

Condensation of 7-Nitroindole-2-carbohydrazide Derivatives with Ethyl Acetoacetate

ABDELLATIF EL-KIHEL^{1,*}, AMAL ERROUSSAFI^{1,2}, MUSTAPHA AHBALA¹, SALAHEDDINE GUESMI² and PATRICK BAUCHAT³

¹Laboratoire de Chimie BioOrganique, Faculté des Sciences, BP20, 24000, El Jadida, Morocco

²Laboratoire de Chimie de Coordination et d'Analytique, Faculté des Sciences, BP20, 24000, El Jadida, Morocco

³Ciblage et Auto-Assemblages Fonctionnels, UMR 6226, Université de Rennes I, Avenue Général Leclerc, 35042, Rennes Cédex, France

*Corresponding author: E-mail: abdellatifelkihel@gmail.com

Received: 26 October 2015;

Accepted: 25 January 2016;

Published online: 29 February 2016;

AJC-17803

Pyrazolylindolyl ketone derivatives were obtained by cyclization of the condensation products 7-nitroindole-2-carbohydrazide derivatives with ethyl acetoacetate. We have shown careful examination of spectroscopic data and the open-chain intermediate isolation as well as the identification of the formed compound structure.

Keywords: 7-Nitroindole-2-carbohydrazide, Open-chain intermediate, Pyrazolylindole, Ethyl acetoacetate.

INTRODUCTION

The indole nucleus is probably the most widely distributed heterocyclic ring system found in nature [1]. Due to the existence of a vast array of structurally diverse and biologically active indoles, it is not surprising that the indole nucleus is an important feature in many medicinal agents and the most important of all structural classes in drug discovery [2]. The synthesis and reactivity of indole derivatives have been a topic of research interest for over a century.

Compounds which contain the pyrazole functionality continue to attract great interest due to their varied and significant pharmacological effects [3]. For example, the identification of new and selective cox-2 inhibitors [4], for the relief of pain and the treatment of the symptom of arthritis and related diseases has been an important advance in modern anti-inflammatory therapy. In a related area, heterocycle-appended pyrazoles have been reported [5] to be potent and selective in inhibitors of the mitogen-activated protein kinase p38 and consequently provide a novel approach for the treatment of rheumatoid arthritis and related inflammatory diseases.

EXPERIMENTAL

All the compounds were characterized by their ¹H NMR and ¹³C NMR spectra as well as by microanalysis or HRMS spectra. NMR spectra were recorded on Bruker ARX 200 (200 MHz for ¹H and 50.3 MHz for ¹³C) spectrometer (δ -ppm/TMS, J -Hz); for ¹³C NMR, the multiplicities were determined through DEPT. Microanalysis were performed by the "Laboratoire Central de Microanalyse du UATRS" (Rabat). Mass spectra

were recorded on a Varian MAT 311 spectrometer. Melting points were measured using a Köfler apparatus and were uncorrected.

Preparation of open-chain intermediates 2(a-c): A mixture of 7-nitroindole-2-carbohydrazides **1(a-c)** (4.6 mmol) and ethyl acetoacetate (35 mmol) in ethanol was heated with a steam bath at 80 °C until dissolution. The mixture was left at this temperature for 4 h. The crude product was filtered and recrystallized from ethanol.

Ethyl 3-[2-(7-nitro-1H-indole-2-cabonyl)hydrazone]-butanoate (2a): Yield = 88 %; m.p.: 192-194 °C (ethanol). ¹H NMR (DMSO-*d*₆): 1.22 (t, J = 7.2 Hz, 3H, CH₃); 2.08 (s, 3H, CH₃); 3.16 (s, 2H, CH₂); 4.14 (q, J = 7.2 Hz, 2H, CH₂); 7.33 (t, J = 7.8 Hz, 1H, H⁵); 7.48 (dd, J = 2.3 Hz, J = 8.1 Hz, 1H, H⁴); 7.54 (d, J = 2.1 Hz, 1H, H³); 8.20 (dd, J = 2.3 Hz, J = 7.8 Hz, 1H, H⁶); 10.87 (br s, 1H, NH); 11.40 (s, 1H, NH). ¹³C NMR (DMSO-*d*₆): 14.5 (CH₃); 14.7 (CH₃); 44.6 (CH₂); 62.2 (CH₂); 107.5 (CH-5); 120.4 (CH-4); 121.8 (CH-3); 131.2 (CH-6); 129.1, 131.1; 131.2; 133.6 (ArC); 152.0 (C=N); 159.8 (CO); 169.7 (CO₂). HRMS, *m/z* 332 (M), calcd. for C₁₅H₁₆N₄O₅: 332.1121, found: 332.1127.

