Novel Route for Synthesis of (S)-1-Benzyl-6-oxopiperidine-2-carboxylic Acid and its Crystal Structure

J. Sivýl ${ }^{1, *}$, V. Vrábel ${ }^{2}$, Š. Marchalín 3 and P. Šafár ${ }^{3}$
${ }^{1}$ Institute of Mathematics and Physics, Faculty of Mechanical Engineering, Slovak University of Technology, Námestie slobody 17, SK81231 Bratislava, Slovak Republic
${ }^{2}$ Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, SK-81237 Bratislava, Slovak Republic
${ }^{3}$ Institute of Organic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, SK-81237 Bratislava, Slovak Republic

*Corresponding author: E-mail: julius.sivy@stuba.sk

Accepted: 12 December 2014;
Published online: 30 March 2015;
AJC-17094

Abstract

A piperidine carboxylic acid was synthesized and the structure of compound was confirmed by spectral methods and the X-ray diffraction experiment was employed to investigate the crystal structure of (S)-1-benzyl-6-oxopiperidine-2-carboxylic acid. In the crystal structure of the title compound $5, \mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{3}$, one molecule creates independent part of the unit cell. The compound crystallizes in the orthorhombic space group $\mathrm{P} 2{ }_{1} 2_{1} 2_{1}$ with $\mathrm{a}=8.1384(3), \mathrm{b}=10.5953(3), \mathrm{c}=14.1104(3) \AA$ and $\alpha=\beta=\gamma=90^{\circ}$. The piperidine ring exhibits a chair conformation. The mean plane of the piperidine ring makes a dihedral angle of $61.10(9)^{\circ}$ with the planar benzyl ring. The crystal structure packing of the compound is controlled by strong intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intramolecular interactions.

Keywords: Synthesis, Oxopiperidine-carboxylic acid, Single-crystal X-ray study, R factor $=\mathbf{0 . 0 2 9 6}$.

INTRODUCTION

The presence of a piperidine ring is a characteristic feature of antihistaminic agents, oral anesthetics, narcotic analgesics, tranquillizers and hypotensive agents ${ }^{1}$. Many piperidine derivatives also form the skeleton of several alkaloids ${ }^{2}$. A large variety of 4-piperidones with different substituents in the $1,2,3,5$ and 6 positions with further substitutions in the 2 - and 6substituent phenyl rings have been reported elsewhere ${ }^{3-9}$. Derivative of the oxopiperidine carboxylic acid are an important class of compounds, which can be used as starting materials for several classes of synthetic drugs, such as enzyme inhibitors ${ }^{10}$, immuno suppressors ${ }^{11}$, antibiotics ${ }^{12}$ and mycotoxic agents ${ }^{13}$. Nitrogen heterocycles, in particular piperidone alkaloids, occur in both plants and animals and some of them possess a variety of biological activity, including cytotoxic and anticancer properties ${ }^{14-17}$. As part of our studies on the substituent effects on the structures we present here the results of the X-ray crystallographic analyses of compound 5. A view of the independent molecule with the atom-numbering schemes is shown in Fig. 1.

In continuation with our ongoing program of synthesis of novel benzoanalogue (1) (Scheme-I) of the alkaloid cryptopleurine (2) we have recently been concerned with the develop-
ment of viable procedures for the preparation of optically pure N-thienylheterbenzyl-6-oxopiperidine carboxylic acids (5).

The procedure which was used is similar to that which we have published for the similar N-thienylmethyl-6-oxo-piperidine-2-carboxylic acids ${ }^{18}$.

As highlighted in the (Scheme-II), synthesis of (5) began with condensation of the disodium salt (S)-2-aminoadipic acid (3) and benzaldehyde to form the expected Schiff base. A subsequent in situ reduction of the formed imine intermediate with sodium borohydride took 3.5 h at $0^{\circ} \mathrm{C}$ followed by treatment with concentrated hydrochloric acid at the same temperature gave the crude product (4) in two steps. Finally, cyclization of this crude product by reflux in water for 8 h afforded compound 5 in good yield (73%).

