






**NOTE** 

## Synthesis of 2-Amino-5-hydroxypyridine via Demethoxylation

J. CHENG\* and C. LIU

Department of Chemical Engineering, Changzhou Institute of Engineering Technology, Changzhou 213164, P.R. China

\*Corresponding author: Tel: +86 18118028001; E-mail: 4405313@qq.com

Received: 16 October 2015; Accepted: 28 January 2016; Published online: 29 February 2016; AJC-17819

A convenient and efficient four-step synthesis of 2-amino-5-hydroxypyridine can be achieved by protective reaction of 2-amino-5bromopyridine in the presence of 2,5-hexanedione to yield 5-bromo-2-(2,5-dimethyl-1H-pyrrol-1yl)pyridine, methoxylation with sodium methylate to give 5-methoxy-2-(2,5-dimethyl-1H-pyrrol-1yl)pyridine, deprotective reaction with hydroxylamine hydrochloride to produce 2-amino-5-methoxypyridine and demethylation with 95 % H<sub>2</sub>SO<sub>4</sub> to afford the title compound in an overall yield of 45 %.

Keywords: Methoxylation, Demethylation, 2-Amino-5-methoxypyridine, 2-Amino-5-hydroxypyridine.

2-Amino-5-hydroxypyridine (6) is widely used in biological and pharmaceutical fields [1-5]. It is a key intermediate in the preparation of HIV inhibiting 9-hydroxy-6-(4-nitrophenyl)pyrido[2',1':2,3]imidazo[4,5-c]isoquinolin-5(6H)-one [5]. Several syntheses of 2-amino-5-hydroxypyridine (6) have already been reported [5-8]. Most methods used 48 % HBr [5,6]. Also the start material 2-amino-5-iodopyridine is expensive [5,9]. A low-cost and clean demethylation technique is desirable. We report a convenient and efficient synthesis of 2-amino-5hydroxypyridine (6) utilizing a low-cost and environmentally friendly reagent, 2-amino-5-bromo-pyridine (2) as start material and 95 % H<sub>2</sub>SO<sub>4</sub> for the demethylation.

Reagents and solvents were obtained from commercial suppliers and were used without further purification. All melting points were determined on a XT34 binocular microscope (Beijing Tech Instrument Co., China) and were not corrected. NMR spectra were obtained on a Mercuryplus 400 spectrometer (<sup>1</sup>H NMR at 400 Hz, <sup>13</sup>C NMR at 100 Hz) in CDCl<sub>3</sub> or DMSO-d<sub>6</sub> with tetramethylsilane as an internal standard; chemical shifts  $(\delta)$  were reported in parts per million relative to tetramethylsilane. Chemical shifts were reported in ppm relative to the solvent resonance as the internal standard (CDCl<sub>3</sub>,  $\delta$  = 7.26 ppm). Analytical TLC and column chromatography were performed on silica gel GF254 and silica gel H60, respectively.

5-Bromo-2-(2,5-dimethyl-1H-pyrrol-1yl)pyridine (3): 2-Amino-5-bromopyridine (2) (10 mmol, 1.73 g), 2,5-hexanedione (12 mmol, 1.13 g) and p-toluene sulfonic acid (3 mmol, 0.52 g) was dissolved in toluene (30 mL) and heated to reflux in a Dean-Stark apparatus for 8-10 h until compound 2 can not be detected by TLC. After cooling to room temperature, the reaction mixture was washed with a saturated aqueous NaHCO<sub>3</sub> solution, water and brine. The organic phase was dried with MgSO<sub>4</sub> and concentrated in vacuum. The resulting orange liquid was dried under high vacuum and cooled to orange solid 3 (2.28 g, yield = 91.2 %), m.p. 67.6-68.9 °C (lit. [9] 69 °C); <sup>1</sup>H NMR (400 Hz, CDCl<sub>3</sub>), δ (ppm): 2.130 (s, 6H, 2\*CH<sub>3</sub>), 5.905 (s, 2H, CH), 7.115-7.132 (d, 1H, pyr-H), 7.922-7.944 (dd, 1H, pyr-H), 8.651-8.656 (d, 1H, pyr-H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>), δ (ppm): 13.19, 107.40, 118.91, 123.01, 128.59, 140.51, 150.41, 150.70.

