

Novel Route for Synthesis of (S)-1-Benzyl-6-oxopiperidine-2-carboxylic Acid and its Crystal Structure

J. SIVÝ^{1,*}, V. VRÁBEL², Š. MARCHALÍN³ and P. ŠAFÁR³

¹Institute of Mathematics and Physics, Faculty of Mechanical Engineering, Slovak University of Technology, Námestie slobody 17, SK-81231 Bratislava, Slovak Republic

²Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, SK-81237 Bratislava, Slovak Republic

³Institute of Organic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, SK-81237 Bratislava, Slovak Republic

*Corresponding author: E-mail: julius.sivy@stuba.sk

Received: 27 August 2014;	Accepted: 12 December 2014;	Published online: 30 March 2015;	AJC-17094

A piperidine carboxylic acid was synthesized and the structure of compound was confirmed by spectral methods and the X-ray diffraction experiment was employed to investigate the crystal structure of (*S*)-1-benzyl-6-oxopiperidine-2-carboxylic acid. In the crystal structure of the title compound **5**, $C_{13}H_{15}NO_3$, one molecule creates independent part of the unit cell. The compound crystallizes in the orthorhombic space group P2₁2₁2₁with a = 8.1384(3), b = 10.5953(3), c = 14.1104(3) Å and $\alpha = \beta = \gamma = 90^\circ$. The piperidine ring exhibits a chair conformation. The mean plane of the piperidine ring makes a dihedral angle of 61.10(9)° with the planar benzyl ring. The crystal structure packing of the compound is controlled by strong intermolecular O-H···O hydrogen bonds and weak C-H···O intramolecular interactions.

Keywords: Synthesis, Oxopiperidine-carboxylic acid, Single-crystal X-ray study, R factor = 0.0296.

INTRODUCTION

The presence of a piperidine ring is a characteristic feature of antihistaminic agents, oral anesthetics, narcotic analgesics, tranquillizers and hypotensive agents¹. Many piperidine derivatives also form the skeleton of several alkaloids². A large variety of 4-piperidones with different substituents in the 1, 2, 3, 5 and 6 positions with further substitutions in the 2- and 6substituent phenyl rings have been reported elsewhere³⁻⁹. Derivative of the oxopiperidine carboxylic acid are an important class of compounds, which can be used as starting materials for several classes of synthetic drugs, such as enzyme inhibitors¹⁰, immuno suppressors¹¹, antibiotics¹² and mycotoxic agents¹³. Nitrogen heterocycles, in particular piperidone alkaloids, occur in both plants and animals and some of them possess a variety of biological activity, including cytotoxic and anticancer properties¹⁴⁻¹⁷. As part of our studies on the substituent effects on the structures we present here the results of the X-ray crystallographic analyses of compound 5. A view of the independent molecule with the atom-numbering schemes is shown in Fig. 1.

In continuation with our ongoing program of synthesis of novel benzoanalogue (1) (**Scheme-I**) of the alkaloid cryptopleurine (2) we have recently been concerned with the development of viable procedures for the preparation of optically pure *N*-thienylheterbenzyl-6-oxopiperidine carboxylic acids (5).

The procedure which was used is similar to that which we have published for the similar *N*-thienylmethyl-6-oxo-piperidine-2-carboxylic acids¹⁸.

As highlighted in the (**Scheme-II**), synthesis of (**5**) began with condensation of the disodium salt (*S*)-2-aminoadipic acid (**3**) and benzaldehyde to form the expected Schiff base. A subsequent *in situ* reduction of the formed imine intermediate with sodium borohydride took 3.5 h at 0 °C followed by treatment with concentrated hydrochloric acid at the same temperature gave the crude product (4) in two steps. Finally, cyclization of this crude product by reflux in water for 8 h afforded compound **5** in good yield (73 %).

The structure of the compound **5** was established by spectral methods, mainly by ¹H- and ¹³C NMR methods (HMBC, HSQC, COSY and TOCSY) and HRMS analysis. The molecular and crystal structure of (*S*)-1-benzyl-6-oxopiperidine-2-carboxylic acid (**5**) was also determined.