The structure of the compound $\mathbf{5}$ was established by spectral methods, mainly by ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$ NMR methods (HMBC, HSQC, COSY and TOCSY) and HRMS analysis. The molecular and crystal structure of (S)-1-benzyl-6-oxopiperi-dine-2-carboxylic acid (5) was also determined.

EXPERIMENTAL

Synthesis and crystallization: Melting points were determined with the Stuart SMP-30 melting-point apparatus. Optical rotations were measured with a P-2000 Polarimeter (PTC-203,

3

1

Scheme-I

Scheme-II

Jasco) in water-jacketed 10 cm cell at the wavelength of the sodium D line $(\lambda=589 \mathrm{~nm})$. Specific rotations are given in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} / \mathrm{g}$ and concentrations are given in $\mathrm{mg} / \mathrm{mL}$. The optical purity of the present compound was assesed by NMR analysis of the diastereomeric salt. The salt the obtained by the reaction of (5) with (R)-(+)- α-methylbenzylamine directly in the NMR tube. The IR spectra was recorded with a Nicolet 5700 FT-IR spectrometer of KBr discs. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra was recorded with Inova 600 Varian spectrometers in $\mathrm{CD}_{3} \mathrm{OD}$. Solvent and chemical shift (δ) is quoted in ppm and is referenced to TMS as an internal standard.

Preparation of (S)-1-benzyl-6-oxopiperidine-2-carboxylic acid (5): (S)-2-Aminoadipiic acid (3) ($8.06 \mathrm{~g}, 50 \mathrm{mmol}$) was added at room temperature to a freshly prepared solution of $\mathrm{NaOH}(2 \mathrm{M}, 45 \mathrm{~mL})$ and $\mathrm{EtOH}(10 \mathrm{~mL})$. To the resulting mixture was added dropwise a solution of freshly distilled benzaldehyde ($5.84 \mathrm{~g}, 55 \mathrm{mmol}$) in EtOH (18 mL) over 10 h and the reaction mixture was then stirred for 72 h . Then, sodium borohydride ($2.28 \mathrm{~g}, 60 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$ in small portions and the mixture stirred for 3.5 h allowing the temperature to rise to room temperature. The resulting clear solution was extracted with ether $(3 \times 50 \mathrm{~mL})$. The aqueous layer was acidified to pH 3 at $0-5^{\circ} \mathrm{C}$ with HCl (1:1). The crystalline precipitate was collected, washed carefully with cooled water $(10 \mathrm{~mL})$ and dried to give a solid. The suspension of crude (S)-2-(benzylamino)adipiic acid (4) ($11.13 \mathrm{~g}, 88.6 \mathrm{mmol}$) in water $(250 \mathrm{~mL})$ was refluxed for 8 h and then cooled to $0^{\circ} \mathrm{C}$ for 5 h . The precipitate formed was collected, washed with cold water to give acid (5) (8,51 g, 73%) as colourless crystals; m.p. $148.1-149.2^{\circ} \mathrm{C}($ Scheme-II $), \mathrm{R}_{\mathrm{f}}=0.12\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-acetone $1: 1),[\alpha]_{\mathrm{D}}^{22}=+98.9^{\circ}(c=1.04, \mathrm{MeOH}) ;$ IR $\left(\mathrm{KBr}, v_{\text {max }}, \mathrm{cm}^{-1}\right)$: 2951, 2887, 2459, 1735, 1570, 1489, 1456, 1431, 1407, 1365, 1331, 1286, 1260, 1192, 1158, 1105, 1076, 1058, 1034, 995, 954, 890, 812, 791, 755, 706, 649, 622, 514, 475, 451; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta 7.46-7.10(\mathrm{~m}, 1 \mathrm{H}), 5.25(\mathrm{t}, 1 \mathrm{H}, J=17.5$ $\mathrm{Hz}), 3.94(\mathrm{dd}, 1 \mathrm{H}, J=5.6$ and 3.0 Hz$), 3.61(\mathrm{t}, 1 \mathrm{H}, J=17.5$ $\mathrm{Hz}), 2.54-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{td}, 1 \mathrm{H}, J=10.0$ and 6.8 Hz$)$, 2.09-1.83 (m, 1H), 1.78-1.56 (m, 1H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta$