Ethyl 3-[2-(5-methyl-7-nitro-1H-indole-2-cabonyl)hydrazone]butanoate (2b): Yield = 81 %; m.p.: 176-178 °C (Ethanol). ¹H NMR (DMSO-*d*₆): 1.20 (t, J = 6.9 Hz, 3H, CH₃); 2.06 (s, 3H, CH₃); 2.46 (s, 3H, CH₃); 3.33 (s, 2H, CH₂); 4.12 (q, J = 6.9 Hz, 2H, CH₂); 7.38 (dd, J = 8.8, J = 3.1 Hz, 1H, H⁵); 7.98 (d, J = 8.8 Hz, 1H, H⁴); 8.05 (d, J = 3.1 Hz, 1H, H⁶); 10.91 (br s, 1H, NH); 11.40 (s, 1H, NH). ¹³C NMR (DMSO-*d*₆): 14.5 (CH₃); 16.4 (CH₃); 20.8 (CH₃); 44.5 (CH₂); 61.3 (CH₂); 107.1 (CH-3); 122.8 (CH-6); 131.0 (CH-4); 128.0,

129.9, 131.0, 131.4, 133.0 (ArC); 159.2 (C=N); 162.8 (C-O); 168.0 (CO₂). HRMS, *m/z* 346 (M), calcd. for C₁₆H₁₈N₄O₅: 346.1277, found: 346.1272.

Ethyl 3-[2-(5-methoxy-7-nitro-1H-indole-2-carbonyl)-hydrazono]butanoate (2c): Yield = 78 %; m.p.: 126-128 °C (Ethanol). ¹H NMR (DMSO-*d*₆): 1.22 (t, *J* = 7.0 Hz, 3H, CH₃); 2.07 (s, 3H, CH₃); 3.17 (s, 2H, CH₂); 3.87 (s, 3H, OCH₃); 4.14 (q, *J* = 7.0 Hz, 2H, CH₂); 7.44 (dd, *J* = 9.3, *J* = 3.0 Hz, 1H, H³); 7.56 (d, *J* = 3.0 Hz, 1H, H⁶); 7.85 (d, *J* = 9.3 Hz, 1H, H⁴); 10.94 (s, 1H, NH); 11.23 (s, 1H, NH). ¹³C NMR (DMSO-*d*₆): 11.9 (CH₃); 14.6 (CH₃); 44.6 (CH₂); 56.3 (OCH₃); 61.4 (CH₂); 107.4 (CH-3); 118.2 (CH-6); 126.4 (CH-4); 107.3, 117.5, 126.3, 133.0, 135.3 (ArC); 153.4 (C=N); 159.8 (C-O); 169.7 (CO₂). HRMS, *m/z*: 362 (M), calcd. for C₁₆H₁₈N₄O₆: 362.1226, found: 362.1235.

Cyclization of open-chain intermediates 2(a-c) with ethyl acetoacetate: The open-chain intermediates 2(a-c) (2.4 mmol) and ethyl acetoacetate (3.6 mmol) were heated under reflux for 5 h. After cooling, the obtained solid product was filtered off, then recrystallized from ethanol.

(5-Hydroxy-3-methylpyrazol-1-yl)(7-nitro-1H-indol-2-yl)ketone (3a): Yield = 76 %; m.p.: 250-252 °C. ¹H NMR (DMSO-*d*₆): 2.14 (s, 3H, CH₃); 7.35 (t, *J* = 8.8 Hz, 1H, H⁵); 7.45 (dd, *J* = 2.5 Hz, *J* = 8.8 Hz, 1H, H⁴); 7.57 (d, *J* = 2.2 Hz, 1H, H³); 8.22 (dd, *J* = 2.5 Hz, *J* = 8.8 Hz, 1H, H⁶); 8.64 (s, CH pyrazolic); 10.72 (s, 1H, NH); 11.87 (s, 1H, OH). ¹³C NMR (DMSO-*d*₆): 14.5 (CH₃); 85.0 (CH pyrazolic); 107.7 (CH-5); 120.6 (CH-4); 121.8 (CH-3); 131.2 (CH-6); 129.5, 131.4; 131.3; 133.5 (ArC); 158.7 (C=N); 163.0 (C-O); 168.0 (C=O). HRMS, *m/z* 286 (M), calcd. for C₁₃H₁₀N₄O₄: 286.0702, found: 286.0704.

