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INTRODUCTION

Wilson’s GF method, sometimes referred to as GF method,
is classical method to obtain internal coordinates for a vibrating
semi-rigid molecule; the so-called normal coordinates [1].
Normal coordinates decouple the classical vibration motions
of the molecule and thus give an easy route to obtain vibration
amplitudes of the atom as function of time. In Wilson’s GF
method it is assume that the molecular kinetic energy consists
only of harmonic vibrations atoms, i.e. overall rotational and
translational energy is ignored [1].

It is possible to write the quantum mechanical kinetic
energy operator for the curvilinear coordinates, but it is hard
to formulate a general theory applicable to any molecule. This
is the reason so that Wilson [2] made the internal coordinates
linear by assuming small displacements. There is a quantitative
problem of how the frequencies of the molecular vibrations,
which can be obtained by experiment, are related to the masses
of the atoms, the bond angles and bond lengths and most
particularly the force constants of the individual bonds and
inter bond angles. In this work we shall adopt, Wilson’s methods
of F and G matrices [1,3], which is generally the method adopted
in chemical problems. All of the required relations are combined
in matrix equation and solved as an Eigen value problem:

| FG – Eλ | = 0
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In which F, G and E are matrices and the entire left-hand
side of the equation is a determinant. F is a matrix of force
constants and thus brings the potential energies of the vibration
into the equation as a matrix, the G matrix involves the masses
and certain spatial relationships of the atoms and thus brings
the kinetic energy into the equation. E is the unit matrix and
λ, the Eigen value of matrix product FG, brings the frequency,
ν, into the equation, is defined by:

λ = 4π2c2ν 2

The values of the elements of the G matrix of any molecule
have been calculated using the masses and certain relationships
of the atoms [3]. From the relation λ = 4π2c2ν 2 the frequency
is calculated. In summary we have the experimental geometry
to set up the G matrix and the experimental frequencies corres-
ponding to the Eigen values. We need a good guess for the
force constants and optimize it until the experimental and
calculated frequencies coincide so as to obtain the best force
constants.

The refinement of the intermolecular force field is a diffi-
cult test for larger molecules. There are too many parameters
to be determined and too many choices among the sets of para-
meters values that can reproduce the experimental vibration
levels. The choices are significantly reduced by the use of the
isotope data effects on the energy levels and the vibration-
rotation interaction constants. However, they are forced to be



further reduced on a more priority basis, i.e., by assuming
transferability of force constants among similar molecules and/
or by imposing on the force field a certain physical model,
which is more or less arbitrary. The final force fields resulting
from these calculations are often found to depend on the initial
force fields. The diagonal force constants may reasonably be
transferred among structurally related molecules but such a
transfer is difficult in the case of off-diagonal force constants,
since they depend greatly on the nature of the molecules. The
interaction force constants also play an important role in
determining the total force field as well as the potential energy
distributions (PED) of a molecule. Hence, it is essential to
consider reliable values for these force constants while cons-
tructing the initial force field.

Determination of a suitable set of force constants for a
molecule from its observed vibration frequencies in starts with
a good guess borrowed from similar molecules, assuming
reproducibility of the force field, F°. With a good experimental
molecular geometry the Eigen values of GF° correspond to
the calculated frequency parameters as follows:

λ(cal) = 4π2 [ν(cal)]2

In most cases the frequency calculated do not agree with
the observed frequencies and force constant must be refined
by iteration until the quantities ∆λ = λ(cal) – λ(obs) vanish. If
F° is well chosen, the ∆λ’s will be small and the first-order
perturbation theory will provide the needed correction to the
F matrix [4]. Thus,

G(F° + ∆F)L° ≈ L° Λobs (1)

G(∆F)L° ≈ L° (∆cal – Λob) = L°(∆Λ) (2)

Since L° L°↑ = G eqn. (2) can be written in the form:

L°(∆F)L° ≈ ∆Λ (3)

In this equation, it is immediately seen that the coefficients
of the elements of ∆F are simply the elements of the Jacobian
of Λ with respect to F. Hence, eqn. 3 can be rewritten as:

J(∆F) ≈ ∆Λ (4)

Eqn. 4 forms the basis of the iteration method [4].
The only efficient way to calculate force constants from

frequencies is to use an iterative computational approach. To
do this a starting set of assumed force constants is refined by
successive approximations until the set which yields calculated
frequencies is in best agreement with observed ones is obtained.