| TABLE-1
 CRYSTAL AND STRUCTURE REFINEMENT FOR THE TITLE COMPOUND 5 |
| :--- | :--- |
| C^{a} |
| DATA |

173.0 (s), 169.1 (s), 137.3 (s, C-1', Ar), 128.4 (d, C-3', 5', $\mathrm{Ar}), 127.5$ (d, C-2', $\left.6^{\prime}, \mathrm{Ar}\right), 127.1$ (d, C-4', Ar), 58.4 (d, C-2), $48.5\left(\mathrm{t}, \mathrm{CH}_{2}-\mathrm{N}\right), 31.2(\mathrm{t}, \mathrm{C}-5), 25.9(\mathrm{t}, \mathrm{C}-3), 18.2(\mathrm{t}, \mathrm{C}-4)$. HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{3}(233,27)[\mathrm{M}+1]^{+}: 234,1052$, found 234, 1044.

X-Ray structure determination

Refinement: Hydrogen atoms were placed in calculated positions with C-H distances in the range of 0.93-0.98 \AA and constrained to ride on their parent atom (s). The $\mathrm{U}_{\mathrm{iso}}(\mathrm{H})$ values were set at $1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$ for the compound $\mathbf{5}$, hydrogen atom for O-H group was refined independently with O-H distance 0.91 (4) Å.

Computing details: Data collection: CrysAlis CCD; cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program (s) used to solve structure: SHELXS $97{ }^{19}$, Sir2014 ${ }^{20}$; program (s) used to refine structure: SHELXL97 ${ }^{19}$; molecular graphics: DIAMOND ${ }^{21}$; software used to prepare material for publication: SHELXL97 ${ }^{19}$, ShelXle ${ }^{22}$, WinGX ${ }^{23}$, PLATON 24, PARST 25 and OLEX ${ }^{26}$.

RESULTS AND DISCUSSION

The title compound $\mathbf{5}$ crystallizes in the crystal system orthorhombic, space group $\mathrm{P} 2_{1} 2_{1} 2_{1}, \mathrm{Z}=4$. The molecular structure of the present compound $\mathbf{5}$ and the non- H atoms labelling scheme is shown in Fig. 1. The absolute configuration of the title compound $\mathbf{5}$ was established by the synthesis of the compound containing the chiral reference molecule of known absolute configuration. The benzyl ring is planar, one neighbouring atom adopts displacement: C6 = 0.028(2) \AA And the central six-membered N-heterocyclic ring is not planar and adopts a chair conformation with a Cremer-Pople ${ }^{27}$ puckering amplitude $(\mathrm{Q})=0.447(3) \AA$ and orientation angles $\theta=42.3(4)^{\circ}$, $\varphi=118.7(5)^{\circ}$. A calculation of least-squares planes shows that this ring is puckered in such a manner that the four atoms adopt displacement: $\mathrm{C} 1=-0.085(2), \mathrm{C} 2=0.177(3), \mathrm{C} 4=$ -0.180 (3) and C5 $=0.095$ (2) \AA, two atoms are displaced from this plane on opposite sides, with out-of-plane displacement: $\mathrm{C} 3=-0.525(4)$ and $\mathrm{N} 1=0.265(2) \AA$, three neighbouring atoms adopt displacement: $\mathrm{C} 6=0.708$ (2), $\mathrm{C} 13=-1.557$ (2) and O 1 $=0.257(2) \AA$ from this central six-membered N-heterocyclic ring (mean plane). Atom N1 is $s p^{2}$-hybridized, as evidenced by the sum of the valence angles around atom N1: 359.8 (2) ${ }^{\circ}$. These data are consistent with conjugation of the lone-pair electrons on nitrogen atom with the adjacent carbonyl, similar to what is observed for amides. Table-2 summarizes the selected geometrical parameters of the title compound. There are weak intramolecular C6-H6B $\cdots \mathrm{O} 1$ interactions in the molecular structure which generates an $\mathrm{S}(5)^{28}$ (Fig. 1). Strong intermolecular $\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 1$ hydrogen bonds, involving the carboxylate group at the 2-position as H -atom donor and the carbonyl group at the 6-position as H -atom acceptor, link the molecules into the infinite $\mathrm{C}(7)$ zigzag chains of molecules along the c axis 28 (Fig. 2). The bond length of the carbonyl group $\mathrm{C} 5=\mathrm{O} 1$: 1.240 (3) \AA is somewhat longer than typical carbonyl bond. This may be due to the fact that atom O1 participates in intermolecular hydrogen bond. Hydrogen bonds play a significant role in a construction of crystal structure, in such a manner, Table- 3 and Fig. 2 show the hydrogen bonds. The dihedral angle between the mean plane of the central piperidine ring and the plane of the benzyl ring is $61.10(9)^{\circ}$.