(5-Hydroxy-3-methylpyrazol-1-yl)(5-methyl-7-nitro-1H-indol-2-yl)ketone (3b): Yield = 66 %; m.p.: 246-248 °C. ¹H NMR (DMSO-*d*₆): 1.87 (s, 3H, CH₃); 2.24 (s, 3H, CH₃); 2.65 (s, 3H, CH₃); 7.32 (dd, *J* = 8.3, *J* = 2.6 Hz, 1H, H³); 7.97 (d, *J* = 8.3 Hz, 1H, H⁴); 8.06 (d, *J* = 2.6 Hz, 1H, H⁶); 8.80 (s, 1H, CH pyrazolic); 10.79 (s, 1H, NH); 11.55 (s, 1H, OH). ¹³C NMR (DMSO-*d*₆): 16.4 (CH₃); 20.8 (CH₃); 84.5 (CH pyrazolic); 107.6 (CH-3); 123.0 (CH-6); 131.1 (CH-4); 130.1, 130.9, 131.3, 132.7, 133.2 (ArC); 159.9 (C=N); 162.8 (C-O); 169.2 (C=O). HRMS, *m/z*: 300 (M), calcd. for C₁₄H₁₂N₄O₄: 300.0859, found: 300.0906.

(5-Hydroxy-3-methylpyrazol-1-yl)(5-methoxy-7-nitro-1H-indol-2-yl)ketone (3c): Yield = 56 %; m.p.: 224-226 °C. ¹H NMR (DMSO-*d*₆): 2.25 (s, 3H, CH₃); 3.65 (s, 3H, OCH₃); 7.38 (dd, *J* = 9.0, *J* = 2.7 Hz, 1H, H³); 7.55 (d, *J* = 2.7 Hz, 1H, H⁶); 7.87 (d, *J* = 9.0 Hz, 1H, H⁴); 8.62 (s, 1H, CH pyrazolic);

10.84 (s, 1H, NH); 11.76 (s, 1H, OH). ¹³C NMR (DMSO-*d*₆): 18.5 (CH₃); 58.1 (OCH₃); 85.0 (CH pyrazolic); 105.05 (CH-3); 106.9 (CH-6); 109.4 (CH-4); 109.4, 114.1, 125.1, 131.9, 134.7 (ArC); 153.5 (C=N); 159.2 (C-O); 169.2 (C=O). HRMS, *m/z*: 316 (M), calcd. for C₁₄H₁₂N₄O₅: 316.0808, found: 316.0901.

RESULTS AND DISCUSSION

Due to the potent biological activity exhibited by various indoles derivatives, there is a continuous demand for novel synthetic procedures in this area. In 1990s, it has attracted much attention, as it employs simple and readily available starting materials. In previous papers [6-8], we have reported some reactions of 7-aminoindoles and the condensation of the 7-nitroindole-2-carbohydrazides **1(a-c)** with acetylacetone. We report now a synthesis of (5-hydroxy-3-methyl-1H-pyrazol-1-yl)(7-nitro-1H-indol-2-yl)ketone derivatives **3(a-c)** by 7-nitroindole-2-carbohydrazides **1(a-c)** condensation with ethyl acetoacetate following by cyclization of the open chain intermediates **2(a-c)** (**Scheme-I**).

Preparation of substituted open-chain intermediates 2(a-c): The condensation of 7-nitroindole-2-carbohydrazides **1(a-c)** with ethyl acetoacetate in ethanol lead to the open-chain intermediates **2(a-c)**. The synthesis of the starting reagents carbohydrazides was reported in our recent work [7]. The identification of the open-chain intermediates **2(a-c)** structure was based on spectroscopic data (NMR, mass and X Ray). In NMR spectra, we observed the principal signal corresponding to methylene proton and the signals of ethyl group.

In order to confirm which tautomer was obtained, X-ray analysis is performed [9] (Fig. 1). The data of this analysis showed that the open-chain intermediate is present in the methylene group (Figs. 1 and 2).

