

NOTE

Synthesis and Characterization of Mononuclear Nickel Complexes with Dithiolate Ligands

WEI GAO^{*} and BO SHI

School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, P.R. China

*Corresponding author: E-mail: weigao415@aliyun.com

Received: 30 June 2014;	Accepted: 12 September 2014;	Published online: 26 May 2015;	AJC-17286
-------------------------	------------------------------	--------------------------------	-----------

Treatment of the mononuclear nickel complex (dppf)NiCl₂ (1) [dppf = 1,1'-*bis*(diphenylphosphino)ferrocene] with HSCH₂CH₂SH or HSCHMeCHMeSH in the presence of Et₃N in CH₂Cl₂ afforded the corresponding nickel dithiolate complexes (dppf)Ni(SCH₂CH₂S) (2) and (dppf)Ni(SCHMeCHMeS) (3) in 44 and 59 % yields, respectively. The new complexes 2 and 3 were structurally characterized by ¹H NMR, ³¹P{¹H} NMR and ¹³C{¹H} NMR spectroscopy.

Keywords: Nickel complex, Ethanedithiolate, Synthesis, dppf.

The transition metal complexes with dithiolate ligands have been received considerable attention due to their potential applications in catalytic reactions¹⁻⁶. Recently, the mononuclear nickel complexes with chelating *N*-substituted *bis*(diphenylphosphanyl)amine and dithiolate ligands were prepared by the condensation reaction of the precursors (Ph₂PNRPPh₂)NiCl₂ with dithiols in the presence of Et₃N⁷. In a continuation of our studies of the nickel complex⁸, we have obtained the mononuclear nickel complexes **2** and **3** with chelating 1,1'*bis*(diphenylphosphino)ferrocene (dppf) and dithiolate ligands by the condensation reactions of (dppf)NiCl₂ with HSCH₂CH₂SH or HSCHMeC-HMeSH in the presence of Et₃N. In this paper, we describe the synthesis and characterization of the mononuclear nickel complexes with dppf and ethane dithiolate ligands.

 $(dppf)NiCl_2$, HSCH₂CH₂SH and HSCHMeCHMeSH were available commercially and used as received. ¹H (³¹P{¹H}, ¹³C{¹H}) NMR spectra were obtained on a Bruker Avance 500 MHz spectrometer.

Synthesis of complex 2: To a solution of (dppf)NiCl₂ (0.137 g, 0.2 mmol) and HSCH₂CH₂SH (0.017 mL, 0.2 mmol) in CH₂Cl₂ (30 mL) was added Et₃N (0.060 mL, 0.4 mmol) and the new mixture was stirred for 1 h at room temperature. The solvent was reduced *in vacuo* and the residue was subjected to TLC separation using CH₂Cl₂ as eluent. From the main brown band afforded 0.062 g (44 %) of complex **2** as a brown solid. ¹H NMR (500 MHz, CDCl₃): 7.91 (q, J = 7.0 Hz, 8H, *o*-PhH), 7.44 (t, J = 7.2 Hz, 4H, p-PhH), 7.36 (t, J = 7.5 Hz, 8H, m-PhH), 4.28 (s, 4H, CpH), 4.16 (s, 4H, CpH), 2.70 (s, 4H, 2SCH₂) ppm. ³¹P{¹H} NMR (200 MHz, CDCl₃, 85 % H₃PO₄): 26.48 (s) ppm.

Synthesis of complex 3: To a solution of $(dppf)NiCl_2$ (0.137 g, 0.2 mmol) and HSCHMeCHMeSH (0.025 mL, 0.2 mmol) in CH₂Cl₂ (30 mL) was added Et₃N (0.060 mL, 0.4 mmol) and the new mixture was stirred for 1 h at room temperature. The solvent was reduced *in vacuo* and the residue was subjected to TLC separation using CH₂Cl₂ as eluent. From the main red band afforded 0.087 g (59 %) of complex **3** as a red solid. ¹H NMR (500 MHz, CDCl₃): 7.59-7.39 (m, 20H, PhH), 4.70-4.56 (m, 4H, CpH), 4.32-4.16 (m, 4H, CpH), 4.07-3.97 (m, 2H, 2SCH), 1.62, 1.25 (2s, 6H, 2CH₃) ppm. ³¹P{¹H} NMR (200 MHz, CDCl₃): 134.30, 133.43, 131.65, 131.54, 131.84, 131.29, 128.33, 128.23 (PhC), 74.88, 74.79, 74.27, 74.18, 74.04, 73.96, 73.50, 73.41 (CpC), 53.44 (CH), 20.44 (CH₃) ppm.

As shown in **Scheme-I**, treatment of (dppf)NiCl₂ with **1** equivelent of HSCH₂CH₂SH or HSCHMeCHMeSH in the presence of Et₃N in CH₂Cl₂ resulted in the formation of the mononuclear nickel complexes **2** and **3** in 44 and 59 % yields, respectively. The new complexes **2** and **3** were air-stable brown solids, which have been characterized by ¹H NMR, ³¹P{¹H} NMR and ¹³C{¹H} NMR spectroscopy.

¹**H NMR spectrum:** The ¹H NMR spectrum of complex **2** displayed a quadruplet at δ 7.91 ppm and two triplets at δ 7.44 and 7.36 ppm for the phenyl protons and two singlets at δ 4.28 and 4.16 ppm for the cyclopentadienyl protons. The ¹H NMR spectrum of **3** displayed a multiplet at δ 7.59-7.39 ppm for the phenyl protons and two multiplets at δ 4.70-4.56 and 4.32-4.16 ppm for the cyclopentadienyl protons.

