

NOTE

A New Anthraquinones from Cassia fistula and its Cytotoxicity

Lan Li^{1,2}, Wen-Xiu Xu^{1,2}, Chun-Bo Liu², Cheng-Ming Zhang², Wei Zhao², Shan-Zhai Shang², Liang Deng^{1,*} and Ya-Dong Guo^{1,*}

¹School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, P.R. China

²Key Laboratory of Tobacco Chemistry of Yunnan Province, China Tobacco Yunnan Industrial Co., Ltd, Kunming 650231, P.R. China

*Corresponding authors: E-mail: yadongkmmc@163.com; ygy1110@163.com

Received: 30 August 2014;	Accepted: 30 January 2015;	Published online: 26 May 2015;	AJC-17293
A new anthraquinone cassiquinone	A (1) was isolated from the stems	of Cassia fistula. Its structure was elucidated	hy spectroscopic

A new anthraquinone, cassiquinone A (1), was isolated from the stems of *Cassia fistula*. Its structure was elucidated by spectroscopic methods, including extensive 1D- and 2D NMR techniques. Compound 1 was tested for its cytotoxicity against five human tumor cell lines (NB4, A549, SHSY5Y, PC3 and MCF7) and compound 1 showed high cytotoxicity against A549 and MCF7 cell with IC₅₀ values of 8.2 and 6.5 μ M, respectively.

Keywords: Anthraquinone, Cassia fistula, Cytotoxicity.

Cassia fistula L., (Leguminosae) is an ornamental tree with beautiful yellow flowers¹. In China, it has been used as traditional Chinese medicine by people of Dai nationality, who lived in Xishuangbanna, Yunnan province for treatment of diarrhea, gastritis, ringworm and fungal skin infections^{2,3}. Previous phytochemical studies of *C. fistula* have shown the presence of anthraquinones^{4,5}, steroids⁶, chromones^{7,8} and flavonoids^{9,10}. Motivated by a search for new bioactive metabolites from local plants, our group investigated the chemical constituents of the stems of *C. fistula* growing in Xishuangbanna Prefecture, which led to the isolation and characterization of a new anthraquinone derivative (1). This paper deals with the isolation, structural characterization and the cytotoxicity of these compounds.

Optical rotations were measured with a Horiba SEPA-300 polarimeter. UV spectra were obtained using a Shimadzu UV-2401A spectrophotometer. IR spectra were obtained in KBr disc on a Bio-Rad Wininfmred spectrophotometer. ESI-MS were measured on a VG Auto Spec-3000 MS spectrometer. ¹H NMR, ¹³C NMR and 2D NMR spectra were recorded on Bruker DRX-500 instrument with TMS as internal standard. Column chromatography was performed on silica gel (200-300 mesh), or on silica gel H (10-40 μ m, Qingdao Marine Chemical Inc., China). Second separation was performed by an Agilent 1100 HPLC equipped with ZORBAX-C₁₈ (21.2 mm × 250 mm, 7.0 μ m) column and DAD detector. The stems of *Cassia fistula L*., (Leguminosae) were collected in Xishuangbanna Prefecture, Yunnan Province, People's Republic of China, in September 2012. The identification of the plant material was verified by Prof. Wu SG (Xishuangbanna Botanical Garden). A voucher specimen (YMU-2012-9-15) has been deposited in our laboratory.

Extraction and isolation. The air-dried and powdered leaves and stems of *C. fistula* (4.2 kg) were extracted four times with 70 % acetone (4 × 5 L) at room temperature and filtered. The crude extract (224 g) was applied to silica gel (200-300 mesh) column chromatography, eluting with a MeOH-CHCl₃ gradient system (9:1, 8:2, 7:3, 6:4, 5:5), to give five fractions A-E. The further separation of fraction C (7:3, 18.5 g) by silica gel column chromatography, eluted with (CH₃)₂CO-CHCl₃ (7:3, 6:4, 1:1, 3:7, 2:8), yielded the mixtures C1-C5. The subfraction C3 (1:1, 2.28 g) was subjected to preparative HPLC (30 % MeOH, flow rate 12 mL/min) to give **1** (11.5 mg).