EXPERIMENTAL

Synthesis and crystallization: Melting points were determined with the Stuart SMP-30 melting-point apparatus. Optical rotations were measured with a P-2000 Polarimeter (PTC-203,

Jasco) in water-jacketed 10 cm cell at the wavelength of the sodium D line ($\lambda = 589$ nm). Specific rotations are given in units of 10⁻¹ deg cm²/g and concentrations are given in mg/mL. The optical purity of the present compound was assesed by NMR analysis of the diastereomeric salt. The salt the obtained by the reaction of (5) with (R)-(+)- α -methylbenzylamine directly in the NMR tube. The IR spectra was recorded with a Nicolet 5700 FT-IR spectrometer of KBr discs. ¹H and ¹³C NMR spectra was recorded with Inova 600 Varian spectrometers in CD₃OD. Solvent and chemical shift (δ) is quoted in ppm and is referenced to TMS as an internal standard.

Preparation of (S)-1-benzyl-6-oxopiperidine-2-carboxylic acid (5): (S)-2-Aminoadipiic acid (3) (8.06 g, 50 mmol) was added at room temperature to a freshly prepared solution of NaOH (2 M, 45 mL) and EtOH (10 mL). To the resulting mixture was added dropwise a solution of freshly distilled benzaldehyde (5.84 g, 55 mmol) in EtOH (18 mL) over 10 h and the reaction mixture was then stirred for 72 h. Then, sodium borohydride (2.28 g, 60 mmol) was added at 0 °C in small portions and the mixture stirred for 3.5 h allowing the temperature to rise to room temperature. The resulting clear solution was extracted with ether $(3 \times 50 \text{ mL})$. The aqueous layer was acidified to pH 3 at 0-5 °C with HCl (1:1). The crystalline precipitate was collected, washed carefully with cooled water (10 mL) and dried to give a solid. The suspension of crude (S)-2-(benzylamino)adipiic acid (4) (11.13 g, 88.6 mmol) in water (250 mL) was refluxed for 8 h and then cooled to 0 °C for 5 h. The precipitate formed was collected, washed with cold water to give acid (5) (8,51 g, 73 %) as colourless crystals; m.p. 148.1-149.2 °C (Scheme-II), $R_f = 0.12$ (CH₂Cl₂-acetone 1:1), $[\alpha]_D^{22} = +98.9^\circ (c = 1.04, \text{MeOH}); \text{IR (KBr, } \nu_{\text{max}}, \text{ cm}^{-1}):$ 2951, 2887, 2459, 1735, 1570, 1489, 1456, 1431, 1407, 1365, 1331, 1286, 1260, 1192, 1158, 1105, 1076, 1058, 1034, 995, 954, 890, 812, 791, 755, 706, 649, 622, 514, 475, 451; ¹H NMR (CD₃OD): δ 7.46-7.10 (m, 1H), 5.25 (t, 1H, J = 17.5 Hz), 3.94 (dd, 1H, J = 5.6 and 3.0 Hz), 3.61 (t, 1H, J = 17.5 Hz), 2.54-2.47 (m, 1H), 2.34 (td, 1H, J = 10.0 and 6.8 Hz), 2.09-1.83 (m, 1H), 1.78-1.56 (m, 1H). ¹³C NMR (CD₃OD): δ

TABLE-1 CRYSTAL AND STRUCTURE REFINEMENT DATA FOR THE TITLE COMPOUND **5**[®]