5-Methoxy-2-(2,5-dimethyl-1H-pyrrol-1yl)pyridine (4): Sodium methoxide (40 mmol, 2.16 g) was dissolved in dry methanol (20 mL). DMF (20 mL), CuI (0.15 equiv., 2.5 mmol, 0.5 g) and 3 (8 mmol, 2.0 g) were added. The reaction mixture was heated to 80 °C for 3 h. After the mixture had been allowed to cool to room temperature, isopropylether and an aqueous NH<sub>4</sub>Cl solution (5 %) were added, the mixture was stirred overnight. The solids were filtered off over Celite and the filtrate was extracted several times with dichloromethane. The combined organic phases were washed with a 10 % aqueous NH<sub>4</sub>OH solution, dried with MgSO<sub>4</sub> and concentrated *in vacuo*. After drying in high *vacuo*, pure **4** (1.54 g, yield = 95.2 %) was obtained, m.p. 74.5-75.2 °C (lit. [10] 75 °C); <sup>1</sup>H NMR (400 Hz, CDCl<sub>3</sub>), δ (ppm): 2.081 (s, 6H, 2\*CH<sub>3</sub>), 3.918 (s, OCH<sub>3</sub>), 5.873 (s, 2H, CH), 7.146-7.163 (d, 1H, pyr-H), 7.312-7.336 (dd, 1H, pyr-H), 8.267-8.274 (d, 1H, pyr-H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>), δ (ppm): 12.99, 55.89, 106.31, 122.36, 128.70, 136.23, 145.01, 149.36, 154.74.

1404 Cheng et al. Asian J. Chem.

Br 
$$\frac{N}{2}$$
  $\frac{N}{(91.2\%)}$  Br  $\frac{b}{(95.2\%)}$   $\frac{c}{(100\%)}$   $\frac{d}{(51.8\%)}$  HO  $\frac{d}{(51.8\%)}$  HO  $\frac{d}{(51.8\%)}$  HO  $\frac{d}{(51.8\%)}$  HO  $\frac{d}{(51.8\%)}$  HO  $\frac{d}{(51.8\%)}$ 

Scheme-I: Reagents: a: 1,4-hexanedione, p-TsOH; b: CH<sub>3</sub>ONa, CuI; c: NH<sub>2</sub>OHHCl; d: 95 % H<sub>2</sub>SO<sub>4</sub>

**2-Amino-5-methoxy pyridine (5):** A mixture of **4** (7 mmol, 1.41 g), hydroxylamine hydrochloride (45.5 mmol, 1.89 g), triethylamine (14 mmol, 1.41 g), ethanol (20 mL) and water (10 mL) was refluxed for 20 h. The solution was cooled and quenched with 2 M HCl, washed with isopropyl ether and the pH was adjusted to 9-10 with 6 M NaOH. The resulting mixture was extracted several times with diethyl ether. The combined organic phases were dried with MgSO<sub>4</sub> and the solvent was removed in vacuo. The oily residue was purified by column chromatography on silica gel (gradient elution: CH<sub>2</sub>Cl<sub>2</sub>/  $CH_3COOC_2H_5 = 1:3 \rightarrow \text{pure ethyl acetate}$ ) to give dark brown liquid 5 (0.87 g, yield = 100 %).  ${}^{1}$ H NMR (400 Hz, CDCl<sub>3</sub>),  $\delta$ (ppm): 3.772 (s, 3H, OCH<sub>3</sub>), 4.213 (br, 2H, NH<sub>2</sub>), 6.493-6.462 (dd, 1H, pyr-H), 7.070-7.110 (dd, 1H, pyr-H), 7.766-7.775 (d, 1H, pyr-H).  $^{13}$ C NMR (100 MHz, CDCl<sub>3</sub>),  $\delta$  (ppm): 56.28, 109.49, 125.73, 133.11, 148.60, 153.09.