Conclusion

Six-membered N-heterocycles are involved in a wide range of biologically important chemical reactions in living

Fig. 1. Molecular structure of the title compound with the non-H atomic numbering scheme. Displacement ellipsoids of the molecule are drawn at the 50% probability level. The intramolecular hydrogen bond is shown as a dashed line

Fig. 2. Molecular packing view of the title compound $\mathbf{5}$ in the crystal structure. Molecular links along c-axis are generated by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds shown by dashed lines. The rest of H atoms have been omitted for clarity

TABLE-2				
SELECTED INTRAMOLECULAR BOND DISTANCES (\AA)				
VALENCE ANGLES AND TORSION ANGLES $\left({ }^{\circ}\right)$				
	OF THE TITLE COMPOUND 5			
C1-N1	$1.460(2)$	C5-N1-C1	$123.5(2)$	
C5-N1	$1.335(2)$	O2-C13-C1	$111.1(2)$	
C6-N1	$1.466(3)$	C5-N1-C6	$119.9(2)$	
C1-C2	$1.513(3)$	C13-O2-H2	$107.0(2)$	
C1-C13	$1.530(2)$	N1-C5-O1	$120.4(2)$	
C1-H1	0.980	O2-C13-O3	$124.9(2)$	
O2-H2	$0.91(4)$	N1-C6-C7	$114.9(2)$	
O3-C13	$1.194(2)$	C1-N1-C6	$116.4(2)$	
O1-C5	$1.240(3)$	O1-C5-N1-C1	$-171.1(2)$	
C6-C7	$1.509(3)$	O1-C5-N1-C6	$3.0(2)$	
C7-C8	$1.388(3)$	C1-C13-O2-H2	$177.3(2)$	
C7-C12	$1.371(3)$	N1-C1-C13-O2	$149.6(2)$	

TABLE-3

GEOMETRY OF THE HYDROGEN BONDS (\AA, deg) IN CRYSTAL AND MOLECULAR STRUCTURE OF THE TITLE COMPOUND (5)

D-H $\cdots \mathrm{A}$	Symmetry code	$\mathrm{D} \cdots \mathrm{H}$	$\mathrm{H} \cdots \mathrm{A}$	$\mathrm{D} \cdots \mathrm{A}$	$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 1$	$1.5-\mathrm{x}, 1-\mathrm{y}, 0.5+\mathrm{z}$	$0.906(38)$	$1.696(39)$	$2.574(2)$	$162.39(3.68)$
$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B} \cdots \mathrm{O} 1$	$\mathrm{x}, \mathrm{y}, \mathrm{z}$	$0.970(2)$	$2.314(2)$	$2.700(2)$	$102.78(12)$

organisms and therefore they form one of the most important and well investigated classes of organic compounds. (S)-1-benzyl-6-oxopiperidine-2-carboxylic acid was prepared in good yield starting from (S)-2-aminoadipoic acid. The crystal and the molecular structure of the title compound in solid state were studied by X-ray structure analysis. The molecules are linked by a combination of strong intermolecular O-H $\cdots \mathrm{O}$ hydrogen bonds and weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intramolecular interactions, resulting in a one-dimensional chains in the crystal structure.

