3)_2$	3.0	259.03	262.62	265.34	-7.234	-18.562	-19.51
$Sr(NO_3)_2 + Co(NO_3)_2$	3.0	143.63	144.13	144.33	-38.751	-34.558	-32.24
$MnCl_2 + NiCl_2$	3.0	75.014	77.273	78.651	50.207	47.542	37948
$NiCl_2 + SrCl_2$	3.0	122.83	123.75	124800	-13.062	-12.441	-11.63
NiCl ₂ + CaCl ₂	3.0	67.931	69.299	70.764	43.282	38.129	30.679
$BaCl_2 + MnCl_2$	1.5	240.61	241.29	242.16	-47.48	-46.551	-45.51

303.15 and 313.15 \pm 0.01 K as a function of y, the fraction of ionic strength due to first electrolyte in the mixture of two electrolytes, keeping the ionic strength constant (Tables 1-5).

TABLE-3

VALUES OF Δμ₂™ FOR BI-UNIVALENT MIXED ELECTROLYTE SYSTEMS IN AQUEOUS MEDIUM AT DIFFERENT TEMPERATURES

Mixed electrolyte	Ionic	$\Delta\mu_2^{0\#}$ (kJ mol ⁻¹)				
system	strength	293.15	303.15	313.51		
system	(I)	K	K	K		
CaCl ₂ + BaCl ₂	3.0	83.790	87.066	92.222		
NiCl ₂ + BaCl ₂	3.0	65.272	86.826	107.283		
$MnCl_2 + CaCl_2$	3.0	112.996	121.677	130.323		
$BaCl_2 + CoCl_2$	1.5	65.732	95.783	113.022		
$NiCl_2 + CoCl_2$	1.5	49.183	54.106	56.669		
$SrCl_2 + CoCl_2$	1.5	100.470	54.106	56.669		
$CoCl_2 + MgCl_2$	1.5	93.876	119.847	142.675		
$MgCl_2 + BaCl_2$	3.0	52.312	56.179	59.272		
$CaCl_2 + MgCl_2$	3.0	45.503	47.650	53.022		
$NiCl_2 + MgCl_2$	3.0	70.901	101.199	121.242		
$SrCl_2 + MgCl_2$	1.5	82.122	114.527	128.828		
$Mg(NO_3)_2 + Ca(NO_3)_2$	3.0	89.941	94.604	99.022		
$Zn(NO_3)_2 + Mg(NO_3)_2$	3.0	66.546	70.463	73.832		
$Co(NO_3)_2 + Zn(NO_3)_2$	3.0	69.047	72.674	76.242		
$Sr(NO_3)_2 + Co(NO_3)_2$	3.0	168.605	179.032	186.746		
$MnCl_2 + NiCl_2$	3.0	38.431	51.226	59.854		
$NiCl_2 + SrCl_2$	3.0	71.478	74.103	77.075		
NiCl ₂ + CaCl ₂	3.0	42.393	45.221	47.858		
$BaCl_2 + MnCl_2$	1.5	79.938	113.183	131.727		

TABLE-4
FREE ENERGY OF ACTIVATION, Δμ₁^{0#} (kJ mol⁻¹)
FOR WATER AT DIFFERENT TEMPERATURE

TOIL WITTER	THE BRITERIES OF TEST	a Ere ii ere
293.15 K	303.15 K	313.15 K
20.58	20.71	20.85

The viscosity data have been analyzed in the light of modified form of Jones-Dole equation as under:

$$\frac{(\eta_{\rm rel} - 1)}{\sqrt{y}} = A + B\sqrt{y} \tag{9}$$

The values of coefficients A and B have been obtained from the linear plots of $(\eta_{rel}-1)/\sqrt{y}\ versus\ \sqrt{y}$ by the method of least squares and listed in Table-1, shows that the values of A are negative for all the mixed electrolyte systems except for the mixed systems: NiCl₂ + CoCl₂, MgCl₂ + BaCl₂, Zn (NO₃)₂ + Mg (NO₃)₂, MnCl₂ + NiCl₂ and NiCl₂ + CaCl₂, for which the values are positive. From this it follows that ion-ion interaction are weak in aqueous solution of all the mixed bi-univalent electrolytes except for the mixed systems: NiCl₂ + CoCl₂, MgCl₂ + BaCl₂, Zn (NO₃)₂ + Mg(NO₃)₂, MnCl₂ + NiCl₂ and NiCl₂ + CaCl₂, for which the ion-ion interaction are strong.