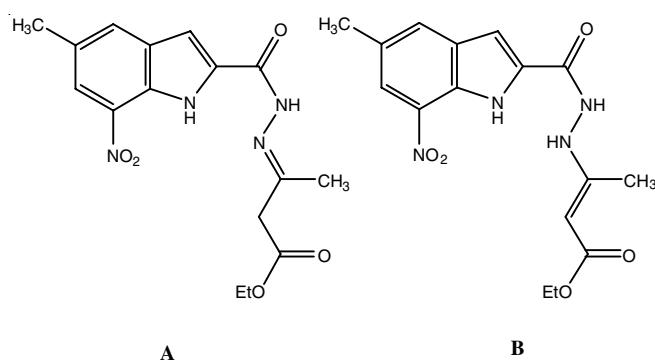
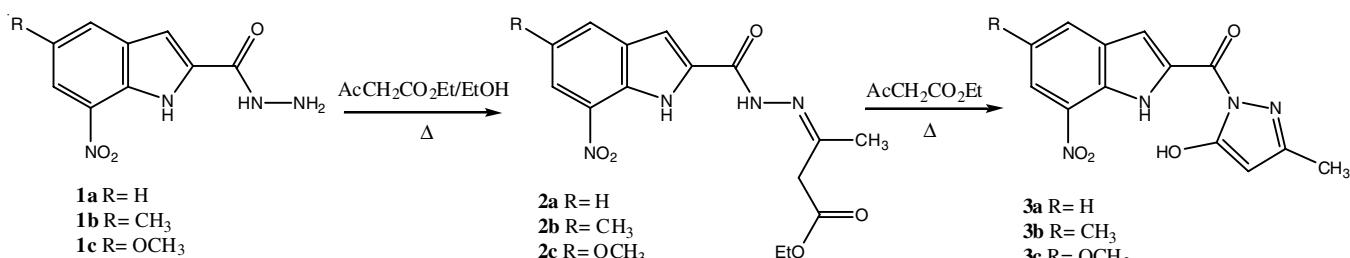



Fig. 1. Possible structure of the open chain intermediate

Scheme-I: Synthesis of pyrrolindolylketone derivatives

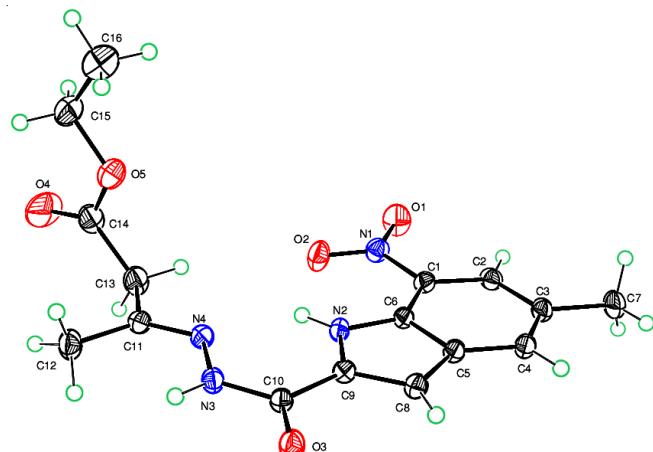


Fig. 2. Crystal structure of Z-ethyl 3-(5-methyl-7-nitro-1H-indole-2-carboylimino)butanoate

The isolation of such open-chain intermediates was very interesting to confirm the structure of the pyrazole moiety (C or D) Fig. 3.

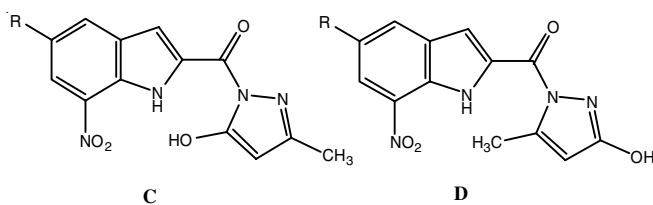


Fig. 3. Possible structure of the pyrazolylindolyl ketone

Open-chain intermediates cyclization 3(a-c): Acid-catalyzed substitution reactions on indole derivatives containing only 7-nitro substituent in the benzene ring, in general, are prohibited by the acid lability of the indole nucleus and in those cases where these reactions are possible, the substituent orientation and the remaining functionality are not always the most desired. Ready access has provided the impetus to investigate synthetic schemes that might be expected to provide various indole-substituted by pyrazole moiety [10-14]. This work describes general procedure used in our recent work [15] by which (5-hydroxy-3-methyl-1H-pyrazol-1-yl)(7-nitro-1H-indol-2-yl)ketone derivatives **3(a-c)** may be conveniently prepared in neutral medium by the cyclization of the open-chain intermediates **2(a-c)** with ethyl acetoacetate.