 ${}^{31}P{}^{1}H$ NMR spectrum: The ${}^{31}P{}^{1}H$ NMR spectrum of complexes 2 and 3 exhibited a singlet at δ 26.48 and 28.05

Scheme-I: Synthesis of complexes 2 and 3

ppm, respectively, for the two symmetrical phosphorus atoms of dppf chelated to the nickel atom.

¹³C{¹H} **NMR spectrum:** The ¹³C{¹H} NMR spectrum of complex **3** demonstrated eight signals in the range of δ 134.30-128.23 ppm for the phenyl carbons and eight signals in the range of δ 74.88-73.41 ppm for the cyclopentadienyl carbons.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the financial support by the Doctoral Research Fund of Henan University of Traditional Chinese Medicine.

REFERENCES

 (a) H.G. Cui, N.N. Wu, J.Y. Wang, M.Q. Hu, H.M. Wen and C.N. Chen, J. Organomet. Chem., 767, 46 (2014); (b) C.A. Mebi, D.S. Karr and B.C. Noll, Polyhedron, 50, 164 (2013); (c) P.H. Zhao, Y.Q. Liu and X.A. Li, Asian J. Chem., 25, 5428 (2013); (d) X.F. Liu, Inorg. Chim. Acta, 378, 338 (2011); (e) X.F. Liu, J. Organomet. Chem., 750, 117 (2014).

- (a) E.S. Donovan, G.S. Nichol and G.A.N. Felton, J. Organomet. Chem., 726, 9 (2013); (b) Y.L. Li, B. Xie, L.K. Zou, X.L. Zhang and X. Lin, J. Organomet. Chem., 718, 74 (2012); (c) W. Gao, J. Yuan and J. Yang, Asian J. Chem., 25, 9755 (2013); (d) X.F. Liu and H.Q. Gao, Polyhedron, 65, 1 (2013); (e) P.H. Zhao, X.H. Li, Y.F. Liu and Y.Q. Liu, J. Coord. Chem., 67, 766 (2014); (f) X.F. Liu, X.Y. Yu and H.Q. Gao, Mol. Cryst. Liq. Cryst., 592, 229 (2014).
- (a) S. Ghosh, G. Hogarth, N. Hollingsworth, K.B. Holt, S.E. Kabir and B.E. Sanchez, *Chem. Commun.*, **50**, 945 (2013); (b) X.F. Liu, *Polyhedron*, **72**, 66 (2014); (c) M. El-khateeb, M. Harb, Q. Abu-Salem, H. Görls and W. Weigand, *Polyhedron*, **61**, 1 (2013); (d) P.H. Zhao, M. Zhang and G.Z. Zhao, *Asian J. Chem.*, **25**, 5068 (2013); (e) X.F. Liu and B.S. Yin, *J. Coord. Chem.*, **63**, 4061 (2010).
- (a) S. Ghosh, G. Hogarth, N. Hollingsworth, K.B. Holt, I. Richards, M.G. Richmond, B.E. Sanchez and D. Unwin, *Dalton Trans.*, **42**, 6775 (2013); (b) L.J. Luo, X.F. Liu and H.Q. Gao, *J. Coord. Chem.*, **66**, 1077 (2013); (c) P.H. Zhao, Y.Q. Liu and G.Z. Zhao, *Polyhedron*, **53**, 144 (2013); (d) C.G. Li, Y.F. Li, J.Y. Shang and T.J. Lou, *Transition Met. Chem.*, **39**, 373 (2014); (e) X.F. Liu, M.Y. Chen and H.Q. Gao, *J. Coord. Chem.*, **67**, 57 (2014); (f) W. Gao, J.Y. Zhang and J. Yang, *Asian J. Chem.*, **26**, 2089 (2014).
- (a) N. Wang, M. Wang, L. Chen and L.C. Sun, *Dalton Trans.*, 42, 12059 (2013); (b) P.H. Zhao, W.T. Wang, Y.F. Liu and Y.Q. Liu, *Transition Met. Chem.*, 39, 501 (2014); (c) X.F. Liu and H.Q. Gao, *J. Cluster Sci.*, 25, 367 (2014); (d) X.F. Liu and H.Q. Gao, *J. Cluster Sci.*, 25, 367 (2014); (e) W. Gao, L.Q. Tian and J. Yang, *Asian J. Chem.*, 26, 2086 (2014).
- (a) T.H. Yen, K.T. Chu, W.W. Chiu, Y.C. Chien, G.H. Lee and M.H. Chiang, *Polyhedron*, **64**, 247 (2013); (b) X.F. Liu and X.W. Xiao, *J. Organomet. Chem.*, **696**, 2767 (2011); (c) X.F. Liu, Z.Q. Jiang and Z.J. Jia, *Polyhedron*, **33**, 166 (2012); (d) C.G. Li, Y. Zhu, X.X. Jiao and X.Q. Fu, *Polyhedron*, **67**, 416 (2014); (e) Y.L. Li, B. Xie, L.K. Zou, X. Lin, Y. Yang, S.S. Zhu and T. Wang, *Polyhedron*, **67**, 490 (2014); (f) P.H. Zhao, Y.F. Liu, K.K. Xiong and Y.Q. Liu, *J. Clust. Sci.*, **25**, 1061 (2014); (g) P.H. Zhao, S.N. Liu, Y.F. Liu and Y.Q. Liu, *J. Clust. Sci.*, **25**, 1331 (2014); (h) W. Gao, F.P. Guo and J. Yang, *Asian J. Chem.*, **26**, 2083 (2014).
- 7. X.F. Liu, Inorg. Chim. Acta, 421, 10 (2014).
- 8. W. Gao, K. Li and X.L. Wang, Asian J. Chem., 25, 7876 (2013).