The values of coefficients B are, however positive for the entire mixed bi-univalent electrolyte, which indicate the presence of strong ion-solvent interaction. The data of apparent molar volume (Φ_v) as a function of y, have been analyzed in the light of the modified form of Masson's equation:

$$\phi_{v} = \phi_{v}^{0} + S_{v}y \tag{10}$$

From the linear plots of Φ_v versus y, the values of Φ_v^0 and S_v have been obtained by the method of least squares and presented in the Table-2. It is seen that the values of Φ_v^0 are positive and large. The positive values of Φ_v^0 indicate the presence of strong ion-solvent interaction [7]. It may be attributed to increased solvation of ions in the mixes electrolyte systems. Further with the rice of temperature the values of Φ_v^0 tend to increase, which shows the ion-solvent interaction are rendered increasingly stronger at elevated temperatures. This may be ascribed to the increased salvation of ions with the rice of temperature.

A perusal of Table-2 shows that the values of S_v are negative for the following mixed bi-univalent electrolyte:

2784	Gautam et al.	Asian J. Chem.
------	---------------	----------------

TABLE-5
VALUES OF ENTROPY OF ACTIVATION (ΤΔS, OH) AND ENTHALPY OF ACTIVATION (ΔΗ, OH) FOR THE AQUEOUS
SOLUTIONS OF BI-UNIVALENT MIXED ELECTROLYTE SYSTEMS AT DIFFERENT TEMPERATURES

Mixed electrolyte system	Ionic	$T\Delta S_2^{0\#} (kJ \text{ mol}^{-1})$			$\Delta \mathrm{H_2^{0\#}} (\mathrm{kJ \; mol^{-1}})$		
whited electrolyte system	strength (I)	293.15 K	303.15 K	313.51 K	293.15 K	303.15 K	313.51 K
CaCl ₂ + BaCl ₂	3.0	-123.59	-127.81	-132.03	207.38	214.88	224.25
NiCl ₂ + BaCl ₂	3.0	-615.77	-636.38	-657.79	681.05	723.61	765.07
$MnCl_2 + CaCl_2$	3.0	-253.99	-262.65	-271.31	366.98	384.33	401.64
$BaCl_2 + CoCl_2$	1.5	-693.14	-716.79	-740.43	758.87	812.57	853.45
NiCl ₂ + CoCl ₂	1.5	-109.72	-113.47	-117.21	158.91	167.57	173.88
$SrCl_2 + CoCl_2$	1.5	-173.32	-179.24	-185.15	273.80	285.42	297.42
$CoCl_2 + MgCl_2$	1.5	-715.27	-739.67	-764.07	809.15	859.42	906.15
$MgCl_2 + BaCl_2$	3.0	-102.02	-105.50	-108.98	154.33	161.67	168.25
$CaCl_2 + MgCl_2$	3.0	-110.21	-113.97	-117.73	155.72	161.62	170.75
$NiCl_2 + MgCl_2$	3.0	-737.28	-763.05	-788.22	808.78	864.25	909.46
$SrCl_2 + MgCl_2$	1.5	-684.60	-707.95	-731.31	766.32	822.48	860.13
$Mg(NO_3)_2 + Ca(NO_3)_2$	3.0	-133.10	-137.64	-142.18	223.04	232.25	241.20
$Zn(NO_3)_2 + Mg(NO_3)_2$	3.0	-106.79	-110.43	-114.08	173.34	180.90	187.91
$Co(NO_3)_2 + Zn(NO_3)_2$	3.0	-105.46	-109.06	-112.66	174.51	181.73	188.90
$Sr(NO_3)_2 + Co(NO_3)_2$	3.0	-265.91	-274.91	-284.05	434.51	454.01	470.79
$MnCl_2 + NiCl_2$	3.0	-314.01	-324.72	-335.43	352.44	375.95	395.29
$NiCl_2 + SrCl_2$	3.0	-82.04	-84.84	-87.64	153.52	158.94	164.71
NiCl ₂ + CaCl ₂	3.0	-80.10	-82.83	-85.56	122.49	128.05	133.42
$BaCl_2 + MnCl_2$	1.5	-759.11	-785.00	-810.90	839.04	898.19	942.62

$$\begin{split} &CaCl_2 + BaCl_2, NiCl_2 + BaCl_2, MgCl_2 + BaCl_2, MnCl_2 + CaCl_2, \\ &CaCl_2 + MgCl_2, NiCl_2 + MgCl_2, MnCl_2 + NiCl_2, NiCl_2 + CaCl_2, \\ &NiCl_2 + SrCl_2, Mg(NO_3)_2 + Ca(NO_3)_2, Zn(NO_3)_2 + Mg(NO_3)_2, \\ &Sr(NO_3)_2 + Co(NO_3)_2, Co(NO_3)_2 + Zn(NO_3)_2, BaCl_2 + MnCl_2, \\ &BaCl_2 + CoCl_2, NiCl_2 + CoCl_2, SrCl_2 + COCl_2, CoCl_2 + MgCl_2 \\ &and SrCl_2 + MgCl_2. \end{split}$$