The establishment of the structure of these compounds **3(a-c)** has been confirmed by spectroscopic data. The ¹H NMR

spectra of the compound **3a** showed the presence of the singlet at 2.14 ppm due to protons of methyl group of pyrazole moiety and the pyrazolic proton appeared at 8.64 ppm. The ¹³C NMR spectra of **3a** exhibited one signal at 24.2 ppm assignable to carbon of methyl group and another at 85.0 ppm for the pyrazolic carbon. The molecular ion peak at *m/z* 300 was observed in the mass spectrum of **3a**. These spectra data and elemental analysis supported the structure of **3a**.

Conclusion

In this work, we report the condensation of 7-nitroindole-2-carbohydrate derivatives with ethyl acetylacetate leading to new (5-hydroxy-3-methylpyrazol-1-yl)(7-nitro-1H-indol-2-yl)ketones after isolation the open-chain intermediates. The structures of obtained products were established with spectroscopic data of ¹H NMR and ¹³C NMR, mass and X ray.

REFERENCES

1. J.T. Kuethe, A. Wong, C. Qu, J. Smitrovich, I.W. Davies and D.L. Hughes, *J. Org. Chem.*, **70**, 2555 (2005).
2. A.L. Smith, G.L. Stevenson, C.J. Swain and J.L. Castro, *Tetrahedron Lett.*, **39**, 8317 (1998).
3. M. Jyothi and M. Merugu, *Int. J. Pharm. Tech. Res.*, **8**, 80 (2015).
4. T. Penning, J. Talley, S. Bertenshaw, J. Carter, P. Collins, S. Docter, M. Graneto, L. Lee, J. Malecha, J. Miyashiro, R. Rogers, D. Rogier, S. Yu, G. Anderson, E. Burton, N. Cogburn, S. Gregory, C. Koboldt, S. Perkins, K. Seibert, A. Veenhuizen, Y. Zhang and P. Isakson, *J. Med. Chem.*, **40**, 1347 (1997).
5. J. Dumas, H. Hatoum-Mokdad, R. Sibley, B. Riedl, W.J. Scott, M.K. Monahan, T.B. Lowinger, C. Brennan, R. Natero, T. Turner, J.S. Johnson, R. Schoenleber, A. Bhargava, S.M. Wilhelm, T.J. Housley, G.E. Ranges and A. Shrikhande, *Bioorg. Med. Chem. Lett.*, **10**, 2051 (2000).
6. A. El Kihel, M. Ahbala, T. Harjane, E.M. Essassi and P. Bauchat, *Phys. Chem. News*, **34**, 85 (2007).
7. A. El Kihel, A. Lagnaoui, T. Harjane, Y. Kattir, S. Guesmi and P. Bauchat, *Arabian J. Chem.*, **6**, 173 (2013).
8. M. El Ouari, N. Khouzi, A. El Kihel, E.M. Essassi, M. Benchidmi, J. Hamelin, R. Carrié and R. Danion-Bougot, *Synth. Commun.*, **25**, 1601 (1995).
9. A. Errossafi, A. El Kihel, S. Guesmi, M. Saadi and L. El Ammari, *Acta Crystallogr.*, **E71**, o684 (2015).
10. Abdel-Rahman and A.H. Farghaly, *J. Chin. Chem. Soc.*, **51**, 147 (2004).
11. S. Hiremath, A. Ullagaddi, K. Sekhar and M.G. Purohit, *Indian J. Chem.*, **27B**, 758 (1988).
12. Farhanullah, A. Sharon, P.R. Maulik and V. Ji Ram, *Tetrahedron Lett.*, **45**, 5099 (2004).
13. M. Jukic, M. Cetina, G. Pavlovic and V. Rapic, *Struct. Chem.*, **10**, 85 (1999).
14. N.M. Przheval'skii, N.S. Skvortsova and I.V. Magedov, *Chem. Heterocycl. Compd.*, **40**, 1435 (2004).
15. A. El Kihel, M. Ahbala, A. Mouzdar, N. Snader, E. Mokhtar Essassi, P. Bauchat and R. Danion-Bougot, *Synth. Commun.*, **38**, 200 (2008).