ACKNOWLEDGEMENTS

This work was supported by the Grant Agency of the Slovak Republic (grant No. 1-0540-15) and by the Slovak Research and Development Agency under the contract No. APVV-020410 and APVV-0797-11. This contribution is also the result of the project: Research Center for Industrial Synthesis of Drugs, ITMS 26240220061, supported by the Research \& Development Operational Programme funded by the ERDF.

REFERENCES

. O.P.W. Robinson, Postgrad. Med. J., 49(Suppl.), 9 (1973).
2. C. Hootelé, B. Colau, F. Helin, J.P. Declerq, G. Germain and M. Van Meerssche, Tetrahedron Lett., 21, 5063 (1980).
3. Z. Jia, J.W. Quail, V.K. Arora and J.R. Dimmock, Acta Crystallogr. C, 45, 285 (1989).
4. Z. Jia, J.W. Quail, V.K. Arora and J.R. Dimmock, Acta Crystallogr. C, 45, 1117 (1989).
5. C.J. Cheer, J.P. Cosgrove and B.M. Vittimberga, Acta Crystallogr. C, 40, 1474 (1984).
6. K. Sekar, S. Parthasarathy and T.R. Radhakrishnan, Acta Crystallogr. C, 46, 1338 (1990).
7. K. Sekar, S. Parthasarathy and T.R. Radhakrishnan, Acta Crystallogr. C, 49, 93 (1993).
8. J.N. Moorthy and K. Venkatesan, Bull. Chem. Soc. Jpn., 67, 1 (1994).
9. E. Diaz, H. Barrios and R.A. Toscano, Acta Crystallogr. C, 53, 1468 (1997).
10. J. Perumattam, B.G. Shearer, W.L. Confer and R.M. Mathew, Tetrahedron Lett., 32, 7183 (1991).
11. T.K. Jones, S.G. Mills, R.A. Reamer, D. Askin, R. Desmond, R.P. Volante and I. Shinkai, J. Am. Chem. Soc., 111, 1157 (1989).
12. S.N. Sehgal, H. Baker, C.P. Eng, K. Singh and C. Véezina, J. Antibiot., 36, 351 (1983).
13. J. Martens and M. Scheunemann, Tetrahedron Lett., 32, 1417 (1991).
14. J.R. Dimmock, V.K. Arora, S.L. Wonko, N.W. Hamon, J.W. Quail, Z. Jia, R.C. Warrington, W.D. Fang and J.S. Lee, Drug Des. Deliv., 6, 183 (1990).
15. B. Mutus, J.D. Wagner, C.J. Talpas, J.R. Dimmock, O.A. Phillips and R.S. Reid, Anal. Biochem., 177, 237 (1989).
16. C. Narajji, M.D. Karvekar and A.K. Das, Asian J. Chem., 20, 6183 (2008).
17. B. Gunasekaran, S. Kathiravan, R. Raghunathan and V. Manivannan, Asian J. Chem., 25, S51 (2013).
18. V. Vrábel, J. Sivý, P. Šafár and Š. Marchalín, Acta Crystallogr. C, 70, 817 (2014).
19. G.M. Sheldrick, Acta Crystallogr. A, 64, 112 (2008).
20. M.C. Burla, R. Caliandro, B. Carrozzini, G.L. Cascarano, C. Giacovazzo, M. Mallamo, A. Mazzone and G. Polidori, SIR2014 (2014) (Submitted).
21. K. Brandenburg, DIAMOND, Crystal Impact GbR, Bonn, Germany (2001).
22. Ch. B. Hübschle, G.M. Sheldrick and B. Dittrich, J. Appl. Cryst., 44, 1281 (2011).
23. L.J. Farrugia, J. Appl. Cryst., 45, 849 (2012).
24. A.L. Spek, Acta Crystallogr. D Biol. Crystallogr., 65, 148 (2009).
25. M. Nardelli, J. Appl. Cryst., 28, 659 (1995).
26. O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard and H. Puschmann, J. Appl. Cryst., 42, 339 (2009).
27. D. Cremer and J.A. Pople, J. Am. Chem. Soc., 97, 1354 (1975).
28. J. Bernstein, R.E. Davis, L. Shimoni and N.L. Chang, Angew. Chem. Int. Ed. Engl., 34, 1555 (1995).