The negative values of S_{ν} for the above system indicate the presence of weak ion-ion interactions in the aqueous solution of these mixed bi-univalent electrolytes. On the other hand the positive values of S_{ν} suggest the presence of strong ion—ion interaction in the aqueous solution of the following mixed bi-univalent electrolytes:

$$\begin{aligned} NiCl_2 + CoCl_2, & MgCl_2 + BaCl_2, & Zn(NO_3)_2 + Mg(NO_3)_2, \\ & MnCl_2 + NiCl_2 & and & NiCl_2 + CaCl_2 \end{aligned}$$

Free energies of activation for viscous flow: The free energies of activation of viscous flow, $\Delta\mu_1^{0\#}$ and $\Delta\mu_2^{0\#}$ per mole of solvent (water) and solute (mixed bi-univalent electrolytes) respectively are presented in the Tables 3A and 3B, respectively. It is seen that the values of $\Delta\mu_2^{0\#}$ for the aqueous solutions of all the bi-univalent mixed electrolyte are positive. Further the values of $\Delta\mu_2^{0\#}$ are much larger as compared to those of $\Delta\mu_1^{0\#}$ and thus $(\Delta\mu_2^{0\#}-\Delta\mu_1^{0\#}) > 0$. From this it follows that in aqueous solution all the mixed electrolytes under discussion are structure makers [9-11].

The entropy and enthalpy of activation of viscous flow for the aqueous solution of mixed bi-univalent electrolytes have been calculated and the values have been listed in Table-4. It is seen that in each case the values of $T\Delta S_2^{0\#}$ are negative and those of $\Delta H_2^{0\#}$ are positive and thus $\Delta H_2^{0\#} > T\Delta S_2^{0\#}$. This suggests that ion-solvent interactions for the mixed electrolyte systems, under discussion are nearly complete in the ground state. Further the positive values of $\Delta H_2^{0\#}$ and negative values

of $T\Delta S_2^{0\#}$ indicate that the transition state is associated with bond breaking and increase in order [12].

Conclusion

From the volumetric and viscometric studies reported in this paper, it has been concluded that the identical results are obtained. From both these studies with regard to ion-solvent and ion-ion interaction in aqueous solution of mixed biunivalent electrolyte.

ACKNOWLEDGEMENTS

Thanks are due to Head of Department of Chemistry and Principal, Agra College, Agra for providing necessary facilities.

REFERENCES

- H.L. Friedman and P.S. Ramanathan, J. Phys. Chem., 74, 3756 (1970); https://doi.org/10.1021/j100715a009.
- H.L. Andersan and R.H. Wood, ed.: F. Frank, Water: A Comprehensive Treatise, Plenum, New York, vol. III, Chap. 2 (1973).
- K.J. Patil, S.M. Manwatkar and S.S. Dhondge, *Indian J. Chem.*, 33A, 4 (1994).
- K.J. Patil, S.M. Manwatkar and S.S. Dhondge, *Indian J. Chem.*, 34A, 950 (1995).
- G. Jones and M. Dole, J. Am. Chem. Soc., 51, 2950 (1929); https://doi.org/10.1021/ja01385a012.
- 6. D. Gautam and M. Singh, J. Indian Chem. Soc., 84, 876 (2007).
- 7. J.D. Panday and Y. Akhtar, *Indian J. Chem.*, **36A**, 614 (1997).
- 8. D.O. Masson, *Philos. Mag.*, **8**, 218 (1929); https://doi.org/10.1080/14786440808564880
- A. Ali, A.K. Nain, N. Kumar and M. Ibrahim, *Proc. Indian Acad. Sci. Chem. Sci.*, 114, 495 (2002); https://doi.org/10.1007/BF02704193.
- D. Feakins, D.J. Freemantle and K.G. Lawrence, *J. Chem. Soc.*, Faraday Trans. 1, 70, 795 (1974); https://doi.org/10.1039/f19747000795.
- 11. A.N. Kannapan and V. Rajendran, *Indian J. Phys.*, **B66**, 135 (1992).
- M.L. Parmar, D.K. Dhiman and R.C. Thakur, *Indian J. Chem.*, 41A, 2032 (2002).