Force constant optimization by quantum mechanics:
In recent years, quantum mechanical methods have proven to
be quite useful in evaluating vibration force fields [5]. It is
often observed that vibration frequencies computed using
quantum mechanical methods are higher in energy than experi-
mental values. The discrepancy between the computed and
experimental force constants is sufficiently systematic to permit
the application of generalized scaling procedures, which bring
the computed spectrum into agreement with experiment [6].
The determination of appropriate scale factors work is well
except in cases where the vibrations are sensitive to the off-
diagonal elements or when correlation effects are large [7,8].
For such systems, refinement of structural models is achieved
by evaluating force fields at increasingly higher levels of theory

[9]. For a molecule that is too large to be handled by ab initio
methods or when rapid and inexpensive solutions are required,
semi empirical methods offer a compromise between cost and
computational accuracy [10]. The most comprehensive study
of semiempirical calculations using AM1 method by Healy
and Holder [11] on 42 common organic molecules in which
the computed harmonic frequencies were found to differ from
experimental by an average of 10.4 %.

Pople et al. [12] found that the harmonic vibration
frequencies calculated at HF/3-21G for a set of 38 molecules
(477 frequencies), which suggested that this level of theory
overestimates frequencies by about 12 %. A scaling factor of
0.89 for theoretical HF/3-21G harmonic frequencies are
proposed as being appropriate for predictive purposes. Hehre
et al. [13] determine from HF/6-31G(d) study of 36 molecules a
mean percentage deviation of theoretical harmonic frequencies
from experimental fundamental of about 13 % similar to the
findings of Pople et al. [12] for HF/3-21G. An HF/6-31G (d)
theoretical frequency scaling factor of 0.8929 has been widely
used [14]. Some workers [6] found that the overall root-mean-
square (rms) errors for the MP2-fu/6-31G(d) was only slightly
smaller than the overall rms error for the HF/6-31G(d) level
of theory. The advent of density functional theory (DFT) has
provided a correlation in the study of the vibration frequencies
of moderately large molecules [15]. Pople et al. [16] have
shown that B-LYP/6-31G(d) harmonic vibration frequencies
reproduce observed fundamentals with surprising accuracy.
They found, for example an average error of only 13 cm-1 for
a small set of molecules with up to three heavy atoms. Rauhut
and Pulay [17] developed scaling factors for the B-LYP/6-
31G(d) methods based on a set of 20 small molecules with a
wide range of functional groups. Their overall frequencies
scaling factor for the B-LYP/6-31G(d) method was determined
to be 0.990 with an rms deviation of 26 cm-1. Slightly lower rms
deviation of 19 cm-1 was determined by Finley and Stephens
[18].

Nitrous acid: Nitrous acid (HONO) plays an important
role in atmospheric chemistry. It is one of the smallest molecules
which exhibits a cis-trans conformational equilibrium and has
been studied extensively to obtain molecular geometries and
force fields by infrared and microwave spectroscopic methods
[19]. For these reasons it has been of significant interest both
theoretically [20] and experimentally [19]. Microwave studies
have shown that the trans form of the molecule is more stable
than the cis form by 1.6 KJ/mol with an estimated barrier of
inter conversion of approximately 40 kJ/mol [21]. These results
are fairly consistent with earlier experimental results and with
ab initio calculations [20].