**2-Amino-5-hydroxy pyridine (6):** 95 % H<sub>2</sub>SO<sub>4</sub> (10 mL) was stirred at 80 °C, compound 5 (5 mmol, 0.62 g) was added dropwise to the stirred solution keeping the temperature at 80-85 °C. After the addition, stirring was continued at 90-93 °C for about 24 h until 5 can not be detected by TLC. The reaction mixture was poured into crash ice (100 g) and the solution was adjusted to pH 7-8 by gradual addition of Na<sub>2</sub>CO<sub>3</sub>. The resulting mixture was extracted several times with diethyl ether (Scheme-I). The combined organic phases were dried with anhydrous Na<sub>2</sub>SO<sub>4</sub> and the solvent was removed in vacuo. The residue was purified by column chromatography on silica gel (gradient elution: CH<sub>3</sub>OH/CH<sub>2</sub>Cl<sub>2</sub> = 1:9) to give taupe solid **6** (0.29 g, yield = 51.8 %). <sup>1</sup>H NMR (400 Hz, DMSO- $d_6$ ),  $\delta$ (ppm): 5.200 (br, 2H, NH<sub>2</sub>), 6.327-6.350 (t, 1H, pyr-H), 6.893-6.923 (dd, 1H, pyr-H), 7.497-7.506 (dd, 1H, pyr-H), 8.636 (s, 1H, OH).  ${}^{13}$ C NMR (100 MHz, DMSO- $d_6$ ),  $\delta$  (ppm): 110.00, 128.16, 131.65, 145.25, 150.04.

Synthetic studies of the HIV inhibiting derivatives requires 2-amino-5-hydroxy pyridine (**6**) as a key intermediate and it was shown that the concise synthesis of its precursor, 2-amino-5-methoxy pyridine (**5**) using 2,5-hexanedione as protective agent, CH<sub>3</sub>ONa as methoxylative agent and hydroxylamine hydrochloride as deprotective agent, proceeded in good yields. Meantime, the optimization of the synthetic conditions for demethylation of 2-amino-5-methoxy pyridine (**5**) using an

environmentally friendly reagent (95 % H<sub>2</sub>SO<sub>4</sub>) and the methoxylation from a low-cost reagent (2-amino-5-bromo-pyridine **2**) were conducted.

Hydrobromic acid (48 %) is a fuming reagent, easily decomposed by oxygen in the air to  $Br_2$ , which is not environmentally friendly. Whenever possible, the clean reagents should be used. 95 %  $H_2SO_4$  is a non-volatile and stable agent. Accordingly, 95 %  $H_2SO_4$  was selected as a demethylating agent, which was found to be a cleaner agent and can raise the yield of 2-amino-5-hydroxy pyridine (6) to 51.8 %.

Previously used as start material for the synthesis of 5-methoxy-2-(2,5-dimethyl-1H-pyrrol-1yl)pyridine (4) is 2-amino-5-iodopyridine [10], which is expensive. It was found that using 2-amino-5-bromo pyridine (2) as starting material can also produce 5-methoxy-2-(2,5-dimethyl-1H-pyrrol-1yl)-pyridine (4) in good yield.

## Conclusion

This synthetic route to 2-amino-5-hydroxypyridine (6) is an environmentally friendly and economical process, which is suitable for scaling up for use in the industrial production.

## ACKNOWLEDGEMENTS

This project is supported by the fund of Brand-Discipline construction of Jiangsu.

## REFERENCES

- D.L. Flynn, T.M. Caldwell, T. Samarakoon, L. Vogeti, M.D. Kaufman, W.C. Patt and Y. Ahn, US Patent 275016 (2014).
- M.A. Khanfar, L. Quinti, H. Wang, S.H. Choi, A.G. Kazantsev and R.B. Silverman, Eur. J. Med. Chem., 76, 414 (2014).
- T.D. Aicher, J.R. Bencsik, S.A. Boyd, K.R. Condroski, J.B. Fell, J.P. Fisher, R.J. Hinklin, S.A. Pratt, A. Singh and T.M. Turner, WO Patent 146335 (2011).
- S. Ahmad, K. Ngu and W.N. Washburn, US Patent 0093508 (2007).
- 5. B.R.R. Kesteleyn and W.B.G. Schepens, WO Patent 113290 (2007).
- 6. J.A. Moore and F.J. Marascia, J. Am. Chem. Soc., **81**, 6049 (1959).
- 7. H.L. Yale and J.T. Sheehan, US Patent 4022897 (1977).
- 8. C. Scudi, J. Biochem., 218, 587 (1956).
- A. Lützen, M. Hapke, H. Staats and J. Bunzen, Eur. J. Org. Chem., 20, 3948 (2003).
- G.H. Ladouceur, R.D. Connell, A. Campbell, T.G. Lease, J.H. Cook and J. Baryza, EP Patent 1054881 (2008).