DATATOR THE TITLE	SCOMI OUND 3		
Empirical formula	C ₁₃ H ₁₅ NO ₃		
Formula weight	233.26		
Temperature, K	298(2)		
Crystal system, space group	Orthorhombic, P2 ₁ 2 ₁ 2 ₁		
a, Å	8.1384(3)		
b, Å	10.5953(3)		
c, Å	14.1104(3)		
$\alpha = \beta = \gamma, \circ$	90		
Volume, Å ³	1216.72(6)		
Z	4		
ρ_{calc} , Mg m ⁻³	1.273		
u. mm ⁻¹	0.091		
Absorption correction	Analytical		
Transmission, T., T	0.961, 0.983		
Detector resolution, pixels mm ⁻¹	5.2170		
F(000)	496.0		
Crystal shape, size, mm	needle, $0.53 \times 0.26 \times 0.19$		
Crystal colour	colourless		
Radiation	$MoK_{\alpha} (\lambda = 0.7107)$		
2Θ range for data collection °	4.808 to 50.684		
Index range of hkl	$-9 \le h \le 9, -12 \le k \le 12,$		
index range of ind	-17≤1≤17		
Reflections collected	17788		
Independent reflections	2227, $R_{int} = 0.0174$		
Parameters, restraints, constraints	158, 0, 0		
Goodness-of-fit on F^2	1.055		
Final R indexes $I > 2\sigma(I)$	$R_1 = 0.0296$, $wR_2 = 0.0823$		
Final R indexes, all data	$R_1 = 0.0313$, $wR_2 = 0.0840$		
Highest peak deepest hole e Å-3	0.11, -0.12		
Weighting scheme	$w = 1/[\sigma^2(F_0^2) + (0.0470P)^2 +$		
Weighting seneme	0.1114P]		
	where $P = (F_o^2 + 2F_c^2)/3$		
Extinction correction	none		
Absolute configuration	syn		
Flack parameter	-		
^a CCDC 971918 contains the crystallographic data			

173.0 (s), 169.1 (s), 137.3 (s, C-1´, Ar), 128.4 (d, C-3´, 5´, Ar), 127.5 (d, C-2´,6´, Ar), 127.1 (d, C-4´, Ar), 58.4 (d, C-2), 48.5 (t, CH₂-N), 31.2 (t, C-5), 25.9 (t, C-3), 18.2 (t, C-4). HRMS calcd for $C_{13}H_{15}NO_3$ (233, 27) [M + 1]⁺: 234, 1052, found 234, 1044.

X-Ray structure determination

Refinement: Hydrogen atoms were placed in calculated positions with C-H distances in the range of 0.93-0.98 Å and constrained to ride on their parent atom (s). The $U_{iso}(H)$ values were set at 1.2 $U_{eq}(C)$ for the compound **5**, hydrogen atom for O-H group was refined independently with O-H distance 0.91(4) Å.

Computing details: Data collection: CrysAlis CCD; cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program (s) used to solve structure: SHELXS97¹⁹, Sir2014²⁰; program (s) used to refine structure: SHELXL97¹⁹; molecular graphics: DIAMOND²¹; software used to prepare material for publication: SHELXL97¹⁹, ShelXle²², WinGX²³, PLATON²⁴, PARST²⁵ and OLEX2²⁶.

RESULTS AND DISCUSSION

The title compound 5 crystallizes in the crystal system orthorhombic, space group $P2_12_12_1$, Z = 4. The molecular structure of the present compound 5 and the non-H atoms labelling scheme is shown in Fig. 1. The absolute configuration of the title compound 5 was established by the synthesis of the compound containing the chiral reference molecule of known absolute configuration. The benzyl ring is planar, one neighbouring atom adopts displacement: C6 = 0.028(2) Å and the central six-membered N-heterocyclic ring is not planar and adopts a chair conformation with a Cremer-Pople²⁷ puckering amplitude (Q) = 0.447(3) Å and orientation angles $\theta = 42.3(4)^{\circ}$, $\varphi = 118.7(5)^{\circ}$. A calculation of least-squares planes shows that this ring is puckered in such a manner that the four atoms adopt displacement: C1 = -0.085(2), C2 = 0.177(3), C4 =-0.180(3) and C5 = 0.095(2) Å, two atoms are displaced from this plane on opposite sides, with out-of-plane displacement: C3 = -0.525(4) and N1 = 0.265(2) Å, three neighbouring atoms adopt displacement: C6 = 0.708(2), C13 = -1.557 (2) and O1 = 0.257(2) Å from this central six-membered *N*-heterocyclic ring (mean plane). Atom N1 is sp^2 -hybridized, as evidenced by the sum of the valence angles around atom N1: 359.8 (2)°. These data are consistent with conjugation of the lone-pair electrons on nitrogen atom with the adjacent carbonyl, similar to what is observed for amides. Table-2 summarizes the selected geometrical parameters of the title compound. There are weak intramolecular C6-H6B--O1 interactions in the molecular structure which generates an S(5)²⁸ (Fig. 1). Strong intermolecular O2-H2...O1 hydrogen bonds, involving the carboxylate group at the 2-position as H-atom donor and the carbonyl group at the 6-position as H-atom acceptor, link the molecules into the infinite C(7) zigzag chains of molecules along the c axis²⁸ (Fig. 2). The bond length of the carbonyl group C5 = O1: 1.240(3) Å is somewhat longer than typical carbonyl bond. This may be due to the fact that atom O1 participates in intermolecular hydrogen bond. Hydrogen bonds play a significant role in a construction of crystal structure, in such a manner, Table-3 and Fig. 2 show the hydrogen bonds. The dihedral angle between the mean plane of the central piperidine ring and the plane of the benzyl ring is $61.10(9)^{\circ}$.