Force constants calculation of trans nitrous acid were
reported by Palm [22], were fitted by a least-squares method,
in which the diagonal valence force constants were taken as the
starting set and a minimum number of off diagonal interaction
constants were introduced to the best fit of frequencies. The
final sets of force constants obtained from these calculations
with rms = 6.59 cm-1 are listed in Table-1 [23]. ab initio calcu-
lated harmonic frequencies for trans nitrous acid [24,25], using
the quadratic configuration including singles and doubles with
polarized split-valence basis sets QCISD/6-311+G* level of
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TABLE-1 
FORCE CONSTANT FOR trans NITROUS ACID, STRETCH 
CONSTANTS IN MILLIDYNES PER ANGSTROM, BEND 

CONSTANTS IN MILLIDYNES*ANGSTROM PER SQUARE 
RADIAN AND STRETCH-BEND INTERACTION CONSTANTS  
IN MILLIDYNES PER RADIAN, AT rms = 6.5955 cm-1 [Ref. 23] 

Force constant Value 
f (N=O) 
f (N-O) 
f (H-O) 
f (ONO) 
f (HON) 

f (HONO) 
f (NO)(ONO) 

12.0400 
3.0840 
7.2450 
1.5880 
0.7647 
0.1295 
0.4023 

 
theory, with a greater value of rms between experimental and
calculated frequencies, rms is 125.35, 99.227 cm-1 for HONO
[24,25] and 85.05 cm-1 for DONO [24]. The infrared spectra
of isotopic trans-nitrous acid molecules including 15N, D and
18O species have been obtained in the vapour and in the solid
phases. The vibrational frequencies of isotopic trans nitrous
acid have been calculated [23] with empirical force field
method, rms as follows; 9.7553 cm-1 for DONO, 7.1995 cm-1

for HON15O, 8.7369 cm-1 for DON15O, 9.1924 cm-1 for
HO18NO18.

EXPERIMENTAL

GF method: The initial values of F matrix elements were
obtained from the literature work [26]. Geometrical parameters
for trans nitrous acid was obtained from microwave spectra
[27]. MATLAP 7.0 [28] program was used to solve the secular
equation:

| FG – ΛE | = 0

The intial values were refined manually by adding ± 0.1-
0.003, to the diagonal values of the initial values of force
constant starting from the f11, until the minimum value of
root mean square (rms) between observed and calculated
frequencies was obtained and the methods was then repeated
until consistency.

Quantum mechanical method: Geometry optimization,
vibration frequencies and harmonic force constants fields of
trans-nitrous acid were calculated by Semi empirical and ab
initio method, the semi empirical method PM3 was performed
with MOPAC2007 [29] on a personal computer. The PM2 and
DFT calculations were carried out using the Gaussian 09 [30]
program package. The basis sets 6-31G(d) and 6-31+G(d),
were used with B3LYP and PM2 for comparison purposes.
The B3-LYP exchange-correlation density functional was
employed in the present study, which contains gradient corrections
for both exchange and correlation. The optimized geometries
were used as the reference geometries for calculations of force
constants and vibration frequencies.

RESULTS AND DISCUSSION

The general molecular structure of trans nitrous acid is
shown in Fig. 1. The values of the initial force constant for
trans nitrous acid used are as follows (in mydn/Å-1), f11(OH) =
7.18, f22(N=O) = 12.28, f33(N-O) = 2.22, f44(NOH) = 0.76,
f55(ONO) = 2.45, f23 = 1.67, f24 = 0.12, f34 = 0.04, f35 = 0.41, f45

= 0.14, f66(torsion) = 0.131. The equilibrium microwave
geometry [25] of trans nitrous acid used in this work is as
follows (Å), O-H =0.954, N-O = 1.433, N=O = 1.163, ONO
angle = 110.7°, NOH angle = 102.1°, dihedral angle = 180°
[25]. The rms of the initial force constant was calculated (as
22.656 cm-1).
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Fig. 1. Molecular structure of trans-nitrous acid