Cassiquinone A (1): $C_{17}H_{18}O_9$, obtained as white powder; $[\alpha]_D^{24.8}$ -148 (c 0.4, MeOH); UV (MeOH) λ_{max} nm (log ε) 358 (1.22), 312 (1.46) and 252 (3.12), 210 (3.74) nm; v_{max} cm⁻¹: 3428, 3015, 2958, 2876, 1720, 1610, 1538, 1462, 1374, 1145; ¹H NMR and ¹³C NMR (Table-1). HRESIMS *m/z* [M+Na]⁺ 389.0842 (calcd for $C_{17}H_{18}NaO_9$ for 389.0849).

The air-dried and powdered stems of *C. fistula* (4.2 kg) was extracted with 70 % aqueous acetone (4×5.0 L) at room temperature and filtered to yield a filtrate, which was succe-

ssively evaporated under reduced pressure to obtain a crude extract (224 g). This crude extract was subjected repeatedly to column chromatography on Silica gel, Sephadex LH-20, RP-18 and preparative HPLC to afford compound **1**. Its structure was shown in Fig. 1. The ¹H NMR and ¹³C NMR data of **1** were listed in Table-1.

Fig. 1. Structure of compound 1

TABLE-1				
¹ H NMR AND ¹³ C NMR DATA OF COMPOUND 1				
$(DMSO-d_{c}, 500 AND 125 MHz)$				

No.	$\delta_{\rm C}({\rm m})$	$\delta_{\rm H} ({\rm m}, J = {\rm Hz})$
1	67.8 d	4.46 dd (7.8, 6.0)
2	72.2 d	3.24 dd (7.8, 6.0)
3	68.9 s	
4	66.4 d	4.50 d (7.2)
5	117.1 d	6.86 d (2.4)
6	166.4 s	
7	103.2 d	6.78 d (2.4)
8	163.8 s	
9	192.1 s	6.90, s
10	190.3 s	
1a	68.2 s	
4a	73.1 s	
9a	108.2 s	
10a	132.7 s	
3-Me	22.1 q	1.16 s
6-OMe	56.2 q	3.89 s
8-OMe	56.0 q	3.85 s
1-OH	-	5.22 d (6.0)
2-OH		4.73 d (6.6)
3-OH		4.58 s
4-OH		5.56, d (7.2)

Cassiquinone A (1) was obtained as a white powder, with the molecular formula $C_{17}H_{18}O_9$ (nine degrees of unsaturation) from HRESIMS data combined with ¹H NMR and ¹³C NMR spectroscopic data (Table-1). In the ¹H NMR spectrum, two meta-coupled aromatic hydrogens at $\delta_{\rm H}$ 6.86 (d, J = 2.4 Hz) and 6.78 (d, J = 2.4 Hz), three oxygenated methine signals at $\delta_{\rm H}$ 4.50 (d, J = 7.2), 4.46 (dd, J = 7.8, 6.0 Hz) and 3.24 (dd, J= 7.8, 6.6 Hz), two methoxy groups at $\delta_{\rm H}$ 3.89 s and 3.85 s and one singlet methyl group at δ_H 1.12 s were observed. In the 13 C NMR spectrum, two carbonyl carbons (δ_{c} 192.1 s and 190.2 s), six olefinic carbons (δ_c 117.1 d, 166.4 s, 103.2 d, 163.8 s and 192.1 s), six O-bearing carbons (δ_c 67.8 d, 72.2 d, 68.9 s, 66.4 d, 68.2 s and 73.1 s), two methoxy carbons (δ_c 56.2 s and 56.0 s) and one methyl carbon ($\delta_{\rm C}$ 21.6) were observed. These spectroscopic features suggested that compound 1 has a hydroanthraquinone skeleton¹¹. The ¹H NMR and ¹³C NMR data (Table-1) were very similar to those of auxarthrol C11, except for the appearance of a methoxy group ($\delta_{\rm C}$ 56.2 and $\delta_{\rm H}$ 3.85) and the absence of a phenolic hydroxy group in compound 1.

These data indicated that one phenolic hydroxy group in auxarthrol A was replaced by a methoxy group in compound **1**. Two methoxy groups located at C-6 and C-8 were supported by the HMBC correlations (Fig. 2) of the methoxy protons (δ_H 3.89) with C-6 (δ_C 166.4) and (δ_H 3.85) with C-8 (δ_C 163.8), respectively. Thus, the structure of compound **1** was determined.