Conclusion

Six-membered *N*-heterocycles are involved in a wide range of biologically important chemical reactions in living

Fig. 1. Molecular structure of the title compound with the non-H atomic numbering scheme. Displacement ellipsoids of the molecule are drawn at the 50 % probability level. The intramolecular hydrogen bond is shown as a dashed line

Fig. 2. Molecular packing view of the title compound **5** in the crystal structure. Molecular links along c-axis are generated by O-H···O hydrogen bonds shown by dashed lines. The rest of H atoms have been omitted for clarity

TABLE-2 SELECTED INTRAMOLECULAR BOND DISTANCES (Å), VALENCE ANGLES AND TORSION ANGLES (°) OF THE TITLE COMPOUND 5				
C1-N1	1.460 (2)	C5-N1-C1	123.5 (2)	
C5-N1	1.335 (2)	O2-C13-C1	111.1 (2)	
C6-N1	1.466 (3)	C5-N1-C6	119.9(2)	
C1-C2	1.513 (3)	C13-O2-H2	107.0(2)	
C1-C13	1.530(2)	N1-C5-O1	120.4(2)	
C1-H1	0.980	O2-C13-O3	124.9(2)	
O2-H2	0.91 (4)	N1-C6-C7	114.9(2)	
O3-C13	1.194(2)	C1-N1-C6	116.4(2)	
O1-C5	1.240(3)	O1-C5-N1-C1	-171.1(2)	
C6-C7	1.509(3)	O1-C5-N1-C6	3.0(2)	
C7-C8	1.388(3)	C1-C13-O2-H2	177.3(2)	
C7-C12	1.371(3)	N1-C1-C13-O2	149.6(2)	

TABLE-3					
GEOMETRY OF THE HYDROGEN BONDS (Å, deg) IN CRYSTAL AND MOLECULAR STRUCTURE OF THE TITLE COMPOUND (5)					
D-HA	Symmetry code	DH	ΗΔ	D A	D-H A

D-H…A	Symmetry code	D…H	H···A	D···A	D-H···A
O2-H2···O1	1.5-x, 1-y, 0.5 + z	0.906 (38)	1.696 (39)	2.574 (2)	162.39 (3.68)
C6-H6BO1	x, y, z	0.970 (2)	2.314 (2)	2.700 (2)	102.78 (12)

organisms and therefore they form one of the most important and well investigated classes of organic compounds. (S)-1benzyl-6-oxopiperidine-2-carboxylic acid was prepared in good yield starting from (S)-2-aminoadipoic acid. The crystal and the molecular structure of the title compound in solid state were studied by X-ray structure analysis. The molecules are linked by a combination of strong intermolecular O-H···O hydrogen bonds and weak C-H···O intramolecular interactions, resulting in a one-dimensional chains in the crystal structure.

ACKNOWLEDGEMENTS

This work was supported by the Grant Agency of the Slovak Republic (grant No. 1-0540-15) and by the Slovak Research and Development Agency under the contract No. APVV-0204-10 and APVV-0797-11. This contribution is also the result of the project: Research Center for Industrial Synthesis of Drugs, ITMS 26240220061, supported by the Research & Development Operational Programme funded by the ERDF.