The values of optimized force constant and calculated
frequencies for trans nitrous acid have been shown in Tables
2 and 3, respectively. The frequencies for isotopic nitrous acid
were also calculated by the above method, with isotopic mass,
D = 2.0141022, 15N = 15.000108, 18O = 17.9991598. Four
isotopes of trans nitrous acid were selected for optimization;
DONO, HON15O, DON15O and HO18NO18 with observed
vibration frequencies [23], the rms were, 14.4696 cm-1 for
DONO, 1.4283 cm-1 for HON15O, 13.4152 cm-1 for DON15O,
3.6561 cm-1 for HO18NO shown in Table-4.

TABLE-2 
CALCULATED FORCE CONSTANT BY GF MATRIX  

FOR trans-NITROUS ACID AT rms = 0.5121 

Initial diagonal 
force constant 

Diagonal optimized 
force constant 

Cross terms optimized 
force constant 

F11 
F22 
F33 
F44 
F55 
F66 

7.18 
2.22 

12.28 
0.76 
2.45 

0.131 

F11 
F22 
F33 
F44 
F55 
F66 

7.242 
2.226 
12.343 
0.770 
2.467 
0.132 

F23 
F24 
F25 
F34 
F45 

– 

1.670 
0.040 
0.410 
0.120 
0.140 

– 

 
TABLE-3 

CALCULATED VIBRATION FREQUENCIES BY GF  
MATRIX FOR trans NITROUS ACID AT rms = 0.512 

 Observed vibration 
frequencies 

Calculated vibration 
frequencies 

Vibration 
mode 

ν1 3588 3588.1 ν(O-H) 
ν2 1699 1699.1 ν(N=O) 
ν3 1265 1263.8 ν(HON) 
ν4 791 790.7 ν(NO/ON) 
ν5 593 593.1 ν(ONO/NO) 
ν6 540 540.2 Torsion 

 
The observed and calculated vibration frequencies of trans

nitrous acid by GF matrix methods are given in Table-3. The
results show that there is almost congrence between calculated
and observed vibration frequencies when our method of
optimization of force constant is used. The root mean square
was found to be 0.5121 cm-1 for HONO, less than that calcu-
lated by empirical force field method (rms =6.5955 cm-1 [23]),
by quantum mechanics (rms = 99.227 cm-1 [27], 125.3598
cm-1 [24]).

Comparison of the results of the isotopes of the trans
nitrous acid (Table-4), with empirical force field method as
rms is 1.4283 cm-1 for HON15O (7.1995 cm-1 [23]), 3.6561
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cm-1 for HO18NO18 (9.1924 cm-1 [23]), 14.4696 cm-1 for DONO
(9.7553 cm-1 [23], 85.05 cm-1 [24]) and 13.4152 cm-1 for
DON15O (8.7369 cm-1 [23]). The rms is generally lower by
our method except for DONO isotope due to the high primary
deuterium isotope effect.

The diagonal set of optimized force constants for trans
nitrous acid in internal coordinate are given in Table-2. RMS
at initial set of diagonal force constants for trans nitrous acid
was 22.6557 cm-1, improvements to rms 6.100 cm-1 was obtained
by diagonal force constants, while further improvements to
0.5121 cm-1 was obtained after the introduction of the off
diagonal force constants. The latter are responsible for the
interaction between internal coordinates among themselves
like bond-bond, bond-angle and bond-dihedral interactions.

The use of the root mean square as optimization function
is new and only used in this work. The idea depends on the
fact that having used a good guess intial force constant the
rms oscillates along a porabola from an equilibrium value (Fig.
2). This applies to all the force constants and can be transferred
from one force constant to another. The first cycle of optimi-
zation reduces the rms quite considerably. Further cycles refine
the value and as is case in all iterative procedures a tolerance
value is used as a seeking. Force constants are acceptably
refined to within 10-4 millidyne per angstrom.