Fig. 2. Key HMBC correlations (
) of compound 1

Since some phenolic compounds are known to exhibit potential cytotoxicity¹²⁻¹⁴, the cytotoxicity of compounds **1** was tested using a previously reported procedure^{15,16}. The cytotoxic abilities against NB4, A549, SHSY5Y, PC3 and MCF7 tumor cell lines by MTT-assay with taxol as the positive control. The results revealed that compound **1** showed cytotoxicity against A549 and MCF7 cell with IC₅₀ values of 8.2 and 2.5 μ M.

ACKNOWLEDGEMENTS

This research was supported by the Key Laboratory of Pharmacology for Natural Products (Kunming Medical University) (2014G005).

REFERENCES

- 1. V. Duraipandiyan and S. Ignacimuthu, *J. Ethnopharmacol.*, **112**, 590 (2007).
- S. Rajan, D.S. Baburaj, M. Sethuraman and S. Parimala, *Ethnobotany*, 6, 19 (2001).
- Q.F. Hu, B. Zhou, X.M. Gao, L.Y. Yang, L.D. Shu, Y.Q. Shen, G.P. Li, C.T. Che and G.Y. Yang, J. Nat. Prod., 75, 1909 (2012).
- Y.K. Li, Y.C. Yang, Y. Qin, Y.L. Meng, Y.Q. Ye, H.Y. Yang, X.M. Gao and Q.F. Hu, *Heterocycles*, 89, 481 (2014).
- 5. S. Aurapa and G. Wandee, Int. J. Biomed. Pharm. Sci., 3, 42 (2009).
- P. Sartorelli, S.P. Andrade, M.S. Melhem, F.O. Prado and A.G. Tempone, *Phytother. Res.*, 21, 644 (2007).
- 7. Y.H. Kuo, P.H. Lee and Y.S. Wein, J. Nat. Prod., 65, 1165 (2002).
- S.L. Jothy, Z. Zakaria, Y. Chen, Y.L. Lau, L.Y. Latha, L.N. Shin and S. Sasidharan, *Molecules*, 16, 7583 (2011).
- W. Zhao, X.Y. Zeng, T. Zhang, L. Wang, G.Y. Yang, Y.K. Chen, Q.F. Hu and M.M. Miao, *Phytochem. Lett.*, 6, 179 (2013).
- X.M. Gao, Y.Q. Shen, X.Z. Huang, L.Y. Yang, L.D. Shu, Q.F. Hu and G.P. Li, J. Braz. Chem. Soc., 24, 685 (2013).
- X.M. Zhou, C.J. Zheng, G.Y. Chen, X.P. Song, C.R. Han, G.N. Li, Y.H. Fu, W.H. Chen and Z.G. Niu, *J. Nat. Prod.*, 77, 2021 (2014).
- 12. Y.P. Li, Y.C. Yang, Y.K. Li, Z.Y. Jiang, X.Z. Huang, W.G. Wang, X.M. Gao and Q.F. Hu, *Fitoterapia*, **95**, 214 (2014).
- H.Y. Yang, Y.H. Gao, D.Y. Niu, L.Y. Yang, X.M. Gao, G. Du and Q.F. Hu, *Fitoterapia*, **91**, 189 (2013).
- X.M. Gao, R.R. Wang, D.Y. Niu, C.Y. Meng, L.M. Yang, Y.T. Zheng, G.Y. Yang, Q.F. Hu, H.D. Sun and W.L. Xiao, *J. Nat. Prod.*, **76**, 1052 (2013).
- Q.F. Hu, B. Zhou, J.M. Huang, Z.Y. Jiang, X.Z. Huang, L.Y. Yang, X.M. Gao, G.Y. Yang and C.T. Che, *J. Nat. Prod.*, **76**, 1866 (2013).
- Q.F. Hu, B. Zhou, Y.Q. Ye, Z.Y. Jiang, X.Z. Huang, Y.K. Li, G. Du, G.Y. Yang and X.M. Gao, J. Nat. Prod., 76, 1854 (2013).