REFERENCES

- 1. O.P.W. Robinson, Postgrad. Med. J., 49(Suppl.), 9 (1973).
- C. Hootelé, B. Colau, F. Helin, J.P. Declerq, G. Germain and M. Van Meerssche, *Tetrahedron Lett.*, 21, 5063 (1980).
- Z. Jia, J.W. Quail, V.K. Arora and J.R. Dimmock, *Acta Crystallogr. C*, 45, 285 (1989).
- Z. Jia, J.W. Quail, V.K. Arora and J.R. Dimmock, *Acta Crystallogr. C*, 45, 1117 (1989).
- C.J. Cheer, J.P. Cosgrove and B.M. Vittimberga, Acta Crystallogr. C, 40, 1474 (1984).
- K. Sekar, S. Parthasarathy and T.R. Radhakrishnan, *Acta Crystallogr. C*, 46, 1338 (1990).
- 7. K. Sekar, S. Parthasarathy and T.R. Radhakrishnan, *Acta Crystallogr. C*, **49**, 93 (1993).

- 8. J.N. Moorthy and K. Venkatesan, Bull. Chem. Soc. Jpn., 67, 1 (1994).
- E. Diaz, H. Barrios and R.A. Toscano, *Acta Crystallogr. C*, 53, 1468 (1997).
- J. Perumattam, B.G. Shearer, W.L. Confer and R.M. Mathew, *Tetrahe*dron Lett., **32**, 7183 (1991).
- T.K. Jones, S.G. Mills, R.A. Reamer, D. Askin, R. Desmond, R.P. Volante and I. Shinkai, J. Am. Chem. Soc., 111, 1157 (1989).
- S.N. Sehgal, H. Baker, C.P. Eng, K. Singh and C. Véezina, *J. Antibiot.*, 36, 351 (1983).
- 13. J. Martens and M. Scheunemann, Tetrahedron Lett., 32, 1417 (1991).
- J.R. Dimmock, V.K. Arora, S.L. Wonko, N.W. Hamon, J.W. Quail, Z. Jia, R.C. Warrington, W.D. Fang and J.S. Lee, *Drug Des. Deliv.*, 6, 183 (1990).
- B. Mutus, J.D. Wagner, C.J. Talpas, J.R. Dimmock, O.A. Phillips and R.S. Reid, *Anal. Biochem.*, **177**, 237 (1989).
- 16. C. Narajji, M.D. Karvekar and A.K. Das, *Asian J. Chem.*, **20**, 6183 (2008).
- B. Gunasekaran, S. Kathiravan, R. Raghunathan and V. Manivannan, *Asian J. Chem.*, 25, S51 (2013).
- V. Vrábel, J. Sivý, P. Šafár and Š. Marchalín, Acta Crystallogr. C, 70, 817 (2014).
- 19. G.M. Sheldrick, Acta Crystallogr. A, 64, 112 (2008).
- M.C. Burla, R. Caliandro, B. Carrozzini, G.L. Cascarano, C. Giacovazzo, M. Mallamo, A. Mazzone and G. Polidori, SIR2014 (2014) (Submitted).
- 21. K. Brandenburg, DIAMOND, Crystal Impact GbR, Bonn, Germany (2001).
- Ch. B. Hübschle, G.M. Sheldrick and B. Dittrich, J. Appl. Cryst., 44, 1281 (2011).
- 23. L.J. Farrugia, J. Appl. Cryst., 45, 849 (2012).
- 24. A.L. Spek, Acta Crystallogr. D Biol. Crystallogr., 65, 148 (2009).
- 25. M. Nardelli, J. Appl. Cryst., 28, 659 (1995).
- O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard and H. Puschmann, J. Appl. Cryst., 42, 339 (2009).
- 27. D. Cremer and J.A. Pople, J. Am. Chem. Soc., 97, 1354 (1975).
- J. Bernstein, R.E. Davis, L. Shimoni and N.L. Chang, *Angew. Chem. Int. Ed. Engl.*, 34, 1555 (1995).