The background of the optimization involving the
porabolic oscillation of rms is based on the bracketing of the
independent variable (the abscissa) which is here the force
constant and minimize the dependant function (the rms). As
long as we are using the rms to fit a calculated frequency to
the observed frequency then the function is bound and the
force constant is without rigaous proof automatically bound

TABLE-4 
CALCULATED VIBRATION FREQUENCIES BY GF MATRIX FOR ISOTOPES OF trans NITROUS ACID 

DONO HON15O DON15O HO18NO18 
Mode 

Observed Calculated Observed Calculated Observed Calculated Observed Calculated 

ν1 2648 2615.5 3588 3588.1 2646 2615.4 3571 3575.9 
ν 2 1692 1691.9 1669 1667.3 1661 1659.9 1666 1659.5 
ν3 1014 1003 1261 1262.7 1008 997.8 1251 1250.7 
ν 4 737 733.4 774 776.3 723 723.5 779 775.7 
ν 5 586 586.7 589 589.2 583 582.4 564 565.5 
ν 6 416 408 538 539.2 413 406.7 537 537.7 
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Fig. 2. Root mean square rms in cm-1 vs. force constant f(N-O) of trans
nitrous acid

which makes the bracketing accessible with an interval (a,b).
In this work we applied the minimization manually. Many
algorithms are available for function optimization e.g. golden
section search and simplex method.

Table-5 compares the theoretical geometry of trans nitrous
acid with experimental values. The semi empirical geometry
is poor as expected. The best method in semiempirical is PM3
as compared to AM1. The agreement is significantly better at
the ab initio methods. The introduction of density functional
B3Lyp and Møllar-Plesset Methods improve the geometry. The
optimized geometries were used to calculate the vibration
frequencies and force constant, which were scaled to give good
agreements with observed frequency, using scale factors of

TABLE-5 
OPTIMIZED GEOMETRIES OF trans NITROUS ACID (Å AND °) CALCULATED AT  

DIFFERENT LEVEL OF THEORY COMPARED WITH EXPERIMENTAL ONE 

Method HO ON N=O HON ONO Torsion ∆H 
PM3 
MP2/6-31G(d) 
B3LYP/6-31+G(d 
Experimental 

0.950 
0.979 
0.977 
0.954 

1.383 
1.425 
1.426 
1.433 

1.167 
1.197 
1.177 
1.163 

104.56 
101.85 
103.00 
102.10 

138.64 
110.31 
110.89 
110.7 

180.00 
180.00 
179.99 
180.00 

-14.91 
-205.17 
-205.71 

– 

 
TABLE-6 

SCALEDa CALCULATED VIBRATION FREQUENCIES (cm-1) OF trans NITROUS ACID COMPARED WITH EXPERIMENTAL VALUES 

Method Torsion ν(ONO/NO) ν(NO/ON) ν(HON) ν(N=O) ν(OH) rms 

PM3 
MP2/6-31G(d) 
B3LYP/6-31+G(d 
Experimental 

417 
579 
565 
540 

593 
597 
600 
593 

863 
829 
796 
791 

1396 
1258 
1257 
1265 

2008 
1591 
1707 
1699 

3838 
3541 
3528 
3588 

180.3 
53.09 
27.16 

– 
aThe scale factor for PM3 = 0.9761 [Ref. 6], for ab initio methods is 0.957. 
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Deeley and Mills [31], the scaled results were introduced in
Tables 6 and 7. The minimum root mean square was found to
be 180.3, 53.09, 29.20 and 27.16 cm-1 for trans nitrous acid
by PM3, MP2/6-31G (d), B3LYP/6-31+G(d) and B3LY/6-
31G(d), respectively.

Conclusion

This work involves the theoretical calculation of the force
constant of trans nitrous acid by Wilson’s methods of F&G
matrices, root mean square (rms) has been used as measuring
criteria, rms of nitrous acid is 0.512 cm-1. This method is
practicable and gives us better results for the calculation of
vibrational frequency in the case of small molecules.
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